Plan of the day

Functions

Pointers

M ore on functions

_ /

BABAR C++ Course 33 Paul F. Kunz

Functions

Example function
doubl e coul onbsLaw(doubl e q1, double g2, double r) {
/1 Coulonb's law for the force acting on two point charges
/1 gl and g2 at a distance r. MKS units are used.

doubl e k = 8.9875e9; [/ nt-m*2/coul **2
return k * q1l * g2/ (r * r);

}
int main() {
cout << coul onbsLaw(1. 6e-19, 1.6e-19, 5.3e-11)

<< " newtons" << endl:
return O;

o first token istype of returned object

 second token is function name

e argument names are proceeded by their type
 function body iswithin {}

 return statement can be expression or variable

» if keyword voi d isused as return type, then
function is like Fortran SUBROUTI NE

 if noarguments, voi d can be used or |leave empty

_ J

BABAR C++ Course 34 Paul F. Kunz

~

Function Prototypes

Will thiswork?

int main() {
cout << coul onbsLaw(1. 6e-19, 1.6e-19, 5.3e-11)
<< " newtons" << endl;
return O,

o C++ checkstypes and number of arguments

 does standard type conversions if necessary

e C++ checksreturn type

» can be compilation error if checksfail or type
conversion is not possible

Will thiswork?

ext ern doubl e coul onbsLaw doubl e q1, doubl e g2, double r);
int main() {
cout << coul onbsLaw 1. 6e-19, 1.6e-19, 5.3e-11)
<< " newtons" << endl;
return O;

» ext er n keyword says that the function is externa
and needs to be included in the link step

k » statement endswith ; where body would have been J

BABAR C++ Course 35 Paul F. Kunz

_

Declar ations and Definitions

On the one hand, programs must be broken up into
unitswhich are compiled separately

« standard functions compiled and put in libraries

» analysis code compiled and linked to library

On the other hand, functions and other externals
must be declared beforetheir use.

extern doubl e sqgrt (doubl e);

double x, vy, z, r;
/1
r = sqrt(x*x + y*y + z*z);

e sqrt(double) and sqgrt(double x) are
equivalent in the declaration statement

What would happen if declaration we used did not
correspond to function in thelibrary?

To ensure consistency, we forcethelibrary function
and thedeclar ation weuseto sharesamedeclar ation

~

S

BABAR C++ Course 36 Paul F. Kunz

Header files used with definition

In mat h. h, we have declar ations

extern doubl e sqgrt(double);
extern doubl e sin(double);
extern doubl e cos(doubl e);
/1l and many nore

In mat h. ¢, we have definition

#i ncl ude <mat h. h>
doubl e sqrt(double x) {

[/
return result:;
}
doubl e sin(double x) {
[/
return result;
}

e #incl ude islike Fortraninclude

 declaration in header filesis used in compilation of
the library function

« any mismatch between declaration and definition is
flagged as error.

_ J

BABAR C++ Course 37 Paul F. Kunz

_

Header filesand user code

In mat h. h, we have declar ations

extern doubl e sqgrt(double);
extern doubl e sin(double);
extern doubl e cos(doubl e);
/1 and many nore

In user.c wehavedefinition of user code
#i ncl ude <mat h. h>
double x, vy, z, r;

Il
r = sqgrt(x*x + y*y + z*z);

e use same header file in user code

 user code then compiles correctly with implicit
conversions as needed

~

J

BABAR C++ Course 38

Paul F. Kunz

_

Extern Data Declar ations

Data can be external

extern doubl e aNum

int foo() {
cout << aNum << endl ;
return O;

}

~

e externa dataislike datain Fortran COMMON block

o rarely used featurein C and even lessin C++

Defining extern data
doubl e aNum = 1234. 5678;
int main() {

foo();
return O;

}

o definition must only be done once

e definitionislikethosein Fortran BLOCK DATA

J

BABAR C++ Course 39

Paul F. Kunz

Static Functions

Static function declar ation
#i ncl ude <mat h. h>
static doubl e exp_randon{double nmu) {

return -mu * | og(random());
}

void sinmulationl() {
doubl e x1 = exp_random(2.1);
/1

}

o static keyword meanslocal in scope of file
* definition substitutes for declaration within file

e still must come before use

- J

BABAR C++ Course 40 Paul F. Kunz

Static Data

Consider

#i ncl ude <i ostreanp
usi ng nanmespace std;

Int counter() {
static int count = O;
count ++;
return count;

}

int main() {
int i;
I = counter();
cout << | << "
I = counter();
cout << | << endl;
return O

}

 static objects retains its value after return from
function

» behaves like Fortran local data under VM or VMS
 likeFortranlocal dataunder UNIX with SAVE option
 rarely used feature

