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1 IntrodutionAs the number of loops to whih perturbative �eld theories are evaluated inreases, the group1struture of the individual diagrams beomes more and more ompliated. This problem has beenreognized many years ago and on a group-by-group basis some very ompat algorithms wereproposed [1℄ for their omputation. Espeially for the de�ning and the adjoint representations ofthe lassial groups SU(N), SO(N) and Sp(N) these algorithms an be implemented rather easilyin a symboli program that will then give the olor trae of a diagram as a funtion of the parameterN [2℄. The disadvantage of these algorithms is however that these results give no information aboutgroup invariants and hene it is only possible for very simple diagrams to generalize the results suhthat they are valid for arbitrary groups and arbitrary representations. Hene a di�erent type ofalgorithm is needed, if one would like a more general answer. That suh information is useful anbe seen from some reent alulations in QCD [3℄ in whih the representation in terms of invariantsould show immediately why extrapolations of lower orders in perturbation theory ould not besuessful. In addition the presentation in terms of group invariants is more general and needshardly any new work when one needs to apply it for di�erent groups or representations. The needfor this kind of generality is lear, for example, from grand uni�ation and string theory, where allsemi-simple Lie groups may our.We onsider non-abelian gauge theories based on simple ompat Lie groups. The extensionto semi-simple algebras and additional U(1) fators is then straightforward. The gauge bosonsare assumed to ouple to matter in some irreduible representation R of the gauge group. Thegeneralization to reduible representations is also straightforward. The group-theoretial quantitiesthat appear in the initial expressions are the struture onstants fab (appearing in gauge self-ouplings and ghost ouplings) and the Lie-algebra generators T aR in the representation R, appearingin the oupling of the gauge bosons to matter. In this paper we onsider only \vauum bubbles", i.e.diagrams without external lines. As far as the group theoretial fator is onerned, our results arerelevant for any diagram whose external lines arry no gauge quantum number, or for the absolutevalue squared of any amplitude if one sums over the gauge quantum numbers of all external lines.The group theoretial fator of other diagrams an be obtained by multiplying the diagram byprojetion operators.The group theory fator of a vauum bubble diagram onsists of traes of a ertain numberof matries T aR, whose indies are fully ontrated among eah other and with some ombina-tion of struture onstants. Our goal is to obtain an expression for this fator that is minimallyrepresentation- or group-dependent. In priniple, this goal an be ahieved as follows.1. Express the traes in terms of symmetrized traes. This an always be done at the expenseof some additional fators fabNow one may simplify the resulting expression further by observing that the struture on-stants an be viewed as representation matries in the adjoint representation. This allows usto2. Eliminate all losed loops of struture onstants fab.This amounts to performing step 1. on traes of adjoint matries T aA. Step 2. an also beperformed in an algorithmi way to arbitrary order. However, the algorithm is not identialto that of step 1 beause of the speial properties of the adjoint representation.1Sine we are dealing with perturbation theory we only enounter Lie algebras, and we are insensitive to the globalproperties of the Lie group. Nevertheless, following standard pratie, we will often use the word \group" ratherthan \algebra". 2



3. Express the symmetrized traes in terms of a standard basis of symmetri invariant tensors.A Lie algebra of rank r has preisely r suh tensors [4, 5℄.At this point we have sueeded in expressing every group theory fator in terms of r + 1representation-independent quantities, namely the symmetri tensors and fab. The repre-sentation dependene is enapsulated in terms of (generalized) indies [6℄. We show howthese indies an be omputed for any representation of any Lie-algebra to any desired or-der. This algorithm requires a onvenient hoie for the basis of tensors, whih is not themathematially more elegant \orthogonal" basis advoated in [6℄. The result is also to areasonable extent group-independent. The only way group-dependene enters is trough the(non)-existene of ertain invariant tensors, but one may simply take all possible tensors intoaount, and only eliminate them at the end. The only problem is that the group SO(4N)has two distint tensors of rank 2N . This ase an rather easily be dealt with expliitly.Although our main goal has now been ahieved, the result is expressed in terms of manyombinations of symmetri tensors