
BABA
Plan of the day

Functions

Pointers

More on functions
R C++ Course 33 Paul F. Kunz

BABA

doub
// C rges
// q

}
int

}

Functions

Example function

• first token is type of returned object

• second token is function name

• argument names are proceeded by their type

• function body is within {}

• return statement can be expression or variable

• if keyword void is used as return type, then
function is like Fortran SUBROUTINE

• if no arguments, void can be used or leave empty

le coulombsLaw(double q1, double q2, double r) {
oulomb's law for the force acting on two point cha
1 and q2 at a distance r. MKS units are used.

double k = 8.9875e9; // nt-m**2/coul**2
return k * q1 * q2 / (r * r);

main() {
cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)

<< " newtons" << endl;
return 0;
R C++ Course 34 Paul F. Kunz

BABA

i

}

exte r);
int

}

Function Prototypes

Will this work?

• C++ checks types and number of arguments

• does standard type conversions if necessary

• C++ checks return type

• can be compilation error if checks fail or type
conversion is not possible

Will this work?

• extern keyword says that the function is external
and needs to be included in the link step

• statement ends with ; where body would have been

nt main() {
 cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)

<< " newtons" << endl;
 return 0;

rn double coulombsLaw(double q1, double q2, double
main() {
cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)

<< " newtons" << endl;
return 0;
R C++ Course 35 Paul F. Kunz

BABA
Declarations and Definitions

On the one hand, programs must be broken up into
units which are compiled separately

• standard functions compiled and put in libraries

• analysis code compiled and linked to library

On the other hand, functions and other externals
must be declared before their use.

• sqrt(double) and sqrt(double x) are
equivalent in the declaration statement

What would happen if declaration we used did not
correspond to function in the library?

To ensure consistency, we force the library function
and the declaration we use to share same declaration

extern double sqrt(double);

double x, y, z, r;
//
r = sqrt(x*x + y*y + z*z);
R C++ Course 36 Paul F. Kunz

BABA
Header files used with definition

In math.h, we have declarations

In math.c, we have definition

• #include is like Fortran include

• declaration in header files is used in compilation of
the library function

• any mismatch between declaration and definition is
flagged as error.

extern double sqrt(double);
extern double sin(double);
extern double cos(double);
// and many more

#include <math.h>
double sqrt(double x) {
//

return result;
}
double sin(double x) {
//

return result;
}

R C++ Course 37 Paul F. Kunz

BABA
Header files and user code

In math.h, we have declarations

in user.c we have definition of user code

• use same header file in user code

• user code then compiles correctly with implicit
conversions as needed

extern double sqrt(double);
extern double sin(double);
extern double cos(double);
// and many more

#include <math.h>

double x, y, z, r;
//
r = sqrt(x*x + y*y + z*z);
R C++ Course 38 Paul F. Kunz

BABA
Extern Data Declarations

Data can be external

• external data is like data in Fortran COMMON block

• rarely used feature in C and even less in C++

Defining extern data

• definition must only be done once

• definition is like those in Fortran BLOCK DATA

extern double aNum;

int foo() {
 cout << aNum << endl;
 return 0;
}

double aNum = 1234.5678;

int main() {
 foo();
 return 0;
}

R C++ Course 39 Paul F. Kunz

BABA
Static Functions

Static function declaration

• static keyword means local in scope of file

• definition substitutes for declaration within file

• still must come before use

#include <math.h>

static double exp_random(double mu) {
return -mu * log(random());

}

void simulation1() {
double x1 = exp_random(2.1);

 // ...
}

R C++ Course 40 Paul F. Kunz

BABA
Static Data

Consider

• static objects retains its value after return from
function

• behaves like Fortran local data under VM or VMS

• like Fortran local data under UNIX with SAVE option

• rarely used feature

#include <iostream>
using namespace std;

int counter() {
 static int count = 0;
 count++;
 return count;
}

int main() {
 int i;
 i = counter();
 cout << i << ", ";
 i = counter();
 cout << i << endl;
 return 0;
}

R C++ Course 41 Paul F. Kunz

BABA

;

Default Function Arguments

One can specify the value of the arguments not given
in the call to a function

Example

• can be used like

• all arguments to the right of the first argument with
default value must have default values

• once first default value is used, the remaining ones
must also be used

• value of the default must be visible to the caller

#include <math.h>
extern double log_of(double x, double base = M_E)

// M_E in <math.h>

#include <ch5/logof.h>

x = log_of(y); // base e
z = log_of(y, 10); // base 10
R C++ Course 42 Paul F. Kunz