_ J

BABAR C++ Course 41 Paul F. Kunz

~

Default Function Arguments

Onecan specify thevalueof theargumentsnot given
in the call to a function

Example

#i ncl ude <mat h. h>
extern doubl e | og of (double x, double base = ME);
/! ME in <math. h>

e can beused like
#i ncl ude <ch5/1 ogof . h>

| og_of (y); /'l base e

X
z | og_of(y, 10); // base 10

 al arguments to the right of the first argument with
default value must have default values

« oncefirst default value is used, the remaining ones
must also be used

e value of the default must be visible to the caller

_ J

BABAR C++ Course 42 Paul F. Kunz

Functionsin C

Function declaration and prototypeisthesamein C
except

* if header inclusion is missing in calling program,
then C compiler gives warning and takes default
argument types (I ong or doubl e) and return type
(i nt)

 if header fileisincluded and there is a mismatch
between arguments or return type, the C compiler
only gives warnings

» you don't see the warnings unless you ask for them
(see man pages for their flag)

» gcc givesexcellent warningswith -val | flag

* ignoring these warnings can be a disaster on some
RISC machines

* no default arguments

_ S

BABAR C++ Course 43 Paul F. Kunz

Header Files

In alarge program, it is possiblethat a header file
might get included twice

Use C preprocessor to avoid to doubleinclusion

#i f ndef MATH H

#defi ne MATH H

extern doubl e sin(double x);
extern doubl e cos(doubl e x);
extern doubl e tan(double x);
/'l etc

#endif // MATH H

» cpp builstempoary file for compiler

o #i f ndef isC preprocessor directive saying “if not
defined”

 MATH_ His preprocessor macro variable and is upper
case by convention

e #defi ne definesamacro variable but in this case
doesn’t give it avaue

e #endi f endsthe #i f ndef

 thisstructure seenin all system header files

e same for C and C++ J

_

BABAR C++ Course 44 Paul F. Kunz

namespace

To avoid conflict of function names from different
packages, encapsulate in namespace

#i f ndef MATH_H

#defi ne MATH H

namespace std {

ext ern doubl e sin(double x);
extern doubl e cos(double x);
extern doubl e tan(double x);
Il etc

} // end nanespace

#endi f // MATH H

Now to use, we must do one of following
#i ncl ude <cmat h>

y = std::sin (x); // tedious
/'l or

using std::sin; // explicit

y =sin (x);

Il or

usi ng nanespace std; // sl oppy

y =sin (x);

Good rule: never useusi ng in header file, but ok in

k implementation file J

BABAR C++ Course 45 Paul F. Kunz

The (dreaded) Pointers

A pointer isan object that refersto another object

Declareit thus
int* p;
Int *q;

 either form can be used; the later is prefered

Assign a valueto the pointer
int i = 3;
int *p = & ;

e read & as“address of”

e datamodd isthus

Int ¥ — Int
P . i 3
Watch out!
Int *p, |

p = &i; /; I is an int

-)

BABAR C++ Course 46 Paul F. Kunz

_

Dereferencing pointers

Consider

#i ncl ude <i ostreanp
usi ng nanespace std;

int main() {
I nt* p;
int j = 4;
p = &;

cout << *p << endl;

*p:5;
cout << *p << " " << j << endl;
if (p!'=0) {
cout << "Pointer p points at " << *p << endl;
}
return O;

« *p derefences pointer to access object pointed at
« *p can be used on either side of assignment operator

» if pisequal to O, then pointer is pointing at nothing
and is called anull pointer.

» dereferencing anull pointer causes a core dump :-(

S

BABAR C++ Course 47 Paul F. Kunz

~

Pointersand Arrays

float Xx[5];

Our memory modedl is

x[0] x[1] x[2] x[3] x[4]
float | float | float | float | float

» what doesthelabel x mean?

e inFortran, f oo(x) isthesameas foo(x(1)) is
the same

* inC/C++, x isapointer to thefirst element

e *x and x[0] arethesame

e x and &x[0] arethesame

» elements of an array can be accessed either way
 but x isalabel to an array of object, not a pointer
k object J

BABAR C++ Course 48 Paul F. Kunz

Pointer Arithmetic

A pointer can point to element of an array

float Xx[5];
float *y = &[0];
float *z X;

y IS apointer to x[0]

z isasoapointer to x[0]

o y+1 ispointer to x[1]

e thus *(y+1) and x[1] accessthe same object
e y[1] isshorthand for *(y+1)

 integer add, subtract and relational operators are
allowed on pointers

-)

BABAR C++ Course 49 Paul F. Kunz

_

Examples

1. Summing an array Fortran style

float Xx[5];

doubl e sum

I nt I

/] sone code that fills x

sum = 0. O;

for (i =0; I <5; 1 =1 +1) {
sum = sum + X[1];

