
BABA
BABAR C++ Course

Paul F. Kunz

Stanford Linear Accelerator Center

No prior knowledge of C assumed

I’m not an expert in C++

Will try to do the dull stuff quickly, then move into
OOP and OO design

You need to practice to really learn C++

First two sessions is about the same for C, C++,
Objective-C, Java, and C#
R C++ Course 1 Paul F. Kunz

BABA
Preliminaries

Recommended text book:

• John J. Barton and Lee R. Nackman
Scientific and Engineering C++
Addison-Wesley
IBSN: 0-201-53393-6

Compiling examples

Create a.out executable with

• for gcc: g++ file.C

• for other compilers: ?

Type a.out to run.
R C++ Course 2 Paul F. Kunz

BABA
Comments

Two forms of comments allowed

• Tradition C style

• New C++ style

/* This is a comment */

/*
* This is a multiline
* comment
*/

a = /* ugly comment */ b + c;

// This is a comment

//
// This is a multiline
// comment
//

a = b + c; // comment after an expression
R C++ Course 3 Paul F. Kunz

BABA
Main program

All programs must have a main

Most trivial is

• under UNIX, suffix is .C or .cc or .cpp or .cxx

• under Windows do not use .C

• main() is a function called by the OS

• this main() takes no arguments

• braces (“{” and “}”) denote body of function

• main returns 0 to the OS (success!)

• a statement ends with semi-colon (“;”), otherwise
completely free form

• same rules as C (except .c suffix is used)

int main() {
 return 0;
}

R C++ Course 4 Paul F. Kunz

BABA

#i
us

in

}

C++ Input and Output

Introduce I/O early, so we can run programs from
shell and see something happen :-)

Example

• iostream is header file containing declarations
needed to use C++ I/O system

• a, b, and c are floating point variables (like REAL*4)

• cin >> reads from stdin, i.e. the keyboard

• cout << prints to stdout, i.e. the screen

• endl is special variable: the end-of-line (‘\n’ in C)
Unlike Fortran, you control the end-of-line.

nclude <iostream> // preprocessor command
ing namespace std;

t main() {
// Read and print three floating point numbers
float a, b, c;
cin >> a >> b >> c; // input
// output
cout << a << ", " << b << ", " << c << endl;

return 0;
R C++ Course 5 Paul F. Kunz

BABA

 // P 0
cout << endl;

 // C
 cout
 if (

 }
 else

 }
More on I/O

Controlling end-of-line has its advantages

Example

• an expression can be input to cout <<

• we print the result of the expression, or “none” on
same line las label.

rint the equation coefficients of a*x + b*y + c =
<< "Coefficients: " << a << ", " << b << ", " << c

ompute and print the x-intercept.
 << "x-intercept: ";
a != 0) {
cout << -c / a << ", "; // a not equal to 0

 {
cout << "none, "; // a is equal to 0
R C++ Course 6 Paul F. Kunz

BABA
math.h

Unlike Fortran, there are no intrinsic functions

But there are standard libraries

One must include header file to make library
functions available at compile time

Example

• functions can be input to cout <<

• see /usr/include/math.h to get list of functions

• useful constants are defined as well

• C and C++ share same library

#include <iostream>
#include <math.h>
using namespace std;

int main() {

float angle; // Angle, in degrees
cin >> angle;
cout << cos(angle * M_PI / 180.0) << endl;

// M_PI is from <cmath>
return 0;

}

R C++ Course 7 Paul F. Kunz

BABA
Variables, Objects, and Types

Consider

• we have three objects with initial value

Consider (simple.f) S()

• we have still only three objects, but,

• thus X gets changed by S() in calling routine

• we say: Fortran passes by reference

 INTEGER I
 REAL X
 DATA I/3/, X/10.0/

CALL S(X, 4.2)

I: X:
REAL
4.2

REAL
10.0

INTEGER
3

 SUBROUTINE S(A, B)
 REAL A, B
 A = B
 END

I:
X:
A:

REAL
4.2

B:REAL
10.0

INTEGER
3

R C++ Course 8 Paul F. Kunz

BABA
Declaring types and initializing

Consider

• variable names must start with a letter or “_”, and are
case sensitive

• initialization can occur on same line

• multiple declarations are allowed

• type declaration is mandatory
(like having IMPLICIT NONE in every file)

• for all of the above, same rules in C

• type declaration must be before first use, but does not
have to be before first executable statement

• general practice is to make type declaration just
before first use

int i = 3;
float x = 10.0;

int i = 3;
float x = 10.0;
i = i + 1;
int j = i;
R C++ Course 9 Paul F. Kunz

BABA
Types

Both Fortran and C/C++ have types

• defines the meaning of bits in memory

• defines which machine instructions to generate on
certain operations

• limits.h gives you the valid range of integer types

• float.h gives you the valid range, precision, etc. of
floating point types

• as with Fortran, watch out on 64 bit machines

Fortran C++ or C

LOGICAL bool (C++ only)

CHARACTER*1 char

INTEGER*2 short

INTEGER*4 int long

REAL*4 float

REAL*8 double

COMPLEX
R C++ Course 10 Paul F. Kunz

BABA
Arithmetic Operators

Both Fortran and C/C++ have operators

• x++ is equivalent to x = x + 1

• x++ means current value, then increment it

• ++x means increment it, then use it.

• sorry, can’t do x**2; use x*x instead
(for sub-expressions like (x+y)**2, we’ll see some
tricks later)

Fortran Purpose C or C++

X + Y add x + y

X - Y subtract x - y

X*Y multiply x*y

X/Y divide x/y

MOD(X,Y) modulus x%y

X**Y exponentiations pow(x,y)

+X unary plus +x

-Y unary minus -y

postincrement x++

preincrement ++x

postdecrement x--

predecrement --x
R C++ Course 11 Paul F. Kunz

BABA
Exercise

What is the output of

Should be

Try changing ++ to --

#include <iostream>
using namespace std;

int main() {

int i = 1;
cout << i << ", ";
cout << (++i) << ", ";
cout << i << ", ";
cout << (i++) << ", ";
cout << i << endl;

return 0;
}

1, 2, 2, 2, 3
R C++ Course 12 Paul F. Kunz

BABA
Relational Operators

Both Fortran and C/C++ define relational operators

• zero is false and non-zero is true

Fortran Purpose C or C++

X .LT. Y less than x < y

X .LE. Y less than or equal x <= y

X .GT. Y greater than x > y

X .GE. Y greater than or equal x >= y

X .EQ. Y equal x == y

X .NE. Y not equal x != y
R C++ Course 13 Paul F. Kunz

BABA
Logical operators and Values

Both Fortran and C/C++ have logical operations and
values

• && and || evaluate from left to right and right hand
expression not evaluated if it doesn’t need to be

• the following never divides by zero

• Only C++ has true and false as values.

Fortran Purpose C or C++

.FALSE. false value 0 or
false

.TRUE. true value non-zero
or true

.NOT. X logical negation !x

X .AND. Y logical and x && y

X .OR. Y logical inclusive or x || y

if (d && (x/d < 10.0)) {
// do some stuff

}

R C++ Course 14 Paul F. Kunz

BABA
Characters

C/C++ only has one byte characters

Constants of type char use single quotes

Use escape sequence for unprintable characters and
special cases

• ’\n’ for new line

• ’\’’ for single quote

• ’\”’ for double quotes

• ’\?’ for question mark

• ’\ddd’ for octal number

• ’\xdd’ for hexadecimal

char a = ’a’;
char aa = ’A’;
R C++ Course 15 Paul F. Kunz

BABA
Bitwise Operators

Both Fortran and C/C++ have bitwise operators

• can be used on any integer type
(char, short, int, etc.)

