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Electric charge conservation

• In subatomic physics it is customary to express electric charge in
units of the elementary charge e = 1.6⇥ 10�19 Coulomb. The
electron then has charge �1, the positron +1, the up quark +2

3,
the down quark �1

3, etc., see the table on Page 1–5.

• As far as we know, total electric charge is the same in the ini-
tial and final state of any elementary reaction, and this charge
conservation is experimentally verified to great accuracy.

• For instance electron decay

e ! � ⌫e

is allowed by all known conservation laws but is forbidden by charge
conservation and it indeed has never been observed. In fact, the
life time of the electron is measured to be larger than 5⇥1026 years.

• We have seen that conserved quantities are related to symmetries
in the Hamiltonian, or the Lagrangian, so the question is now which
symmetry causes this charge conservation. Charge is obviously an
additive conserved quantity so that the symmetry transformation
must be continuous.

• The answer, as we will see, is that a so-called gauge symmetry
is responsible for the charge conservation. Gauge transformations
enter when interactions are described in terms of potentials, instead
of forces. A well known example is from classical electrodynamics
where we can transform the scalar and vector potentials in such a
way that the E and B fields are una↵ected.

3–3



Gauge transformation in electrodynamics

• In electrodynamics the E and B fields are related to the scalar
and vector potentials V and A by

E = �@A/@t � rV B = r ⇥ A

• A gauge transformation leaves the E and B fields invariant

V 0 = V � @⇤/@t A

0 = A + r⇤

Here ⇤(x, t) is an arbitrary function of x and t.

• To this gauge transformation corresponds a unitary operator that
transforms the wave function of a particle in an electromagnetic
field. We can write this transformation as (see page 2–7)

| i0 = exp(i✏G)| i

where the generator G is to be identified later. Since ⇤ is an
arbitrary function of x and t we require that ✏ is also an arbitrary
function of x and t. Because ✏ can vary in space-time, we speak
of a local gauge transformation.

• Now consider the Schrödinger equation of a particle in a static
electric field before and after our gauge transformation

i
@| i
@t

=

✓
�r2

2m
+ q V

◆
| i

i
@| i0

@t
=

✓
�r2

2m
+ q V 0

◆
| i0

Here q is the charge of the particle.

• Because of gauge invariance, both equations should apply and
this fixes the generator G, as we will now show.
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From local gauge invariance to charge conservation

• Let us work out the transformed Schrödinger equation (for clarity
we write  instead of | i). To simplify the mathematics we will
take ✏ to be a function of t only, instead of x and t:
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• We find that G is the charge operator Q! This is due to the
cancellations that occur because ✏ is local (i.e. a function of t in
our derivation); all this would not work if ✏ would be a constant.

• Clearly if H and Q commute, then it follows that the expectation
value hQi is conserved, in other words, charge is conserved.

• It is straight-forward to extend the derivation above to local trans-
formations that depend on both x and t, instead of on t alone, but
we will not do this here since it brings a lot of additional algebra
and is not very illuminating.

• The family of phase transformations U(↵) ⌘ ei↵, with real ↵,
forms a unitary Abelian group called U(1). Phase invariance is
therefore also known as U(1) invariance.
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Lagrangian formalism

• Gauge theories, or field theories in general, are usually defined
in terms of a Lagrangian. This is a well-known concept from
classical mechanics; a brief summary can be found on page 0–7.

• In classical mechanics the Lagrangian is the di↵erence between the
kinetic and potential energy and is written as the function L(q, q̇)
of a set of N coordinates qi and velocities q̇i that fully describe
the system at any instant t. N is called the number of degrees of
freedom of the system.

• The action is defined by

S[path] =

Z t2

t1

dt L(q, q̇)

where the integral is taken along some path from q(t1) to q(t2).

• The principle of least action states that the system will evolve
along the path that minimises the action. The equations of motion
then follow from the Euler-Lagrange equations

d
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• Example: Mass m in a central potential V (r)

L(r, ṙ) = 1
2mṙ

2 � V (r) ! mr̈ = �rV (r)

• Example: Harmonic oscillator

L(x, ẋ) = 1
2mẋ2 � 1

2kx
2 ! mẍ = �kx
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Infinite number of degrees of freedom

• Consider small transverse vibrations of a system of N masses m
connected by springs.
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-
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The state of this system is described by the vertical deviations
q1(t), . . . , qN(t) from the equilibrium position.

• We can let N ! 1 in such a way that we obtain a vibrating
string that can be described by a function q(x, t).

• Such a function is called a field, a displacement field in this case.

• For our field, the Lagrangian is a function of q, q̇, and the gradient
dq/dx, and is written as the integral of a Lagrangian density

L(q, q̇, dq/dx) =

Z
dx L(q, q̇, dq/dx)

Generalising to 3 dimensions, the action integral reads

S[path] =

Z t2

t1

dt

Z
d3x L(q, q̇,rq)

• In 4-vector notation this gives for the action integral of a field �(xµ)

S[path] =

Z
d4x L(�, @µ�)

• In this notation the Euler-Lagrange equation reads
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Exercise 3.1:

The Lagrangian of a vibrating string is:

L = (@�/@t)2 � (@�/@x)2.