}

2. Summing an array C++ style
float x[5];
/! some code that fills x
doubl e sum = 0. 0;
for (int i =0; i <5; i++) {
sum += x[i];
}
o wedeclare sum just before we need it
e weinitialize sum with the declaration
e wWeuse i ++ toindicate increment

e weuse sum += toindicate accumulation

J

BABAR C++ Course 50

Paul F. Kunz

M ore examples

3. Summing an array with pointer in Fortran style

float x[5];

float *y;

doubl e sum

I nt I

[/ code to fill x

sum = 0. 0O;

y = &[0];

for (i =0; 1 <5; i1 =i +1) {
sum = sum + *vy;
y =y + 1

}

4. Summing an array with pointer in C++ style

float x[5];

[/ code to fill x

float *y = x;

doubl e sum = 0. 0O;

for (int i =0; I <5; i++) {
sum += *y++;

}
» delay declaration until need
 useincrement operator
e uUse += assignment operator

_ J

BABAR C++ Course 51 Paul F. Kunz

_

Progression towards C++ style

Fortran style

sum = sum + *vy,
y =y + 1

Use add-and-assign oper ator

sum += *y,
y =y +1

Use postfix increment operator

sum += *vy;
y++;

Combine postfix and dereference

sum += *y++,;

* it takes some timeto get use to writing in this style

» be prepared to read code written by othersin this
style

« don’'t worry about performance issues yet

~

J

BABAR C++ Course 52

Paul F. Kunz

_

Examples of Pointer Arithmetic

Reverse elementsof an array

float x[10];

[l ... initialize x ...

float* left = &[O0];

float* right = &[9];

while (left < right) {
float tenp = *left;
*left++ = *right;

*right-- = tenp;

Set elementsof an array to zero

float x[10];

float* p = &[10]; // uh?
while (p!'=x) *--p = 0.0;

» thisterse styleistypical of experienced C/C++
programmers

* most HEP code will not be so terse

* inC++, wewouldn’'t use pointersasmuch asin C

J

BABAR C++ Course 53

Paul F. Kunz

_

RuntimeArray Size

In C++, one can dynamically allocate arrays

float* x = new float[n];

* new iSan operator that returns apointer to the newly

created array
 noteuseof n; avariable

* not the same as Fortran’s

SUBROUTI NE F(X, N)
DI MENSI ON X(N)

where the calling routine “owns’ the memory

* InC, onedoes

float *x = (float *)mall oc(n*si zeof (float));

In C++, to delete a dynamically allocated array one

usesthe del et e operator

delete [] Xx;

e inConeusesthe free() function

free(x);

~

S

BABAR C++ Course 54

Paul F. Kunz

Linefit example

Part 1

#i ncl ude <i ostreanr
usi ng nanmespace std;

void linefit() {
/[l Create arrays with the desired nunber of el enents

I nt n;

cin >> n;

float* x = new float[n];
float* y = new float[n];

/!l Read the data points
for (int i =0; i <n; iI++) {
cin >> x[i] >>y[i];

}
/1 Accunmul ate suns Sx and Sy in doubl e precision
double sx = 0.0;
double sy = 0.0;
for (i =0; 1 <n; i++) {
sSX += X[1];
: sy += y[i];

e notefirst declaration of i carriesforward

» will need to change in future

_ S

BABAR C++ Course 55 Paul F. Kunz

-

Line fit continued

Part 2

/'l Conpute coefficients
doubl e sx _over_n = sx / n;
doubl e stt = 0.0;
double b = 0.0;
for (i =0; i <

double ti =

;o) |

stt +=ti * ti;
b +=ti * y[i];

}
b /= stt;
double a = (sy - sx * b) / n;

delete [] Xx;
delete [] v;

cout << a << " " << b << endl;

}

int main() {
linefit();
return O;

}

n;
x[i] - sx_over_n;

J

BABAR C++ Course 56

Paul F. Kunz

_

Character Strings

Character strings are special case of array and
array initialization

char hellol[] ={ 'H, i };

e dimensionof hell ol is2

The aboveistoo tedious, so use double quotes
char hello2[] = "H"

thedimension of hell 02 i1s3

the charactersare 'H, ‘i ', and ‘\ O’

character to be ‘\ 0’

one frequently uses pointers to walk thru a string

char hello2[] = "H";

int n = 0;

for (char *p = hello2; *p !=0; p++) {
n++:

}

[/ n == 2

all string functions in C/C++ library expect the last

J

BABAR C++ Course 57

Paul F. Kunz

Variable Scope, | nitialization, and
Lifetime

Consider

void f() {
float tenp = 1.1,
int a;
int b;
cin > a >> b;

if (a <b) {
cout << 2 * tenp << endl;
}// Block ends; |ocal "tenp" del eted.

el se {

cout << 3 * tenp << endl;

}

cout << a * b + tenp << endl;

o every pair of {} defines anew scope
» even apair with out function, if, for, etc.