BABA
Functions in C

Function declaration and prototype is the same in C
except

• if header inclusion is missing in calling program,
then C compiler gives warning and takes default
argument types (long or double) and return type
(int)

• if header file is included and there is a mismatch
between arguments or return type, the C compiler
only gives warnings

• you don’t see the warnings unless you ask for them
(see man pages for their flag)

• gcc gives excellent warnings with -Wall flag

• ignoring these warnings can be a disaster on some
RISC machines

• no default arguments
R C++ Course 43 Paul F. Kunz

BABA

#ifn
#def
exte
exte
exte
// e
#end
Header Files

In a large program, it is possible that a header file
might get included twice

Use C preprocessor to avoid to double inclusion

• cpp buils tempoary file for compiler

• #ifndef is C preprocessor directive saying “if not
defined”

• MATH_H is preprocessor macro variable and is upper
case by convention

• #define defines a macro variable but in this case
doesn’t give it a value

• #endif ends the #ifndef

• this structure seen in all system header files

• same for C and C++

def MATH_H
ine MATH_H
rn double sin(double x);
rn double cos(double x);
rn double tan(double x);
tc
if // MATH_H
R C++ Course 44 Paul F. Kunz

BABA
namespace

To avoid conflict of function names from different
packages, encapsulate in namespace

Now to use, we must do one of following

Good rule: never use using in header file, but ok in
implementation file

#ifndef MATH_H
#define MATH_H
namespace std {
extern double sin(double x);
extern double cos(double x);
extern double tan(double x);
// etc
} // end namespace
#endif // MATH_H

#include <cmath>

y = std::sin (x); // tedious
// or
using std::sin; // explicit
y = sin (x);
// or
using namespace std; // sloppy
y = sin (x);
R C++ Course 45 Paul F. Kunz

BABA
The (dreaded) Pointers

A pointer is an object that refers to another object

Declare it thus

• either form can be used; the later is prefered

Assign a value to the pointer

• read & as “address of”

• data model is thus

Watch out!

int* p;
int *q;

int i = 3;
int *p = &i;

p: i:
int * int

3

int *p, i;
p = &i; // i is an int
R C++ Course 46 Paul F. Kunz

BABA
Dereferencing pointers

Consider

• *p derefences pointer to access object pointed at

• *p can be used on either side of assignment operator

• if p is equal to 0, then pointer is pointing at nothing
and is called a null pointer.

• dereferencing a null pointer causes a core dump :-(

#include <iostream>
using namespace std;

int main() {
int* p;
int j = 4;
p = &j;

cout << *p << endl;

*p = 5;
cout << *p << " " << j << endl;

if (p != 0) {
cout << "Pointer p points at " << *p << endl;

}
return 0;

}

R C++ Course 47 Paul F. Kunz

BABA
Pointers and Arrays

Consider

Our memory model is

• what does the label x mean?

• in Fortran, foo(x) is the same as foo(x(1)) is
the same

• in C/C++, x is a pointer to the first element

• *x and x[0] are the same

• x and &x[0] are the same

• elements of an array can be accessed either way

• but x is a label to an array of object, not a pointer
object

float x[5];

float *

x:

x[0] x[1] x[2] x[3] x[4]
float float float floatfloat
R C++ Course 48 Paul F. Kunz

BABA
Pointer Arithmetic

A pointer can point to element of an array

• y is a pointer to x[0]

• z is also a pointer to x[0]

• y+1 is pointer to x[1]

• thus *(y+1) and x[1] access the same object

• y[1] is shorthand for *(y+1)

• integer add, subtract and relational operators are
allowed on pointers

float x[5];
float *y = &x[0];
float *z = x;
R C++ Course 49 Paul F. Kunz

BABA
Examples

1. Summing an array Fortran style

2. Summing an array C++ style

• we declare sum just before we need it

• we initialize sum with the declaration

• we use i++ to indicate increment

• we use sum += to indicate accumulation

float x[5];
double sum;
int i;
// some code that fills x
sum = 0.0;
for (i = 0; i < 5; i = i + 1) {

sum = sum + x[i];
}

float x[5];
// some code that fills x
double sum = 0.0;
for (int i = 0; i < 5; i++) {

sum += x[i];
}

R C++ Course 50 Paul F. Kunz

BABA
More examples

3. Summing an array with pointer in Fortran style

4. Summing an array with pointer in C++ style

• delay declaration until need

• use increment operator

• use += assignment operator

float x[5];
float *y;
double sum;
int i;
// code to fill x
sum = 0.0;
y = &x[0];
for (i = 0; i < 5; i = i + 1) {

sum = sum + *y;
y = y + 1;