and struture onstants that are not all independent. Un-fortunately there do not seem to exist many mathematial results regarding these invariants.In partiular, we are not aware of any theorem regarding the minimal number of invariantombinations. For this reason the rest of our program is limited to �nite orders, and is notguaranteed to yield the optimal answer in all ases. As a �rst step we4. Eliminate as muh as possible the remaining struture onstants fab.We do not know of a proof that this is always possible, and in fat we have only been ableto do this expliitly up to a ertain order. The �rst objet where we were unable to performstep 4 is built out of two struture onstants and three rank 4 symmetri tensors.5. If step 4 is ompleted, one is left with a fully ontrated ombination of symmetri invarianttensors. We derive formulas expressing many suh ontrations in terms of a few basi ones.The last step is essentially group dependent (and therefore somewhat outside our main inter-est):6. Compute a formula for the basi invariants for eah group.Here \basi invariant" is any of the ontrated ombinations of symmetri tensors that ouldnot be expressed in terms of others, and any ombination involving additional strutureonstants that ould not be eliminated.None of these steps is new in itself, but we believe that in all ases we are going onsiderablybeyond previous results (see e.g [7-25℄). Sine the appliation we have in mind is to Feynmandiagrams, it is essential not just to develop an algorithm, but also to make sure it an be arriedout eÆiently. Compliated group theory fators appear only at higher orders in perturbationtheory, whih implies that one must be able to deal with a very large number of diagrams.The organization of this paper is as follows. In the next setion we give some de�nitions andonventions, and present some well-known general results on invariant tensors. In setion 3 wepresent the algorithm to perform step 1. Although this is in priniple straightforward, withoutproper are suh an algorithm may quikly get out of ontrol. The same is true for step 2, whihis presented in setion 4. In setion 5 we present the harater method for omputing indies andsymmetrized traes. This setion is based on results presented in [26℄ and [6℄ , the main noveltybeing the extension to all higher indies of exeptional algebras. In setion 6 we disuss steps 4 and5. Setion 7 ontains some remarks regarding the advantages and disadvantages of the two basishoies for the symmetri tensors. 3



In appendix A we present expliit results for indies and trae identities of the exeptionalalgebras; appendix B ontains a desription of the omputer methods used, and in appendix C wegive a few examples to demonstrate the eÆieny of the algorithm. Appendix D ontains manyexpliit formulas for invariants (step 6). In appendix E we disuss hiral traes in SO(2N)2 Generalities2.1 De�nitionsWe onsider simple Lie-algebras whose generators satisfy the ommutation relation[T a; T b℄ = ifabT  (1)Our onventions is to use hermitean generators T a and to hoose the Killing form proportional toÆab: Tr T aT b / Æab (2)with a positive and representation dependent proportionality onstant that will be �xed later. Withthis onvention the struture onstants fab are real and ompletely anti-symmetri.
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Figure 1: Dynkin diagrams and labelling onventionsRepresentations are denoted either by their dimensions (if no onfusion is possible), or by theirDynkin labels (a1; : : : ; ar), where r is the rank. Our labelling onvention is indiated in �g 1. Abar denotes the omplex onjugate representation; \A" denotes the adjoint representation, \R" ageneri representation and \r" the referene representation to be de�ned later. The dimensions of4



these representations are denoted by NA, NR or Nr; the quadrati Casimir eigenvalues (de�nedmore preisely below) by CA, CR and Cr respetively.The generators of the adjoint representation are related to the struture onstants(TA)ab = �i fab : (3)2.2 Invariant TensorsWe will enounter traes Tr T a1R : : : T anR (4)in any representation R of any simple Lie algebra. We wish to express the result in the minimalnumber of quantities.Every trae de�nes an invariant tensor M :Tr T a1R : : : T anR =Ma1:::anR : (5)This tensor is invariant beause the trae is invariant under the replaementT aR ! URT aRU�1R = UabA T bR ; (6)where UR is an element of the group in the representation R; UA is the same group element in theadjoint representation. Hene we haveMa1:::anR = Ua1b1A : : : UanbnA M b1:::bnR ; (7)whih implies, in in�nitesimal form Xi f baiMa1:::b:::anR = 0 ; (8)with b inserted at position i. This \generalized Jaobi-identity" may be taken as the de�nition ofan invariant tensor.2.3 Casimir OperatorsEvery invariant tensor M de�nes a Casimir operator C(M)CR(M) = Xa1;:::;an T a1R : : : T anR Ma1:::an : (9)It follows from equation (8) that CR(M) ommutes with all generators TR in the representationR. If R is irreduible Shur's lemma implies that CR(M) is onstant on the representation spaeR. Note that this is true independent of the symmetry of M , and irrespetive of any onretede�nition of M in terms of traes. All that is used is the Jaobi-identity (equation (8)).Of speial interest are the quadrati Casimir operators CR, whih we de�ne as(T aRT aR)ij = CRÆij : (10)As a speial ase of this identity we an write, using equation (3)fadf bd = CAÆab : (11)5