 variables declared in a scope are deleted when
execution leaves scope

_

int tenp = a; // This "tenp" hides other one

int tenp = b; // Another "tenp" hides other one

~

S

BABAR C++ Course 58

Paul F. Kunz

f or -loop Scoping

Consider
for(int i =0; i < count; i++) {
If (a[i] < 10) break;
}

cout << | << endl;

e notewhere i isdeclared

» thescopeof i isthe scopejust outside the for-loop
block

 used to work with many compilers

Current draft standard
« scopeof i isinsidefor-loop block

 will needtodeclare i before f or statement for i
to have meaning after loop termination

o if declaredin f or statement, will need to repeat it
for each for statement that follows

 vendor compilers will (eventually) change

» gcc ok, Microsoft?

_ J

BABAR C++ Course 59 Paul F. Kunz

~

Formal Arguments

Consider

void f(int i, float x, float *a) {
i = 100;
x = 101. 0O;
a[0] = 0.0;

}

int j = 1;

int k = 2;

float y[] = {3.0, 4.0, 5.0};

(. koy);

 what'sthevalueof j aftercalling f()?

» C/C++ passarguments by value, thus j and k are
left unchanged

i, x,and a areforma arguments and in the scope
of ()

 uponcdling f (), itisasif thecompiler generated
this code to initialize the arguments
int 1 =j;
float x = k; // note type conversion
float *a =vy; // init pointer to array

o thus y[0] doesget setto 0.0

_ J

BABAR C++ Course 60 Paul F. Kunz

References

A way to reference the same location (C++ only)

Reference

float x = 12.1;
float& a = x;
float & = x;

a and b are caled areference

a, b, and x are al labels for the same object

the position of the “&” is optional

Don’'t confuse a reference and a pointer

int i = 3; /| data object
int & =1i; [/ reference to i
int *p = & ; // pointer to i

i hasan address of amemory location containing 3

j hasthe same addressas i

the contentsof p isthe addressof i

_[int* i | Int

_ S

BABAR C++ Course 61 Paul F. Kunz

~

Reference arguments

void swap(int &1, int & 2) {
int tenp = 1i1;
11 | 2;
| 2 t enp;

}

int c 3;

int d 4:

swap(c, d);

/[l ¢ == 4 and d == 3

* swap() hasreference arguments
» upon caling swap(), itisasif the compiler
generated this code to initialize its arguments
int &1
int & 2

C;

d;

e thus i 1 and i 2, thevariablesin swap()’s scope,
are aliases for the caller’s variables.

 swap() behaveslike Fortran functions

» C does not have reference; instead you have to write

extern void swap(int *il, int *i2);
swap(&c, &d);

_ J

BABAR C++ Course 62 Paul F. Kunz

Homewor k

Given thisdeclaration

void swap(int & 1, int *i2);
e writethe function
» show how it iscaled

» draw adata model showing type and value of the
arguments

- J

BABAR C++ Course 63 Paul F. Kunz

_

Recursion

A function can call itself

int stirling(int n, int k) {
If (n < k) return O;
iIf (k ==0&%n >0) return O;
if (n == k) return 1;

return k * stirling(n-1, k) + stirling(n-1, k-1);

» each block (function, if, for, etc.) creates new scope

 variables are declared and initialized in a scope and

deleted when execution leaves scope

Exercise: writeafunction that computesfactorial of

a number

J

BABAR C++ Course 64

Paul F. Kunz

We have seen
int i;
int | = 3;
float x = 3. 14;
A const declaration
const float e

2.71828;

const float pi2 = 3.1415/ 2;

e a const Vvariable can not be changed onceit is
initialized

e get compiler error if you try.

const float pi = 3.1415;
pi = 3.0; // act of congress

the following is obsolete
#define M Pl 3.1415;

 but maintained to be compatible with C

* itisC preprocesor macro (just string subsitution)

_ J

BABAR C++ Course 65 Paul F. Kunz

_

const Pointer

const float pi = 3.1415;

float pdqg = 1.2345;

const float *p = π

float* const d π /1 WWRONG
float* const g = &pdq;

const float *const r = π

*p = 3.0; [// WWRONG
p = &dg; // K
*p = 3.0; [/ still WRONG

*q=3.0;, /I X
g = &pdq; // WRONG

*r = 3.0; [/ WVWRONG
r = &dq; // WRONG AGAI N

* const qualifier can refer to what is pointed at
(frequent usage)

* const qualifier can refer to pointer itself
(rare usage)

e const qualifier can refer to both
(infrequent usage)

J

BABAR C++ Course 66

Paul F. Kunz

~

const function argument

Consider

void f(int i, float x, const float *a) {
i = 100;
x = 101.0*a[0]; // K
a[0] = 0.0; /1 WWRONG

}

int j = 1;

int k = 2;

float y[] = {3.0, 4.0, 5.0};

. koy);

* aconst argument tellsuser of function that hisdata
wouldn’t be changed

* the const isenforced when attempting to compile
function.