• right shift might not do sign extension

• most often used for on-line DAQ and trigger

• also used for unpacking compressed data

Fortran Purpose C/C++

NOT(I) complement ~i

IAND(I,J) and i&j

IEOR(I,J) exclusive or i^j

IOR(I,J) inclusive or i|j

ISHFT(I,N) shift left i<<n

ISHFT(I,-N) shift right i>>n
R C++ Course 16 Paul F. Kunz

BABA
Assignment operators

C/C++ has many assignment operators

• takes some time to get use to

• makes code more compact

Fortran Purpose C or C++

X = Y assignment x = y

X = X + Y add assignment x += y

X = X - Y subtract assignment x -= y

X = X*Y multiply assignment x *= y

X = X/Y divide assignment x /= y

X = MOD(X,Y) modulus assignment x %= y

X = ISHFT(X,-N) right shift assignment x >>= n

X = ISHFT(X,N) left shift assignment x <<= n

X = IAND(X,Y) and assignment x &= y

X = IOR(X,Y) or assignment x |= y

X = IEOR(X,Y) xor assignment x ^= y
R C++ Course 17 Paul F. Kunz

BABA
Operator Precedence

Both Fortran and C/C++ use precedence rules to
determine order to evaluate expressions

• z = a*x + b*y + c; evaluates as you would expect

• also left to right or right to left precedence defined

• can over ride default by use of parentheses

• when in doubt, use parentheses

• make code easy to understand

• don’t make clever use of precedence
R C++ Course 18 Paul F. Kunz

BABA

;

if Statements

C/C++ if statement is analogous to Fortran

Any expression that evaluates to numeric value is
allowed.

if (current_temp > maximum_safe_temp) {
cerr << "EMERGENCY: Too hot--flushing" << endl

 flushWithWater();
}

if (!(channel = openChannel(“temperature”))) {
 cerr << "Could not open channel" << endl;
 exit(1);
}

R C++ Course 19 Paul F. Kunz

BABA
if gotchas

Braces are optional when single expression is in the
block

• leaves potential for future error

• suggest single expressions remain on same line

Any expression, including assignment

• a common mistake; this sets i = j and then does
some stuff if j is non-zero

if (x < 0)
 x = -x; // abs(x)
 y = -y; // always executed

if (x < 0) x = -x; // abs(x)

int i, j;
// some code setting i and j
if (i = j) {

// some stuff
}

R C++ Course 20 Paul F. Kunz

BABA
if else Statements

Analogous to Fortran

C/C++ also has condition operator

• use only for simple expressions

• else code can become unreadable

Also have

if (x < 0) {
y = -x;

} else {
y = x;

}

y = (x < 0) ? -x : x; // y = abs(x)

if (x < 0) {
y = -x;

} else if (x > 0) {
y = x;

} else {
y = 0;

}

R C++ Course 21 Paul F. Kunz

BABA
Coding Styles

C/C++ is free form

Common styles for if block are

• the first is more common

if (x < 0) {
y = -x;

} else {
y = x;

}
// or
if (x < 0)
{

y = -x;
}
else
{

y = x;
}

R C++ Course 22 Paul F. Kunz

BABA
while loop

C/C++ while is when block should be executed
zero or more times

General form

• any expression that returns numeric value

• same rules as if block for braces

• Fortran equivalent requires GOTO

while (expression) {
 statement

...
}

10 IF (.NOT. expression) GOTO 20
 statement

...
GOTO 10

20 CONTINUE
R C++ Course 23 Paul F. Kunz

BABA
while Example

Example

• reads terminal until end-of-file

• <ctrl>-d is end-of-file for UNIX

• I can not explain how this works until later

#include <iostream>
#include <math.h>
using namespace std;

int main() {
float x;
while (cin >> x) {

cout << x << sqrt(x) << endl;
}
return 0;

}

R C++ Course 24 Paul F. Kunz

BABA
do-while loop

C/C++ do-while is when block should be
executed one or more times

General form

• any expression that returns numeric value

• same rules as if block for braces

• Fortran equivalent requires GOTO

do {
 statement

...
} while(expression);

10 CONTINUE
 statement

...
IF(expression)GOTO 10
R C++ Course 25 Paul F. Kunz

BABA
do-while Example

Snippet from use of Newton’s method

x = initial_guess;
do {

dx = f(x) / fprime(x);
 x -= dx;
} while (fabs(dx) > desired_accuracy);
R C++ Course 26 Paul F. Kunz