(a) [0.25] Write this Lagrangian in 4-vector notation.

(b) [0.25] Now use the Euler-Lagrange equation

@µ

✓
@L

@ (@µ�)

◆
� @L
@�

= 0

to derive the wave equation of a vibrating string.

Remark: When you have to derive a field equation from a Lagrangian
but do not feel confident in manipulating upper and lower Lorentz
indices to keep track of the signs, you can always resort to writing it
all out into the components (t, x, y, z). This is elaborate, but it works.

Here is the conversion of the derivative indices

(@0, @1, @2, @3) = (@0,�@1,�@2,�@3) = (@t, @x, @y, @z)

And here is that of four-vector fields A, if present

(A0, A1, A2, A3) = (A0,�A1,�A2,�A3) = (At, Ax, Ay, Az)

You may find it useful to also make conversion tables for Fµ⌫ and Fµ⌫.
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A few Lagrangians ...

• Here are a few well-known Lagrangians that yield—via the E-L
equations—several field equations of interest.

• Klein-Gordon Lagrangian for a real scalar field (spin 0).

L = 1
2(@µ�)(@

µ�) � 1
2m

2�2 !
E�L

@µ@
µ� +m2� = 0

• KG for a complex scalar field (take � and �⇤ as independent).

L = (@µ�
⇤)(@µ�) � m2�⇤� !

E�L

(
@µ@µ� +m2� = 0

@µ@µ�⇤ +m2�⇤ = 0

• Dirac Lagrangian for a spin 1
2 spinor field ( and  independent).

L = i �µ@µ � m  !
E�L

(
(i�µ@µ � m) = 0

(i�µ@µ +m) = 0

• Proca Lagrangian for a vector field (spin 1).

L = �1
4(F

µ⌫)(Fµ⌫) +
1
2m

2A⌫A⌫ !
E�L

@µF
µ⌫ +m2A⌫ = 0,

where Fµ⌫ ⌘ @µA⌫ � @⌫Aµ.

For massless fields we recover the Maxwell equations in empty
space (no sources or currents)

@µF
µ⌫ = 0.
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Exercise 3.2:

(a) [1.0] Derive the field equations from the KG, complex and Dirac
Lagrangians given on page 3–9.

(b) [1.0] The Proca Lagrangian is

L = �1
4(F

µ⌫)(Fµ⌫) +
1
2m

2A⌫A⌫

The field tensor is defined by Fµ⌫ ⌘ @µA⌫ � @⌫Aµ.

• Show that

@L
@(@µA⌫)

= �(@µA⌫ � @⌫Aµ) = �Fµ⌫

Hint: Work this out for two components, (µ = 0, ⌫ = 1) and
(µ = 1, ⌫ = 2), for instance, and then generalise to the result
above.22 Remember that @µ = (@t,�r) and @µ = (@t,+r).

• Show that
@L
@A⌫

= m2A⌫

• Now write down the field equation.

(c) [0.5] The Maxwell Lagrangian is

L = �1
4F

µ⌫Fµ⌫ � jµAµ

• Show that the Euler-Lagrangian equation leads to the Maxwell
equations (see page 0–6 for the Maxwell equations in 4-vector
notation):

@µF
µ⌫ = j⌫

• Show that the current is conserved: @µjµ = 0.

22For a shorter (but more tricky) derivation see H&M, comment on Exercise 14.3 and 14.4, page 374.
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Global phase invariance of the Dirac Lagrangian

• The Dirac Lagrangian i �µ@µ � m  is manifestly invariant

under a global phase change  0 = ei↵  and  
0
= e�i↵  .

• According toNoether’s theorem this implies the existence of a
conserved quantity. To find out what this is, consider the infinites-
imal transformation

 0 = (1 + i↵) ! � = +i↵ 

 
0
= (1 � i↵) ! � = �i↵ 

• The variation in L is
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Now the first term in brackets is zero (Euler-Lagrange) and the
next two terms combine into

⇣
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@L
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The same is true for the  terms so that we obtain

�L = i↵ @µ

✓
@L
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 �  
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@@µ 

◆
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�
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�
=

Iwant
0

• Phase invariance leads to (electric) current conservation!

@µj
µ = 0 with jµ = q  �µ (q is the electric charge)
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Local charge conservation

• We have seen that global phase invariance leads to the continuity
equation @µjµ = 0 which reads in 3-vector notation

@⇢

@t
= �rj

• The meaning of this continuity equation becomes clear after inte-
gration over a volume V

dQ

dt
=

d

dt

Z

V
⇢ dV = �

Z

V
rj dV = �

Z

S
j · n̂ dS

which tells us that the change of charge in some volume should be
accounted for by the net flow of charge in or out of that volume.
However, we can make this volume as small as we please because
we know that charge is really locally conserved. Indeed, as we
have already mentioned on page 3–3, the decay

e ! � ⌫e

has never been observed since it violates charge conservation. The
electron is a point charge, so we cannot get more local than this!