« first aspect of spirit of client/server interface

_ J

BABAR C++ Course 67 Paul F. Kunz

Function Name Overloading

Pre-Fortran 77 we had

| NTEGER FUNCTI ON | ABS(1)
| NTEGER |

REAL*4 FUNCTI ON ABS(X)
REAL*4 X

REAL*8 FUNCTI ON DABS(X)
REAL*8 X

» separate functions had different names
* today, intrinsic functions have the same name

* programmer defined functions still must have
different names

|n C++, one can have

i nt sgr(int i);
float sqgr(float x);
doubl e sqr (doubl e x);

 separate functions with same name

« functions distinguished by their name, and the
number and type of arguments

* name mangling occurs to create the external symbol
seen by the linker

_ S

BABAR C++ Course 68 Paul F. Kunz

Summary

Now we covered enough C/C++ so that every thing
you can do in Fortran you can now do in C/C++

You can also do morethan you can doin Fortran

Next session we introduce classes and start on the
road towar ds object-oriented programming.

- J

BABAR C++ Course 69 Paul F. Kunz

	Plan of the day
	Functions
	Pointers
	More on functions

	Functions
	Example function
	double coulombsLaw(double q1, double q2, double r) {
	// Coulomb's law for the force acting on two point charges
	// q1 and q2 at a distance r. MKS units are used.
	����double k = 8.9875e9; // nt-m**2/coul**2
	return k * q1 * q2 / (r * r);
	}
	int main() {
	cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)
	���������<< " newtons" << endl;
	return 0;
	}
	• first token is type of returned object
	• second token is function name
	• argument names are proceeded by their type
	• function body is within {}
	• return statement can be expression or variable
	• if keyword void is used as return type, then function is like Fortran SUBROUTINE
	• if no arguments, void can be used or leave empty

	Function Prototypes
	Will this work?
	int main() {
	cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)
	���������<< " newtons" << endl;
	return 0;
	}
	• C++ checks types and number of arguments
	• does standard type conversions if necessary
	• C++ checks return type
	• can be compilation error if checks fail or type conversion is not possible

	Will this work?
	extern double coulombsLaw(double q1, double q2, double r);
	int main() {
	cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)
	���������<< " newtons" << endl;
	return 0;
	}
	• extern keyword says that the function is external and needs to be included in the link step
	• statement ends with ; where body would have been

	Declarations and Definitions
	On the one hand, programs must be broken up into units which are compiled separately
	• standard functions compiled and put in libraries
	• analysis code compiled and linked to library

	On the other hand, functions and other externals must be declared before their use.
	extern double sqrt(double);
	double x, y, z, r;
	//
	r = sqrt(x*x + y*y + z*z);
	• sqrt(double) and sqrt(double x) are equivalent in the declaration statement

	What would happen if declaration we used did not correspond to function in the library?
	To ensure consistency, we force the library function and the declaration we use to share same dec...

	Header files used with definition
	In math.h, we have declarations
	extern double sqrt(double);
	extern double sin(double);
	extern double cos(double);
	// and many more

	In math.c, we have definition
	#include <math.h>
	double sqrt(double x) {
	//
	����return result;
	}
	double sin(double x) {
	//
	����return result;
	}
	• #include is like Fortran include
	• declaration in header files is used in compilation of the library function
	• any mismatch between declaration and definition is flagged as error.

	Header files and user code
	In math.h, we have declarations
	extern double sqrt(double);
	extern double sin(double);
	extern double cos(double);
	// and many more

	in user.c we have definition of user code
	#include <math.h>
	double x, y, z, r;
	//
	r = sqrt(x*x + y*y + z*z);
	• use same header file in user code
	• user code then compiles correctly with implicit conversions as needed

	Extern Data Declarations
	Data can be external
	extern double aNum;
	int foo() {
	cout << aNum << endl;
	return 0;
	}
	• external data is like data in Fortran COMMON block
	• rarely used feature in C and even less in C++

	Defining extern data
	double aNum = 1234.5678;
	int main() {
	foo();
	return 0;
	}
	• definition must only be done once
	• definition is like those in Fortran BLOCK DATA

	Static Functions
	Static function declaration
	#include <math.h>
	static double exp_random(double mu) {
	����return -mu * log(random());
	}
	void simulation1() {
	���double x1 = exp_random(2.1);
	// ...
	}
	• static keyword means local in scope of file
	• definition substitutes for declaration within file
	• still must come before use