BABA
for loop

C/C++ for loop much more general than Fortran
DO loop

• the test expression can be any that returns numeric
value like if block

• function calls and I/O are also allowed

In Fortran

In C or C++

for(init-statement; test-expr; increment-expr) {
 statement

...
}

DO 10 I = 1, J, K
 statements

...
10 CONTINUE

for(i = 1; i <= j; i += k) {
 statements

...
}

R C++ Course 27 Paul F. Kunz

BABA

for

}

More Examples

Typically, one sees

• where i is declared and typed in init-statement

Nested loops might iterate over all pairs with

Use of two running indices might be

• separate expressions with commas

for(int i = 0; i < count; i++) {
 // statements in loop body
}

for(i = 0; i < count - 1; i++) {
for(j = i+1; j < count; j++) {

// statements in loop body
}

}

(i = 0, j = count-1; i < count-1; i++, j--) {
// statements in loop body
R C++ Course 28 Paul F. Kunz

BABA
break and continue Statements

Consider following Fortran

• common need to break out of loop or continue to next
iteration.

Equivalent C++ code is

• continue goes to next iteration of current loop

• break step out of current loop

• goto exists in C/C++ but rarely used

• we’ll make less use of these constructs in C++, then
in either C or Fortran

DO 100 I = 1, 100
IF (I .EQ. J) GO TO 100
IF (I .GT. J) GO TO 200

! do some work
100 CONTINUE
200 CONTINUE

for (i = 0; i < 100; i++) {
if (i == j) continue;
if (i > j) break;
// do some work

}

R C++ Course 29 Paul F. Kunz

BABA
Arrays

A collection of elements of same type

• access first element of array with x[0]

• access last element of array with x[99]

Initializing array elements

• can let the compiler calculate the dimension

Multi-dimensions arrays

• elements appear row-wise

• Fortran elements appear column-wise

• Thus m[0][1] in C/C++ is M(2,1) in Fortran

• royal pain to interface C/C++ with Fortran

float x[100]; // like REAL*4 X(100) in F77

float x[3] = {1.1, 2.2, 3.3};
float y[] = {1.1, 2.2, 3.3, 4.4};

float m[4][4]; // like REAL*4 M(4,4) in F77
int m [2][3] = { {1,2,3}

{4,5,6} };
R C++ Course 30 Paul F. Kunz

BABA
Example Code and a Test

Multiplying matrices

• If you understand this code, then you know enough
C/C++ to code the algorithmic part of your code

• At the beginning of this session, the above code
would probably have been gibberish

• If you can not understand this code, then I’m going
too fast :-(

float m[3][3], m1[3][3], m2[3][3];
// Code that initializes m1 and m2 ...

// m = m1 * m2
double sum;
for (int i = 0; i < 3; i++) {
 for (int j = 0; j < 3; j++) {

sum = 0.0;
 for (int k = 0; k < 3; k++) {
 sum += m1[i][k] * m2[k][j];
 }
 m[i][j] = sum;
 }
}

R C++ Course 31 Paul F. Kunz

BABA
A Pause for Reflection

What have we learned so far?

• we’ve seen how to do in C/C++ everything you can do
in Fortran 77 except functions, COMMON blocks, and
character arrays.

• some aspects of C/C++ are more convenient than
Fortran; some are not

• but we’ve seen nothing fundamentally new, things
are just different

Next session, we start with some new stuff and we’re
not even finished with chapter 2!

In particular, the replacement for COMMON blocks is
going to be quite different
R C++ Course 32 Paul F. Kunz

	BABAR C++ Course
	Paul F. Kunz
	Stanford Linear Accelerator Center
	No prior knowledge of C assumed
	I’m not an expert in C++
	Will try to do the dull stuff quickly, then move into OOP and OO design
	You need to practice to really learn C++
	First two sessions is about the same for C, C++, Objective-C, Java, and C#

	Preliminaries
	Recommended text book:
	• John J. Barton and Lee R. Nackman Scientific and Engineering C++ Addison-Wesley IBSN: 0-201-533...

	Compiling examples
	Create a.out executable with
	• for gcc: g++ file.C
	• for other compilers: ?