}

float x[5];
// code to fill x
float *y = x;
double sum = 0.0;
for (int i = 0; i < 5; i++) {

sum += *y++;
}

R C++ Course 51 Paul F. Kunz

BABA
Progression towards C++ style

Fortran style

Use add-and-assign operator

Use postfix increment operator

Combine postfix and dereference

• it takes some time to get use to writing in this style

• be prepared to read code written by others in this
style

• don’t worry about performance issues yet

sum = sum + *y;
y = y + 1;

sum += *y;
y = y + 1;

sum += *y;
y++;

sum += *y++;
R C++ Course 52 Paul F. Kunz

BABA
Examples of Pointer Arithmetic

Reverse elements of an array

Set elements of an array to zero

• this terse style is typical of experienced C/C++
programmers

• most HEP code will not be so terse

• in C++, we wouldn’t use pointers as much as in C

float x[10];
// ... initialize x ...
float* left = &x[0];
float* right = &x[9];
while (left < right) {
 float temp = *left;

*left++ = *right;
 *right-- = temp;
}

float x[10];

float* p = &x[10]; // uh?
while (p != x) *--p = 0.0;
R C++ Course 53 Paul F. Kunz

BABA
Runtime Array Size

In C++, one can dynamically allocate arrays

• new is an operator that returns a pointer to the newly
created array

• note use of n; a variable

• not the same as Fortran’s

where the calling routine “owns” the memory

• in C, one does

In C++, to delete a dynamically allocated array one
uses the delete operator

• in C one uses the free() function

float* x = new float[n];

SUBROUTINE F(X,N)
DIMENSION X(N)

float *x = (float *)malloc(n*sizeof(float));

delete [] x;

free(x);
R C++ Course 54 Paul F. Kunz

BABA

#i
us

vo
ts

Line fit example

Part 1

• note first declaration of i carries forward

• will need to change in future

nclude <iostream>
ing namespace std;

id linefit() {
// Create arrays with the desired number of elemen

 int n;
 cin >> n;
 float* x = new float[n];
 float* y = new float[n];

 // Read the data points
 for (int i = 0; i < n; i++) {
 cin >> x[i] >> y[i];
 }

 // Accumulate sums Sx and Sy in double precision
 double sx = 0.0;
 double sy = 0.0;
 for (i = 0; i < n; i++) {
 sx += x[i];
 sy += y[i];
 }
R C++ Course 55 Paul F. Kunz

BABA
Line fit continued

Part 2

// Compute coefficients
 double sx_over_n = sx / n;
 double stt = 0.0;
 double b = 0.0;
 for (i = 0; i < n; i++) {
 double ti = x[i] - sx_over_n;

 stt += ti * ti;
 b += ti * y[i];

 }
 b /= stt;
 double a = (sy - sx * b) / n;

 delete [] x;
 delete [] y;

 cout << a << " " << b << endl;
}

int main() {
 linefit();
 return 0;
}

R C++ Course 56 Paul F. Kunz

BABA
Character Strings

Character strings are special case of array and
array initialization

• dimension of hello1 is 2

The above is too tedious, so use double quotes

• the dimension of hello2 is 3

• the characters are ‘H’, ‘i’, and ‘\0’

• all string functions in C/C++ library expect the last
character to be ‘\0’

• one frequently uses pointers to walk thru a string

char hello1[] = { ’H’, ’i’ };

char hello2[] = "Hi";

char hello2[] = "Hi";
int n = 0;
for (char *p = hello2; *p !=0; p++) {

n++;
}
// n == 2
R C++ Course 57 Paul F. Kunz

BABA

voi

 e

one

}

Variable Scope, Initialization, and
Lifetime

Consider

• every pair of {} defines a new scope

• even a pair with out function, if, for, etc.

• variables declared in a scope are deleted when
execution leaves scope

d f() {
 float temp = 1.1;
 int a;
 int b;
 cin >> a >> b;

 if (a < b) {
 int temp = a; // This "temp" hides other on

cout << 2 * temp << endl;
 }// Block ends; local "temp" deleted.
 else {

int temp = b; // Another "temp" hides other
 cout << 3 * temp << endl;
 }

 cout << a * b + temp << endl;
R C++ Course 58 Paul F. Kunz

BABA
for-loop Scoping

Consider

• note where i is declared

• the scope of i is the scope just outside the for-loop
block

• used to work with many compilers

Current draft standard

• scope of i is inside for-loop block

• will need to declare i before for statement for i
to have meaning after loop termination

• if declared in for statement, will need to repeat it
for each for statement that follows

• vendor compilers will (eventually) change

• gcc ok, Microsoft?

for(int i = 0; i < count; i++) {
if (a[i] < 10) break;

}
cout << i << endl;
R C++ Course 59 Paul F. Kunz

BABA
Formal Arguments

Consider

• what’s the value of j after calling f()?