	Static Data
	Consider
	#include <iostream>
	using namespace std;
	int counter() {
	static int count = 0;
	count++;
	return count;
	}
	int main() {
	int i;
	i = counter();
	cout << i << ", ";
	i = counter();
	cout << i << endl;
	return 0;
	}
	• static objects retains its value after return from function
	• behaves like Fortran local data under VM or VMS
	• like Fortran local data under UNIX with SAVE option
	• rarely used feature

	Default Function Arguments
	One can specify the value of the arguments not given in the call to a function
	Example
	#include <math.h>
	extern double log_of(double x, double base = M_E);
	����// M_E in <math.h>
	• can be used like
	#include <ch5/logof.h>
	x = log_of(y);������// base e
	z = log_of(y, 10); �// base 10

	• all arguments to the right of the first argument with default value must have default values
	• once first default value is used, the remaining ones must also be used
	• value of the default must be visible to the caller

	Functions in C
	Function declaration and prototype is the same in C except
	• if header inclusion is missing in calling program, then C compiler gives warning and takes defa...
	• if header file is included and there is a mismatch between arguments or return type, the C comp...
	• you don’t see the warnings unless you ask for them (see man pages for their flag)
	• gcc gives excellent warnings with -Wall flag
	• ignoring these warnings can be a disaster on some RISC machines
	• no default arguments

	Header Files
	In a large program, it is possible that a header file might get included twice
	Use C preprocessor to avoid to double inclusion
	#ifndef MATH_H
	#define MATH_H
	extern double sin(double x);
	extern double cos(double x);
	extern double tan(double x);
	// etc
	#endif // MATH_H
	• cpp buils tempoary file for compiler
	• #ifndef is C preprocessor directive saying “if not defined”
	• MATH_H is preprocessor macro variable and is upper case by convention
	• #define defines a macro variable but in this case doesn’t give it a value
	• #endif ends the #ifndef
	• this structure seen in all system header files
	• same for C and C++

	namespace
	To avoid conflict of function names from different packages, encapsulate in namespace
	#ifndef MATH_H
	#define MATH_H
	namespace std {
	extern double sin(double x);
	extern double cos(double x);
	extern double tan(double x);
	// etc
	} // end namespace
	#endif // MATH_H

	Now to use, we must do one of following
	#include <cmath>
	y = std::sin (x); // tedious
	// or
	using std::sin; // explicit
	y = sin (x);
	// or
	using namespace std; // sloppy
	y = sin (x);
	} // end namespace
	#endif // MATH_H

	Good rule: never use using in header file, but ok in implementation file

	The (dreaded) Pointers
	A pointer is an object that refers to another object
	Declare it thus
	int* p;
	int�*q;
	• either form can be used; the later is prefered

	Assign a value to the pointer
	int i = 3;
	int *p = &i;
	• read & as “address of”
	• data model is thus
	p:

	Watch out!
	int *p, i;
	p = &i; // i is an int

	Dereferencing pointers
	Consider
	#include <iostream>
	using namespace std;
	int main() {
	��int* p;
	��int j = 4;
	��p = &j;
	��cout << *p << endl;
	��*p = 5;
	��cout << *p << " " << j << endl;
	��if (p != 0) {
	����cout << "Pointer p points at " << *p << endl;
	��}
	��return 0;
	}
	• *p derefences pointer to access object pointed at
	• *p can be used on either side of assignment operator
	• if p is equal to 0, then pointer is pointing at nothing and is called a null pointer.
	• dereferencing a null pointer causes a core dump :-(

	Pointers and Arrays
	Consider
	float x[5];

	Our memory model is
	��float *
	• what does the label x mean?
	• in Fortran, foo(x) is the same as foo(x(1)) is the same
	• in C/C++, x is a pointer to the first element
	• *x and x[0] are the same
	• x and &x[0] are the same
	• elements of an array can be accessed either way
	• but x is a label to an array of object, not a pointer object

	Pointer Arithmetic
	A pointer can point to element of an array
	float x[5];
	float *y = &x[0];
	float *z = x;
	• y is a pointer to x[0]
	• z is also a pointer to x[0]
	• y+1 is pointer to x[1]
	• thus *(y+1) and x[1] access the same object
	• y[1] is shorthand for *(y+1)
	• integer add, subtract and relational operators are allowed on pointers

	Examples
	1. Summing an array Fortran style
	float �x[5];
	double sum;
	int��� i;
	// some code that fills x
	sum = 0.0;
	for (i = 0; i < 5; i = i + 1) {
	��sum = sum + x[i];
	}

	2. Summing an array C++ style
	float �x[5];
	// some code that fills x
	double sum = 0.0;
	for (int i = 0; i < 5; i++) {
	��sum += x[i];
	}
	• we declare sum just before we need it
	• we initialize sum with the declaration
	• we use i++ to indicate increment
	• we use sum += to indicate accumulation