	Type a.out to run.

	Comments
	Two forms of comments allowed
	• Tradition C style
	/* This is a comment */
	/*
	�* This is a multiline
	�* comment
	�*/
	a = /* ugly comment */ b + c;

	• New C++ style
	// This is a comment
	//
	// This is a multiline
	// comment
	//
	a = b + c; // comment after an expression

	Main program
	All programs must have a main
	Most trivial is
	int main() {
	return 0;
	}
	• under UNIX, suffix is .C or .cc or .cpp or .cxx
	• under Windows do not use .C
	• main() is a function called by the OS
	• this main() takes no arguments
	• braces (“{” and “}”) denote body of function
	• main returns 0 to the OS (success!)
	• a statement ends with semi-colon (“;”), otherwise completely free form
	• same rules as C (except .c suffix is used)

	C++ Input and Output
	Introduce I/O early, so we can run programs from shell and see something happen :-)
	Example
	#include <iostream> // preprocessor command
	using namespace std;
	int main() {
	��// Read and print three floating point numbers
	��float a, b, c;
	��cin >> a >> b >> c; // input
	��// output
	��cout << a << ", " << b << ", " << c << endl;
	��return 0;
	}
	• iostream is header file containing declarations needed to use C++ I/O system
	• a, b, and c are floating point variables (like REAL*4)
	• cin >> reads from stdin, i.e. the keyboard
	• cout << prints to stdout, i.e. the screen
	• endl is special variable: the end-of-line (‘\n’ in C) Unlike Fortran, you control the end-of-line.

	More on I/O
	Controlling end-of-line has its advantages
	Example
	// Print the equation coefficients of a*x + b*y + c = 0
	cout << "Coefficients: " << a << ", " << b << ", " << c << endl;
	// Compute and print the x-intercept.
	cout << "x-intercept: ";
	if (a != 0) {
	cout << -c / a << ", "; // a not equal to 0
	}
	else {
	cout << "none, "; // a is equal to 0
	}
	• an expression can be input to cout <<
	• we print the result of the expression, or “none” on same line las label.

	math.h
	Unlike Fortran, there are no intrinsic functions
	But there are standard libraries
	One must include header file to make library functions available at compile time
	Example
	#include <iostream>
	#include <math.h>
	using namespace std;
	int main() {
	��float angle;�����// Angle, in degrees
	��cin >> angle;
	��cout << cos(angle * M_PI / 180.0) << endl;
	�������������������// M_PI is from <cmath>
	��return 0;
	}
	• functions can be input to cout <<
	• see /usr/include/math.h to get list of functions
	• useful constants are defined as well
	• C and C++ share same library

	Variables, Objects, and Types
	Consider
	INTEGER I
	REAL X
	DATA I/3/, X/10.0/
	������CALL S(X, 4.2)
	• we have three objects with initial value

	I:
	Consider (simple.f) S()
	SUBROUTINE S(A, B)
	REAL A, B
	A = B
	END
	• we have still only three objects, but,

	I:
	• thus X gets changed by S() in calling routine
	• we say: Fortran passes by reference

	Declaring types and initializing
	Consider
	int i = 3;
	float x = 10.0;
	• variable names must start with a letter or “_”, and are case sensitive
	• initialization can occur on same line
	• multiple declarations are allowed
	• type declaration is mandatory (like having IMPLICIT NONE in every file)
	• for all of the above, same rules in C
	• type declaration must be before first use, but does not have to be before first executable stat...
	int i = 3;
	float x = 10.0;
	i = i + 1;
	int j = i;

	• general practice is to make type declaration just before first use

	Types
	Both Fortran and C/C++ have types
	• defines the meaning of bits in memory
	• defines which machine instructions to generate on certain operations
	• limits.h gives you the valid range of integer types
	• float.h gives you the valid range, precision, etc. of floating point types
	• as with Fortran, watch out on 64 bit machines

	Arithmetic Operators
	Both Fortran and C/C++ have operators
	• x++ is equivalent to x = x + 1
	• x++ means current value, then increment it
	• ++x means increment it, then use it.
	• sorry, can’t do x**2; use x*x instead (for sub-expressions like (x+y)**2, we’ll see some tricks...