• C/C++ pass arguments by value, thus j and k are
left unchanged

• i, x, and a are formal arguments and in the scope
of f()

• upon calling f(), it is as if the compiler generated
this code to initialize the arguments

• thus y[0] does get set to 0.0

void f(int i, float x, float *a) {
 i = 100;

x = 101.0;
 a[0] = 0.0;
}

int j = 1;
int k = 2;
float y[] = {3.0, 4.0, 5.0};
f(j, k, y);

int i = j;
float x = k; // note type conversion
float *a = y; // init pointer to array
R C++ Course 60 Paul F. Kunz

BABA
References

A way to reference the same location (C++ only)

Reference

• a and b are called a reference

• a, b, and x are all labels for the same object

• the position of the “&” is optional

• Don’t confuse a reference and a pointer

• i has an address of a memory location containing 3

• j has the same address as i

• the contents of p is the address of i

float x = 12.1;
float& a = x;
float &b = x;

int i = 3; // data object
int &j = i; // reference to i
int *p = &i; // pointer to i

p: i:int *

j:

int
3

R C++ Course 61 Paul F. Kunz

BABA
Reference arguments

Consider

• swap() has reference arguments

• upon calling swap(), it is as if the compiler
generated this code to initialize its arguments

• thus i1 and i2, the variables in swap()’s scope,
are aliases for the caller’s variables.

• swap() behaves like Fortran functions

• C does not have reference; instead you have to write

void swap(int &i1, int &i2) {
int temp = i1;
i1 = i2;
i2 = temp;

}
int c = 3;
int d = 4;
swap(c, d);
// c == 4 and d == 3

int &i1 = c;
int &i2 = d;

extern void swap(int *i1, int *i2);
swap(&c, &d);
R C++ Course 62 Paul F. Kunz

BABA
Homework

Given this declaration

• write the function

• show how it is called

• draw a data model showing type and value of the
arguments

void swap(int &i1, int *i2);
R C++ Course 63 Paul F. Kunz

BABA

i

);
}

Recursion

A function can call itself

• each block (function, if, for, etc.) creates new scope

• variables are declared and initialized in a scope and
deleted when execution leaves scope

Exercise: write a function that computes factorial of
a number

nt stirling(int n, int k) {
 if (n < k) return 0;
 if (k == 0 && n > 0) return 0;
 if (n == k) return 1;

return k * stirling(n-1, k) + stirling(n-1, k-1
R C++ Course 64 Paul F. Kunz

BABA
More on declarations

We have seen

A const declaration

• a const variable can not be changed once it is
initialized

• get compiler error if you try.

the following is obsolete

• but maintained to be compatible with C

• it is C preprocesor macro (just string subsitution)

int i;
int j = 3;
float x = 3.14;

const float e = 2.71828;
const float pi2 = 3.1415/2;

const float pi = 3.1415;
pi = 3.0; // act of congress

#define M_PI 3.1415;
R C++ Course 65 Paul F. Kunz

BABA
const Pointer

Consider

• const qualifier can refer to what is pointed at
(frequent usage)

• const qualifier can refer to pointer itself
(rare usage)

• const qualifier can refer to both
(infrequent usage)

const float pi = 3.1415;
float pdq = 1.2345;
const float *p = π
float* const d = π // WRONG
float* const q = &pdq;
const float *const r = π

*p = 3.0; // WRONG
p = &pdq; // OK
*p = 3.0; // still WRONG

*q = 3.0; // OK
q = &pdq; // WRONG

*r = 3.0; // WRONG
r = &pdq; // WRONG AGAIN
R C++ Course 66 Paul F. Kunz

BABA
const function argument

Consider

• a const argument tells user of function that his data
wouldn’t be changed

• the const is enforced when attempting to compile
function.

• first aspect of spirit of client/server interface

void f(int i, float x, const float *a) {
 i = 100;

x = 101.0*a[0]; // OK
 a[0] = 0.0; // WRONG!
}

int j = 1;
int k = 2;
float y[] = {3.0, 4.0, 5.0};
f(j, k, y);
R C++ Course 67 Paul F. Kunz

BABA
Function Name Overloading

Pre-Fortran 77 we had

• separate functions had different names

• today, intrinsic functions have the same name

• programmer defined functions still must have
different names

In C++, one can have

• separate functions with same name

• functions distinguished by their name, and the
number and type of arguments

• name mangling occurs to create the external symbol
seen by the linker

INTEGER FUNCTION IABS(I)
INTEGER I
REAL*4 FUNCTION ABS(X)
REAL*4 X
REAL*8 FUNCTION DABS(X)
REAL*8 X

int sqr(int i);
float sqr(float x);
double sqr(double x);
R C++ Course 68 Paul F. Kunz