• Local charge conservation suggests that the Lagrangian should not
only be invariant under global phase transformations but also un-
der local ones:

 0 = ei↵(x)  

• On Page 3–4 we have already investigated local phase invariance
of the Schrödinger equation of a particle in a static electric field,
but let us now investigate what happens when this local invariance
is imposed on the Dirac Lagrangian.
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Local phase invariance

• Take the Dirac Lagrangian

L = i �µ@µ � m  

and consider a local transformation

 0(x) = e�ige↵(x)  (x)

where we have introduced a strength parameter ge (the electro-
magnetic coupling constant).

• The second term in L is clearly invariant but not the first term.
This is because @µ depends on the infinitesimal neighbourhood of
x where, by construction,  transforms di↵erently than at x itself.

• This e↵ect is seen in

@µ 
0 = @µe

�ige↵ = e�ige↵ [@µ � ige(@µ↵)] 6= e�ige↵ @µ 

• To restore local gauge invariance we can construct a covariant
derivative which has the desired transformation property

Dµ ! D0
µ 

0 =
Iwant

e�ige↵ Dµ 

• We can get this by introducing a gauge field Aµ such that

Dµ = (@µ + igeAµ)  .

• Indeed, provided that Aµ transforms as

A0
µ = Aµ + @µ↵

we find that, as you can easily check,

D0
µ 

0 = (@µ+igeA
0
µ) e

�ige↵  = e�ige↵ (@µ+igeAµ)  = e�ige↵ Dµ 

Exercise 3.3: [⇥ ] Well, please check it.
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Locally invariant Dirac Lagrangian

• So we can now propose, as a first step, the Lagrangian

L = i �µDµ � m  = i �µ@µ � m  
| {z }

free term

� ge( �
µ )Aµ| {z }

interaction term

which is invariant under local phase transformations and has ac-
quired an interaction term jµAµ in addition to the free Lagrangian.

• We have a free term for the Dirac field, which suggests that we
should add a free term (Proca Lagrangian) for the gauge field Aµ

L = �1
4(F

µ⌫)(Fµ⌫) +
1
2m

2A⌫A⌫

• Exercise 3.4: [0.5] Check that the first term is invariant under
the gauge transformation A0

µ = Aµ+@µ↵ but not the second term.

• To maintain gauge invariance we are thus forced to set m = 0 and
consider only a massless gauge field which, of course, turns out to
be the electromagnetic (photon) field.

• We have, in fact, found here a restriction that also applies to
the SU(2) and SU(3) gauge invariant Lagrangians that we will
consider later on:

To maintain gauge invariance, the gauge field
must be massless
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The Lagrangian of QED

• We now can write-down the QED Lagrangian describing the inter-
action of Dirac particles with the electromagnetic field

LQED =  (iD/ � m) � 1
4(F

µ⌫)(Fµ⌫)

=  (i@/ � m) � ge( �
µ )Aµ � 1

4(F
µ⌫)(Fµ⌫)

In the expression above, we have introduced the usual shorthands
@/ ⌘ �µ@µ = �µ@µ and D/ ⌘ �µDµ = �µDµ.

• Note that the last two terms in the QED Lagrangian correspond
to Maxwell Lagrangian

LMaxwell = �1
4F

µ⌫Fµ⌫ � jµAµ

• This Lagrangian leads to the Maxwell equations (see Exercise 3.2)

@µF
µ⌫ = j⌫

with jµ the Dirac current ge( �µ ).
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From Lagrangian to Feynman rules

• The Lagrangians we have thus far considered may describe clas-

sical as well as quantum fields. Field quantisation is the realm of
quantum field theory which is outside the scope of these lec-
tures. In QFT, particles emerge as quanta of the associated fields;
photons are then the quanta of the electromagnetic field Aµ, lep-
tons and quarks are the quanta of the Dirac field  , and gluons
are the quanta of an SU(3)c gauge field, as we will see. Field quan-
tisation does not require a modification of the Lagrangian or the
field equations, which stay formally the same.

• To each Lagrangian corresponds a particular set of Feynman
rules. The derivation of these rules is part of QFT and beyond
the scope of these lectures. We just mention at this point that the
QED Lagrangian contains two types of terms, as we have seen: free
terms for the participating fields, and interaction terms that were
generated through local gauge invariance. In general, we have the
following correspondence:

Free Lagrangian ! propagator

Interaction term ! vertex factor

• For the Feynman rules of QED, you can have a look at PP-I sec-
tion 8, Gri�ths section 7.5 and appendix D, or H&M section 6.17
(reproduced on the next page).
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Feynman rules for QED

!
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