	Exercise
	What is the output of
	#include <iostream>
	using namespace std;
	int main() {
	��int i = 1;
	��cout << i << ", ";
	��cout << (++i) << ", ";
	��cout << i << ", ";
	��cout << (i++) << ", ";
	��cout << i << endl;
	��
	��return 0;
	}

	Should be
	1, 2, 2, 2, 3

	Try changing ++ to --

	Relational Operators
	Both Fortran and C/C++ define relational operators
	• zero is false and non-zero is true

	Logical operators and Values
	Both Fortran and C/C++ have logical operations and values
	• && and || evaluate from left to right and right hand expression not evaluated if it doesn’t nee...
	• the following never divides by zero
	if (d && (x/d < 10.0)) {
	����// do some stuff
	}

	• Only C++ has true and false as values.

	Characters
	C/C++ only has one byte characters
	Constants of type char use single quotes
	char a = ’a’;
	char aa = ’A’;

	Use escape sequence for unprintable characters and special cases
	• ’\n’ for new line
	• ’\’’ for single quote
	• ’\”’ for double quotes
	• ’\?’ for question mark
	• ’\ddd’ for octal number
	• ’\xdd’ for hexadecimal

	Bitwise Operators
	Both Fortran and C/C++ have bitwise operators
	• can be used on any integer type (char, short, int, etc.)
	• right shift might not do sign extension
	• most often used for on-line DAQ and trigger
	• also used for unpacking compressed data

	Assignment operators
	C/C++ has many assignment operators
	• takes some time to get use to
	• makes code more compact

	Operator Precedence
	Both Fortran and C/C++ use precedence rules to determine order to evaluate expressions
	• z = a*x + b*y + c; evaluates as you would expect
	• also left to right or right to left precedence defined
	• can over ride default by use of parentheses
	• when in doubt, use parentheses
	• make code easy to understand
	• don’t make clever use of precedence

	if Statements
	C/C++ if statement is analogous to Fortran
	if (current_temp > maximum_safe_temp) {
	cerr << "EMERGENCY: Too hot--flushing" << endl;
	flushWithWater();
	}

	Any expression that evaluates to numeric value is allowed.
	if (!(channel = openChannel(“temperature”))) {
	cerr << "Could not open channel" << endl;
	exit(1);
	}

	if gotchas
	Braces are optional when single expression is in the block
	if (x < 0)
	x = -x;��// abs(x)
	y = -y; �// always executed
	• leaves potential for future error
	• suggest single expressions remain on same line
	if (x < 0) x = -x;��// abs(x)

	Any expression, including assignment
	int i, j;
	// some code setting i and j
	if (i = j) {
	����// some stuff
	}
	• a common mistake; this sets i = j and then does some stuff if j is non-zero

	if else Statements
	Analogous to Fortran
	if (x < 0) {
	����y = -x;
	} else {
	����y = x;
	}

	C/C++ also has condition operator
	y = (x < 0) ? -x : x; // y = abs(x)
	• use only for simple expressions
	• else code can become unreadable

	Also have
	if (x < 0) {
	����y = -x;
	} else if (x > 0) {
	����y = x;
	} else {
	����y = 0;
	}

	Coding Styles
	C/C++ is free form
	Common styles for if block are
	if (x < 0) {
	����y = -x;
	} else {
	����y = x;
	}
	// or
	if (x < 0)
	{
	����y = -x;
	}
	else
	{
	����y = x;
	}
	• the first is more common

	while loop
	C/C++ while is when block should be executed zero or more times
	General form
	while (expression) {
	statement
	����...
	}
	• any expression that returns numeric value
	• same rules as if block for braces
	• Fortran equivalent requires GOTO
	10 IF (.NOT. expression) GOTO 20
	statement
	����...
	���GOTO 10
	20 CONTINUE

	while Example
	Example
	#include <iostream>
	#include <math.h>
	using namespace std;
	int main() {
	��float x;
	��while (cin >> x) {
	��cout << x << sqrt(x) << endl;
	��}
	��return 0;
	}
	• reads terminal until end-of-file
	• <ctrl>-d is end-of-file for UNIX
	• I can not explain how this works until later