BABA
Summary

Now we covered enough C/C++ so that every thing
you can do in Fortran you can now do in C/C++

You can also do more than you can do in Fortran

Next session we introduce classes and start on the
road towards object-oriented programming.
R C++ Course 69 Paul F. Kunz

	Plan of the day
	Functions
	Pointers
	More on functions

	Functions
	Example function
	double coulombsLaw(double q1, double q2, double r) {
	// Coulomb's law for the force acting on two point charges
	// q1 and q2 at a distance r. MKS units are used.
	����double k = 8.9875e9; // nt-m**2/coul**2
	return k * q1 * q2 / (r * r);
	}
	int main() {
	cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)
	���������<< " newtons" << endl;
	return 0;
	}
	• first token is type of returned object
	• second token is function name
	• argument names are proceeded by their type
	• function body is within {}
	• return statement can be expression or variable
	• if keyword void is used as return type, then function is like Fortran SUBROUTINE
	• if no arguments, void can be used or leave empty

	Function Prototypes
	Will this work?
	int main() {
	cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)
	���������<< " newtons" << endl;
	return 0;
	}
	• C++ checks types and number of arguments
	• does standard type conversions if necessary
	• C++ checks return type
	• can be compilation error if checks fail or type conversion is not possible

	Will this work?
	extern double coulombsLaw(double q1, double q2, double r);
	int main() {
	cout << coulombsLaw(1.6e-19, 1.6e-19, 5.3e-11)
	���������<< " newtons" << endl;
	return 0;
	}
	• extern keyword says that the function is external and needs to be included in the link step
	• statement ends with ; where body would have been

	Declarations and Definitions
	On the one hand, programs must be broken up into units which are compiled separately
	• standard functions compiled and put in libraries
	• analysis code compiled and linked to library

	On the other hand, functions and other externals must be declared before their use.
	extern double sqrt(double);
	double x, y, z, r;
	//
	r = sqrt(x*x + y*y + z*z);
	• sqrt(double) and sqrt(double x) are equivalent in the declaration statement

	What would happen if declaration we used did not correspond to function in the library?
	To ensure consistency, we force the library function and the declaration we use to share same dec...

	Header files used with definition
	In math.h, we have declarations
	extern double sqrt(double);
	extern double sin(double);
	extern double cos(double);
	// and many more

	In math.c, we have definition
	#include <math.h>
	double sqrt(double x) {
	//
	����return result;
	}
	double sin(double x) {
	//
	����return result;
	}
	• #include is like Fortran include
	• declaration in header files is used in compilation of the library function
	• any mismatch between declaration and definition is flagged as error.

	Header files and user code
	In math.h, we have declarations
	extern double sqrt(double);
	extern double sin(double);
	extern double cos(double);
	// and many more

	in user.c we have definition of user code
	#include <math.h>
	double x, y, z, r;
	//
	r = sqrt(x*x + y*y + z*z);
	• use same header file in user code
	• user code then compiles correctly with implicit conversions as needed

	Extern Data Declarations
	Data can be external
	extern double aNum;
	int foo() {
	cout << aNum << endl;
	return 0;
	}
	• external data is like data in Fortran COMMON block
	• rarely used feature in C and even less in C++

	Defining extern data
	double aNum = 1234.5678;
	int main() {
	foo();
	return 0;
	}
	• definition must only be done once
	• definition is like those in Fortran BLOCK DATA

	Static Functions
	Static function declaration
	#include <math.h>
	static double exp_random(double mu) {
	����return -mu * log(random());
	}
	void simulation1() {
	���double x1 = exp_random(2.1);
	// ...
	}
	• static keyword means local in scope of file
	• definition substitutes for declaration within file
	• still must come before use

	Static Data
	Consider
	#include <iostream>
	using namespace std;
	int counter() {
	static int count = 0;
	count++;
	return count;
	}
	int main() {
	int i;
	i = counter();
	cout << i << ", ";
	i = counter();
	cout << i << endl;
	return 0;
	}
	• static objects retains its value after return from function
	• behaves like Fortran local data under VM or VMS
	• like Fortran local data under UNIX with SAVE option
	• rarely used feature

	Default Function Arguments
	One can specify the value of the arguments not given in the call to a function
	Example
	#include <math.h>
	extern double log_of(double x, double base = M_E);
	����// M_E in <math.h>
	• can be used like
	#include <ch5/logof.h>
	x = log_of(y);������// base e
	z = log_of(y, 10); �// base 10