2.4 Symmetrized traesNot all invariant tensors and Casimir operators onstruted so far are independent. We would liketo express all traes in terms of a minimal set of invariant tensors. As a �rst step one may use theommutation relations to express the trae in a ompletely symmetri trae plus terms of lowerorder in the generators, whih in their turn an also be expressed in terms of symmetrized traes.An eÆient algorithm for doing this will be disussed in the next setion. After this step we onlyneed to onsider symmetrized traesStr T a1 : : : T an � 1n!X� Tr T a�(1) : : : T a�(n) ; (12)where the sum is over all permutations of the indies (the yli permutation may of ourse befatored out using the yli property of the trae).For eah representation one may de�ne a symmetri invariant tensor dR withda1 :::anR � Str T a1R : : : T anR ; (13)but this still vastly overparametrizes the problem, beause a new tensor is de�ned for every ordern and for every representation R.2.5 Basi Casimir invariantsIt is well-known that the number of independent symmetri invariant tensors is equal to the rankof the algebra. This an be seen as follows. For eah invariant symmetri tensor d of order n de�nea polynomial Pd(F ) = F a1 : : : F anda1:::an ; (14)where F a is a real vetor of dimension equal to the dimension of the algebra, NA. The tensor dan be derived from Pd(F ) by di�erentiating with respet to F :da1:::an = 1n! ��F a1 : : : ��F an Pd(F ) : (15)Although a priori Pd(F ) is a polynomial in NA variables, the fat that d is an invariant tensorimplies that Pd depends in fat only on r variables, where r is the rank of the algebra. This is truebeause the polynomial is invariant underF a ! UaA F  ; (16)and it is well-known that for every F a one an �nd a transformation UA that rotates F a into theCartan subalgebra. Hene Pd(F ) depends only on as many parameters as the dimension of theCartan subalgebra, i.e. r. Therefore it is not surprising that any suh polynomial an be expressedin terms of r basi ones, although the preise details (e.g. the orders of the basi polynomials) don'tfollow from this simple argument.The orders of the basi polynomials for eah group are known [4, 5℄, and are given in the followingtable (for future purposes this table also gives the \dual Coxeter number" g). As explained above,eah basi polynomial orresponds to an invariant tensor, whih in its turn orresponds to a Casimirinvariant. The impliation of table 1 is that for any given algebra the polynomialsTr F nR � Tr (Xa F aT aR)n (17)6



Algebra g Invariant tensor ranksAr r + 1 2; 3; 4; : : : ; r; r + 1Br 2r � 1 2; 4; 6; : : : ; 2rCr r + 1 2; 4; 6; : : : ; 2rDr 2r � 2 2; 4; 6; : : : ; 2r � 2; rG2 4 2; 6F4 9 2; 6; 8; 12E6 12 2; 5; 6; 8; 9; 12E7 18 2; 6; 8; 10; 12; 14; 18E8 30 2; 8; 12; 14; 18; 20; 24; 30Table 1: Ranks of basi invariant tensorsan be expressed in terms of r basi polynomials of degrees as indiated above. In setion 5 we willshow how to obtain suh expressions for any irreduible representation (irrep) of any (semi)-simpleLie algebra. The ranks of the invariant tensors { or more aurately those2 that an be written astraes over some representation R { are in fat an outome of these alulations.If we an express a polynomial orresponding to some invariant tensor d in terms of basipolynomials, we an also express the invariant tensors into basi ones. Namely, supposePd(F ) =XYi Pdi(F ) (18)where the sum is over various terms of this type, with oeÆients. Then the di�erentiation (eq.15)of a term on the right hand side yields preisely the fully symmetrized ombination of the tensorsdi, with weight 1; this means that the overall ombinatorial fator equals the number of terms. Forexample 14! ��F a ��F b ��F  ��F d (Xe (F e)2)2 = 13(ÆabÆd + ÆaÆbd + ÆadÆb) : (19)In pratie we will express all higher traes in terms of r basi ones, but we do not obtainthe full dependene on F of the basi traes, and onsequently we annot say anything about theexpliit form of the basi invariant tensors. Given an expliit basis for the Lie-algebra one mayompute the full F -dependene, but that is the same as omputing the invariant tensor diretly byomputing a trae.2.6 IndiesSine a Casimir operator is onstant on a irrep, its value an be omputed by taking the symmetrizedtrae over this irrep. We will see expliitly how to expand a trae in terms of fundamental symmetriinvariant tensors. In general one hasStr T a1R : : : T anR = In(R)da1:::an + produts of lower orders : (20)The invariant tensors an be hosen in some representation-independent way, for example by om-puting it for one given referene representation. Then all symmetrized traes an be expressedin terms of this basis of tensors. The leading term neessarily has the indiated form, with aomputable representation dependent oeÆient In(R). This oeÆient is alled the nth index of2We are not aware of others, but also not of a proof that they do not exist.7