	do-while loop
	C/C++ do-while is when block should be executed one or more times
	General form
	do {
	statement
	����...
	} while(expression);
	• any expression that returns numeric value
	• same rules as if block for braces
	• Fortran equivalent requires GOTO
	10 CONTINUE
	statement
	����...
	���IF(expression)GOTO 10

	do-while Example
	Snippet from use of Newton’s method
	x = initial_guess;
	do {
	����dx = f(x) / fprime(x);
	x -= dx;
	} while (fabs(dx) > desired_accuracy);

	for loop
	C/C++ for loop much more general than Fortran DO loop
	for(init-statement; test-expr; increment-expr) {
	statement
	����...
	}
	• the test expression can be any that returns numeric value like if block
	• function calls and I/O are also allowed

	In Fortran
	���DO 10 I = 1, J, K
	statements
	����...
	10 CONTINUE

	In C or C++
	for(i = 1; i <= j; i += k) {
	statements
	����...
	}

	More Examples
	Typically, one sees
	for(int i = 0; i < count; i++) {
	// statements in loop body
	}
	• where i is declared and typed in init-statement

	Nested loops might iterate over all pairs with
	for(i = 0; i < count - 1; i++) {
	����for(j = i+1; j < count; j++) {
	���// statements in loop body
	����}
	}

	Use of two running indices might be
	for(i = 0, j = count-1; i < count-1; i++, j--) {
	���// statements in loop body
	}
	• separate expressions with commas

	break and continue Statements
	Consider following Fortran
	����DO 100 I = 1, 100
	��������IF (I .EQ. J) GO TO 100
	��������IF (I .GT. J) GO TO 200
	������������! do some work
	100 CONTINUE
	200 CONTINUE
	• common need to break out of loop or continue to next iteration.

	Equivalent C++ code is
	for (i = 0; i < 100; i++) {
	����if (i == j) continue;
	����if (i > j) break;
	����// do some work
	}
	• continue goes to next iteration of current loop
	• break step out of current loop
	• goto exists in C/C++ but rarely used
	• we’ll make less use of these constructs in C++, then in either C or Fortran

	Arrays
	A collection of elements of same type
	float x[100]; // like REAL*4 X(100) in F77
	• access first element of array with x[0]
	• access last element of array with x[99]

	Initializing array elements
	float x[3] = {1.1, 2.2, 3.3};
	float y[] = {1.1, 2.2, 3.3, 4.4};
	• can let the compiler calculate the dimension

	Multi-dimensions arrays
	float m[4][4]; // like REAL*4 M(4,4) in F77
	int m [2][3] = { {1,2,3}
	�����������������{4,5,6} };
	• elements appear row-wise
	• Fortran elements appear column-wise
	• Thus m[0][1] in C/C++ is M(2,1) in Fortran
	• royal pain to interface C/C++ with Fortran

	Example Code and a Test
	Multiplying matrices
	float m[3][3], m1[3][3], m2[3][3];
	// Code that initializes m1 and m2 ...
	// m = m1 * m2
	double sum;
	for (int i = 0; i < 3; i++) {
	for (int j = 0; j < 3; j++) {
	��������sum = 0.0;
	for (int k = 0; k < 3; k++) {
	sum += m1[i][k] * m2[k][j];
	}
	m[i][j] = sum;
	}
	}
	• If you understand this code, then you know enough C/C++ to code the algorithmic part of your code
	• At the beginning of this session, the above code would probably have been gibberish
	• If you can not understand this code, then I’m going too fast :-(

	A Pause for Reflection
	What have we learned so far?
	• we’ve seen how to do in C/C++ everything you can do in Fortran 77 except functions, COMMON bloc...
	• some aspects of C/C++ are more convenient than Fortran; some are not
	• but we’ve seen nothing fundamentally new, things are just different

	Next session, we start with some new stuff and we’re not even finished with chapter 2!
	In particular, the replacement for COMMON blocks is going to be quite different