	More examples
	3. Summing an array with pointer in Fortran style
	float �x[5];
	float �*y;
	double sum;
	int����i;
	// code to fill x
	sum = 0.0;
	y = &x[0];
	for (i = 0; i < 5; i = i + 1) {
	��sum = sum + *y;
	��y = y + 1;
	}

	4. Summing an array with pointer in C++ style
	float �x[5];
	// code to fill x
	float �*y = x;
	double sum = 0.0;
	for (int i = 0; i < 5; i++) {
	��sum += *y++;
	}
	• delay declaration until need
	• use increment operator
	• use += assignment operator

	Progression towards C++ style
	Fortran style
	sum = sum + *y;
	y = y + 1;

	Use add-and-assign operator
	sum += *y;
	y = y + 1;

	Use postfix increment operator
	sum += *y;
	y++;

	Combine postfix and dereference
	sum += *y++;
	• it takes some time to get use to writing in this style
	• be prepared to read code written by others in this style
	• don’t worry about performance issues yet

	Examples of Pointer Arithmetic
	Reverse elements of an array
	float x[10];
	// ... initialize x ...
	float* left = &x[0];
	float* right = &x[9];
	while (left < right) {
	float temp = *left;
	����*left++ = *right;
	*right-- = temp;
	}

	Set elements of an array to zero
	float x[10];
	float* p = &x[10]; // uh?
	while (p != x) *--p = 0.0;
	• this terse style is typical of experienced C/C++ programmers
	• most HEP code will not be so terse
	• in C++, we wouldn’t use pointers as much as in C

	Runtime Array Size
	In C++, one can dynamically allocate arrays
	float* x = new float[n];
	• new is an operator that returns a pointer to the newly created array
	• note use of n; a variable
	• not the same as Fortran’s where the calling routine “owns” the memory
	SUBROUTINE F(X,N)
	DIMENSION X(N)

	• in C, one does
	float *x = (float *)malloc(n*sizeof(float));

	In C++, to delete a dynamically allocated array one uses the delete operator
	delete [] x;
	• in C one uses the free() function
	free(x);

	Line fit example
	Part 1
	#include <iostream>
	using namespace std;
	void linefit() {
	// Create arrays with the desired number of elements
	int n;
	cin >> n;
	float* x = new float[n];
	float* y = new float[n];
	// Read the data points
	for (int i = 0; i < n; i++) {
	cin >> x[i] >> y[i];
	}
	// Accumulate sums Sx and Sy in double precision
	double sx = 0.0;
	double sy = 0.0;
	for (i = 0; i < n; i++) {
	sx += x[i];
	sy += y[i];
	}
	• note first declaration of i carries forward
	• will need to change in future

	Line fit continued
	Part 2
	// Compute coefficients
	double sx_over_n = sx / n;
	double stt = 0.0;
	double b = 0.0;
	for (i = 0; i < n; i++) {
	double ti = x[i] - sx_over_n;
	stt += ti * ti;
	b += ti * y[i];
	}
	b /= stt;
	double a = (sy - sx * b) / n;
	delete [] x;
	delete [] y;
	cout << a << " " << b << endl;
	}
	int main() {
	linefit();
	return 0;
	}

	Character Strings
	Character strings are special case of array and array initialization
	char hello1[] = { ’H’, ’i’ };
	• dimension of hello1 is 2

	The above is too tedious, so use double quotes
	char hello2[] = "Hi";
	• the dimension of hello2 is 3
	• the characters are ‘H’, ‘i’, and ‘\0’
	• all string functions in C/C++ library expect the last character to be ‘\0’
	• one frequently uses pointers to walk thru a string
	char hello2[] = "Hi";
	int n = 0;
	for (char *p = hello2; *p !=0; p++) {
	����n++;
	}
	// n == 2

	Variable Scope, Initialization, and Lifetime
	Consider
	void f() {
	float temp = 1.1;
	int a;
	int b;
	cin >> a >> b;
	if (a < b) {
	int temp = a; // This "temp" hides other one
	��������cout << 2 * temp << endl;
	}// Block ends; local "temp" deleted.
	else {
	int temp = b; // Another "temp" hides other one
	cout << 3 * temp << endl;
	}
	cout << a * b + temp << endl;
	}
	• every pair of {} defines a new scope
	• even a pair with out function, if, for, etc.
	• variables declared in a scope are deleted when execution leaves scope

	for-loop Scoping
	Consider
	for(int i = 0; i < count; i++) {
	����if (a[i] < 10) break;
	}
	cout << i << endl;
	• note where i is declared
	• the scope of i is the scope just outside the for-loop block
	• used to work with many compilers

	Current draft standard
	• scope of i is inside for-loop block
	• will need to declare i before for statement for i to have meaning after loop termination
	• if declared in for statement, will need to repeat it for each for statement that follows
	• vendor compilers will (eventually) change
	• gcc ok, Microsoft?