	• all arguments to the right of the first argument with default value must have default values
	• once first default value is used, the remaining ones must also be used
	• value of the default must be visible to the caller

	Functions in C
	Function declaration and prototype is the same in C except
	• if header inclusion is missing in calling program, then C compiler gives warning and takes defa...
	• if header file is included and there is a mismatch between arguments or return type, the C comp...
	• you don’t see the warnings unless you ask for them (see man pages for their flag)
	• gcc gives excellent warnings with -Wall flag
	• ignoring these warnings can be a disaster on some RISC machines
	• no default arguments

	Header Files
	In a large program, it is possible that a header file might get included twice
	Use C preprocessor to avoid to double inclusion
	#ifndef MATH_H
	#define MATH_H
	extern double sin(double x);
	extern double cos(double x);
	extern double tan(double x);
	// etc
	#endif // MATH_H
	• cpp buils tempoary file for compiler
	• #ifndef is C preprocessor directive saying “if not defined”
	• MATH_H is preprocessor macro variable and is upper case by convention
	• #define defines a macro variable but in this case doesn’t give it a value
	• #endif ends the #ifndef
	• this structure seen in all system header files
	• same for C and C++

	namespace
	To avoid conflict of function names from different packages, encapsulate in namespace
	#ifndef MATH_H
	#define MATH_H
	namespace std {
	extern double sin(double x);
	extern double cos(double x);
	extern double tan(double x);
	// etc
	} // end namespace
	#endif // MATH_H

	Now to use, we must do one of following
	#include <cmath>
	y = std::sin (x); // tedious
	// or
	using std::sin; // explicit
	y = sin (x);
	// or
	using namespace std; // sloppy
	y = sin (x);
	} // end namespace
	#endif // MATH_H

	Good rule: never use using in header file, but ok in implementation file

	The (dreaded) Pointers
	A pointer is an object that refers to another object
	Declare it thus
	int* p;
	int�*q;
	• either form can be used; the later is prefered

	Assign a value to the pointer
	int i = 3;
	int *p = &i;
	• read & as “address of”
	• data model is thus
	p:

	Watch out!
	int *p, i;
	p = &i; // i is an int

	Dereferencing pointers
	Consider
	#include <iostream>
	using namespace std;
	int main() {
	��int* p;
	��int j = 4;
	��p = &j;
	��cout << *p << endl;
	��*p = 5;
	��cout << *p << " " << j << endl;
	��if (p != 0) {
	����cout << "Pointer p points at " << *p << endl;
	��}
	��return 0;
	}
	• *p derefences pointer to access object pointed at
	• *p can be used on either side of assignment operator
	• if p is equal to 0, then pointer is pointing at nothing and is called a null pointer.
	• dereferencing a null pointer causes a core dump :-(

	Pointers and Arrays
	Consider
	float x[5];

	Our memory model is
	��float *
	• what does the label x mean?
	• in Fortran, foo(x) is the same as foo(x(1)) is the same
	• in C/C++, x is a pointer to the first element
	• *x and x[0] are the same
	• x and &x[0] are the same
	• elements of an array can be accessed either way
	• but x is a label to an array of object, not a pointer object

	Pointer Arithmetic
	A pointer can point to element of an array
	float x[5];
	float *y = &x[0];
	float *z = x;
	• y is a pointer to x[0]
	• z is also a pointer to x[0]
	• y+1 is pointer to x[1]
	• thus *(y+1) and x[1] access the same object
	• y[1] is shorthand for *(y+1)
	• integer add, subtract and relational operators are allowed on pointers

	Examples
	1. Summing an array Fortran style
	float �x[5];
	double sum;
	int��� i;
	// some code that fills x
	sum = 0.0;
	for (i = 0; i < 5; i = i + 1) {
	��sum = sum + x[i];
	}

	2. Summing an array C++ style
	float �x[5];
	// some code that fills x
	double sum = 0.0;
	for (int i = 0; i < 5; i++) {
	��sum += x[i];
	}
	• we declare sum just before we need it
	• we initialize sum with the declaration
	• we use i++ to indicate increment
	• we use sum += to indicate accumulation

	More examples
	3. Summing an array with pointer in Fortran style
	float �x[5];
	float �*y;
	double sum;
	int����i;
	// code to fill x
	sum = 0.0;
	y = &x[0];
	for (i = 0; i < 5; i = i + 1) {
	��sum = sum + *y;
	��y = y + 1;
	}

	4. Summing an array with pointer in C++ style
	float �x[5];
	// code to fill x
	float �*y = x;
	double sum = 0.0;
	for (int i = 0; i < 5; i++) {
	��sum += *y++;
	}
	• delay declaration until need
	• use increment operator
	• use += assignment operator

	Progression towards C++ style
	Fortran style
	sum = sum + *y;
	y = y + 1;

	Use add-and-assign operator
	sum += *y;
	y = y + 1;

	Use postfix increment operator
	sum += *y;
	y++;

	Combine postfix and dereference
	sum += *y++;
	• it takes some time to get use to writing in this style
	• be prepared to read code written by others in this style
	• don’t worry about performance issues yet

	Examples of Pointer Arithmetic
	Reverse elements of an array
	float x[10];
	// ... initialize x ...
	float* left = &x[0];
	float* right = &x[9];
	while (left < right) {
	float temp = *left;
	����*left++ = *right;
	*right-- = temp;
	}

	Set elements of an array to zero
	float x[10];
	float* p = &x[10]; // uh?
	while (p != x) *--p = 0.0;
	• this terse style is typical of experienced C/C++ programmers
	• most HEP code will not be so terse
	• in C++, we wouldn’t use pointers as much as in C

	Runtime Array Size
	In C++, one can dynamically allocate arrays
	float* x = new float[n];
	• new is an operator that returns a pointer to the newly created array
	• note use of n; a variable
	• not the same as Fortran’s where the calling routine “owns” the memory
	SUBROUTINE F(X,N)
	DIMENSION X(N)

	• in C, one does
	float *x = (float *)malloc(n*sizeof(float));

	In C++, to delete a dynamically allocated array one uses the delete operator
	delete [] x;
	• in C one uses the free() function
	free(x);

	Line fit example
	Part 1
	#include <iostream>
	using namespace std;
	void linefit() {
	// Create arrays with the desired number of elements
	int n;
	cin >> n;
	float* x = new float[n];
	float* y = new float[n];
	// Read the data points
	for (int i = 0; i < n; i++) {
	cin >> x[i] >> y[i];
	}
	// Accumulate sums Sx and Sy in double precision
	double sx = 0.0;
	double sy = 0.0;
	for (i = 0; i < n; i++) {
	sx += x[i];
	sy += y[i];
	}
	• note first declaration of i carries forward
	• will need to change in future

	Line fit continued
	Part 2
	// Compute coefficients
	double sx_over_n = sx / n;
	double stt = 0.0;
	double b = 0.0;
	for (i = 0; i < n; i++) {
	double ti = x[i] - sx_over_n;
	stt += ti * ti;
	b += ti * y[i];
	}
	b /= stt;
	double a = (sy - sx * b) / n;
	delete [] x;
	delete [] y;
	cout << a << " " << b << endl;
	}
	int main() {
	linefit();
	return 0;
	}

	Character Strings
	Character strings are special case of array and array initialization
	char hello1[] = { ’H’, ’i’ };
	• dimension of hello1 is 2

	The above is too tedious, so use double quotes
	char hello2[] = "Hi";
	• the dimension of hello2 is 3
	• the characters are ‘H’, ‘i’, and ‘\0’
	• all string functions in C/C++ library expect the last character to be ‘\0’
	• one frequently uses pointers to walk thru a string
	char hello2[] = "Hi";
	int n = 0;
	for (char *p = hello2; *p !=0; p++) {
	����n++;
	}
	// n == 2

	Variable Scope, Initialization, and Lifetime
	Consider
	void f() {
	float temp = 1.1;
	int a;
	int b;
	cin >> a >> b;
	if (a < b) {
	int temp = a; // This "temp" hides other one
	��������cout << 2 * temp << endl;
	}// Block ends; local "temp" deleted.
	else {
	int temp = b; // Another "temp" hides other one
	cout << 3 * temp << endl;
	}
	cout << a * b + temp << endl;
	}
	• every pair of {} defines a new scope
	• even a pair with out function, if, for, etc.
	• variables declared in a scope are deleted when execution leaves scope

	for-loop Scoping
	Consider
	for(int i = 0; i < count; i++) {
	����if (a[i] < 10) break;
	}
	cout << i << endl;
	• note where i is declared
	• the scope of i is the scope just outside the for-loop block
	• used to work with many compilers

	Current draft standard
	• scope of i is inside for-loop block
	• will need to declare i before for statement for i to have meaning after loop termination
	• if declared in for statement, will need to repeat it for each for statement that follows
	• vendor compilers will (eventually) change
	• gcc ok, Microsoft?