	Formal Arguments
	Consider
	void f(int i, float x, float *a) {
	i = 100;
	����x = 101.0;
	a[0] = 0.0;
	}
	int j = 1;
	int k = 2;
	float y[] = {3.0, 4.0, 5.0};
	f(j, k, y);
	• what’s the value of j after calling f()?
	• C/C++ pass arguments by value, thus j and k are left unchanged
	• i, x, and a are formal arguments and in the scope of f()
	• upon calling f(), it is as if the compiler generated this code to initialize the arguments
	int i = j;
	float x = k;��// note type conversion
	float *a = y; // init pointer to array

	• thus y[0] does get set to 0.0

	References
	A way to reference the same location (C++ only)
	Reference
	float x = 12.1;
	float& a = x;
	float &b = x;
	• a and b are called a reference
	• a, b, and x are all labels for the same object
	• the position of the “&” is optional
	• Don’t confuse a reference and a pointer
	int i = 3; ��// data object
	int &j = i; �// reference to i
	int *p = &i; // pointer to i

	• i has an address of a memory location containing 3
	• j has the same address as i
	• the contents of p is the address of i
	p:

	Reference arguments
	Consider
	void swap(int &i1, int &i2) {
	����int temp = i1;
	����i1 = i2;
	����i2 = temp;
	}
	int c = 3;
	int d = 4;
	swap(c, d);
	// c == 4 and d == 3
	• swap() has reference arguments
	• upon calling swap(), it is as if the compiler generated this code to initialize its arguments
	int &i1 = c;
	int &i2 = d;

	• thus i1 and i2, the variables in swap()’s scope, are aliases for the caller’s variables.
	• swap() behaves like Fortran functions
	• C does not have reference; instead you have to write
	extern void swap(int *i1, int *i2);
	swap(&c, &d);

	Homework
	Given this declaration
	void swap(int &i1, int *i2);
	• write the function
	• show how it is called
	• draw a data model showing type and value of the arguments

	Recursion
	A function can call itself
	int stirling(int n, int k) {
	if (n < k) return 0;
	if (k == 0 && n > 0) return 0;
	if (n == k) return 1;
	return k * stirling(n-1, k) + stirling(n-1, k-1);
	}
	• each block (function, if, for, etc.) creates new scope
	• variables are declared and initialized in a scope and deleted when execution leaves scope

	Exercise: write a function that computes factorial of a number

	More on declarations
	We have seen
	int i;
	int j = 3;
	float x = 3.14;

	A const declaration
	const float e = 2.71828;
	const float pi2 = 3.1415/2;
	• a const variable can not be changed once it is initialized
	• get compiler error if you try.
	const float pi = 3.1415;
	pi = 3.0; // act of congress

	the following is obsolete
	#define M_PI 3.1415;
	• but maintained to be compatible with C
	• it is C preprocesor macro (just string subsitution)

	const Pointer
	Consider
	const float pi = 3.1415;
	float pdq = 1.2345;
	const float *p = π
	float* const d = π // WRONG
	float* const q = &pdq;
	const float *const r = π
	*p = 3.0;��// WRONG
	p = &pdq;��// OK
	*p = 3.0;��// still WRONG
	*q = 3.0; �// OK
	q = &pdq;��// WRONG
	*r = 3.0; �// WRONG
	r = &pdq; �// WRONG AGAIN
	• const qualifier can refer to what is pointed at (frequent usage)
	• const qualifier can refer to pointer itself (rare usage)
	• const qualifier can refer to both (infrequent usage)

	const function argument
	Consider
	void f(int i, float x, const float *a) {
	i = 100;
	����x = 101.0*a[0];��// OK
	a[0] = 0.0;������// WRONG!
	}
	int j = 1;
	int k = 2;
	float y[] = {3.0, 4.0, 5.0};
	f(j, k, y);
	• a const argument tells user of function that his data wouldn’t be changed
	• the const is enforced when attempting to compile function.
	• first aspect of spirit of client/server interface

	Function Name Overloading
	Pre-Fortran 77 we had
	INTEGER FUNCTION IABS(I)
	INTEGER I
	REAL*4 FUNCTION ABS(X)
	REAL*4 X
	REAL*8 FUNCTION DABS(X)
	REAL*8 X
	• separate functions had different names
	• today, intrinsic functions have the same name
	• programmer defined functions still must have different names

	In C++, one can have
	int ���sqr(int i);
	float �sqr(float x);
	double sqr(double x);
	• separate functions with same name
	• functions distinguished by their name, and the number and type of arguments
	• name mangling occurs to create the external symbol seen by the linker

	Summary
	Now we covered enough C/C++ so that every thing you can do in Fortran you can now do in C/C++
	You can also do more than you can do in Fortran
	Next session we introduce classes and start on the road towards object-oriented programming.