	Formal Arguments
	Consider
	void f(int i, float x, float *a) {
	i = 100;
	����x = 101.0;
	a[0] = 0.0;
	}
	int j = 1;
	int k = 2;
	float y[] = {3.0, 4.0, 5.0};
	f(j, k, y);
	• what’s the value of j after calling f()?
	• C/C++ pass arguments by value, thus j and k are left unchanged
	• i, x, and a are formal arguments and in the scope of f()
	• upon calling f(), it is as if the compiler generated this code to initialize the arguments
	int i = j;
	float x = k;��// note type conversion
	float *a = y; // init pointer to array

	• thus y[0] does get set to 0.0

	References
	A way to reference the same location (C++ only)
	Reference
	float x = 12.1;
	float& a = x;
	float &b = x;
	• a and b are called a reference
	• a, b, and x are all labels for the same object
	• the position of the “&” is optional
	• Don’t confuse a reference and a pointer
	int i = 3; ��// data object
	int &j = i; �// reference to i
	int *p = &i; // pointer to i

	• i has an address of a memory location containing 3
	• j has the same address as i
	• the contents of p is the address of i
	p:

	Reference arguments
	Consider
	void swap(int &i1, int &i2) {
	����int temp = i1;
	����i1 = i2;
	����i2 = temp;
	}
	int c = 3;
	int d = 4;
	swap(c, d);
	// c == 4 and d == 3
	• swap() has reference arguments
	• upon calling swap(), it is as if the compiler generated this code to initialize its arguments
	int &i1 = c;
	int &i2 = d;

	• thus i1 and i2, the variables in swap()’s scope, are aliases for the caller’s variables.
	• swap() behaves like Fortran functions
	• C does not have reference; instead you have to write
	extern void swap(int *i1, int *i2);
	swap(&c, &d);

	Homework
	Given this declaration
	void swap(int &i1, int *i2);
	• write the function
	• show how it is called
	• draw a data model showing type and value of the arguments

	Recursion
	A function can call itself
	int stirling(int n, int k) {
	if (n < k) return 0;
	if (k == 0 && n > 0) return 0;
	if (n == k) return 1;
	return k * stirling(n-1, k) + stirling(n-1, k-1);
	}
	• each block (function, if, for, etc.) creates new scope
	• variables are declared and initialized in a scope and deleted when execution leaves scope

	Exercise: write a function that computes factorial of a number

	More on declarations
	We have seen
	int i;
	int j = 3;
	float x = 3.14;

	A const declaration
	const float e = 2.71828;
	const float pi2 = 3.1415/2;
	• a const variable can not be changed once it is initialized
	• get compiler error if you try.
	const float pi = 3.1415;
	pi = 3.0; // act of congress

	the following is obsolete
	#define M_PI 3.1415;
	• but maintained to be compatible with C
	• it is C preprocesor macro (just string subsitution)

	const Pointer
	Consider
	const float pi = 3.1415;
	float pdq = 1.2345;
	const float *p = π
	float* const d = π // WRONG
	float* const q = &pdq;
	const float *const r = π
	*p = 3.0;��// WRONG
	p = &pdq;��// OK
	*p = 3.0;��// still WRONG
	*q = 3.0; �// OK
	q = &pdq;��// WRONG
	*r = 3.0; �// WRONG
	r = &pdq; �// WRONG AGAIN
	• const qualifier can refer to what is pointed at (frequent usage)
	• const qualifier can refer to pointer itself (rare usage)
	• const qualifier can refer to both (infrequent usage)

	const function argument
	Consider
	void f(int i, float x, const float *a) {
	i = 100;
	����x = 101.0*a[0];��// OK
	a[0] = 0.0;������// WRONG!
	}
	int j = 1;
	int k = 2;
	float y[] = {3.0, 4.0, 5.0};
	f(j, k, y);
	• a const argument tells user of function that his data wouldn’t be changed
	• the const is enforced when attempting to compile function.
	• first aspect of spirit of client/server interface

	Function Name Overloading
	Pre-Fortran 77 we had
	INTEGER FUNCTION IABS(I)
	INTEGER I
	REAL*4 FUNCTION ABS(X)
	REAL*4 X
	REAL*8 FUNCTION DABS(X)
	REAL*8 X
	• separate functions had different names
	• today, intrinsic functions have the same name
	• programmer defined functions still must have different names

	In C++, one can have
	int ���sqr(int i);
	float �sqr(float x);
	double sqr(double x);
	• separate functions with same name
	• functions distinguished by their name, and the number and type of arguments
	• name mangling occurs to create the external symbol seen by the linker

	Summary
	Now we covered enough C/C++ so that every thing you can do in Fortran you can now do in C/C++
	You can also do more than you can do in Fortran
	Next session we introduce classes and start on the road towards object-oriented programming.