the representation. If there is no fundamental invariant tensor of order n the indies In(R) areobviously zero for any representation.3The extra terms in equation (20) are symmetrized produts of lower order tensors suh thatthe total order is n, without ontrated indies. The oeÆients of these terms will be alledsub-indies.There is a lot of freedom in de�ning da1:::an sine we ould have modi�ed it by any ombinationof lower order terms in equation (20). Note that modifying the tensors by lower order terms doesnot a�et the indies, but does hange the sub-indies. This freedom an be used to impose theonditions [6, 24℄ da1 :::al:::an? da1:::al? = 0 l < n (21)This then de�nes the symmetrized tensors up to an overall normalization. The normalization anbe �xed by �xing a normalization for the indies. This basis will be referred to as the orthogonalbasis. It is the most elegant one from a mathematial point of view, but, as we will see, not the mostonvenient one for our purposes. In the following we will use the notation da1:::al:::an? for tensors inthe orthogonal basis.As mentioned before, tensors de�ned in any basis an be used to de�ne Casimir invariants, butusing the orthogonal basis has a lear advantage beause it leads to a simple relation with theindies (NR is the dimension of R) : In(R) = NRNnCp(R) ; (22)where Nn = da1:::an? da1:::an? : (23)This relation holds beause when ontrating with an orthogonal tensor only the leading termssurvive. Note that this is true even if we do not expand equation (20) in terms of the orthogonalbasis, but in terms of any other basis. Hene the Casimir eigenvalues are determined up to arepresentation independent fator one the indies are known.The indies are of interest in their own right, as was in partiular emphasized in [6℄. In someases they have a topologial interpretation via index theorems. Furthermore they satisfy a usefultensor produt sum rule. If R1 
R1 =Xi �Ri (24)then NR1Ip(R2) +NR2Ip(R1) =Xi Ip(Ri) : (25)In subgroup embeddings H � G there is also suh a sum rule for branhing rules: if R ! Pi�rithen IGp (R) = Ip(G=H)Xi IHp (ri) ; (26)where Ip(G=H) is the embedding index (here we assume that both G and H have preisely oneindex of order p; other ases require just slightly more disussion).3For Dr, r even, there are two indies of order r. The additional one will be denoted as ~Ir. We will deal with thisase in more detail below.
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2.7 NormalizationTo arrive at a universal normalization we make use of the following general formula for the quadratiCasimir invariant CR = �2 rXi=1 rXj=1(ai + 2)Gijaj (27)Here ai are the Dynkin labels of the representation R, and Gij is the inverse Cartan matrix. Theadvantage of this formula is that the Dynkin labels as well as the Cartan matrix have a �xednormalization that is not subjet to onventions. Only the overall normalization is onventiondependent. The fator � is introdued to allow the reader to �x the normalization aording totaste. The dependene on � will be shown expliitly in all formulas. Given the universality of (27)it is natural to hoose � in a group-independent way. Using (27) get for CA:CA = �g ;where g is the dual Coxeter number.This onvention de�nes the normalization of the generators one we have �xed the rank 2symmetri tensor. The natural de�nition isdab = dab? = Æab:Then N2 � dab? dab? = NA. Now the seond index I2(R) is also �xed via (22):I2(R) = NRNACR :For the vetor representations V of the lassial Lie algebras we �nd then I2(V ) = 12� for SU(N)and Sp(N), and I2(V ) = � for SO(N).There are (at least) two onsiderations that might lead to a hoie for �. First of all it is possibleto �x the onventions in suh a way that I2(R) is always an integer. This leads to the hoie � = 2.On the other hand there are standard hoies for the generators of SU(2) namely T a = 12�a (where�a are the Pauli-matries), and for SO(N), namely T ��ij = i(Æ�i Æ�j � Æ�j Æ�i ), where the pair �� with� < � represents an adjoint index. Unfortunately these two hoies orrespond to di�erent valuesof �, namely � = 1 for SU(2) and � = 2 for SO(N).2.8 Indies versus Casimir invariantsWe onlude this setion with a few historial remarks.A vast amount of literature exists on the omputation and properties of Casimir invariants.Most of these papers, [7-19℄, give more or less expliit expressions for the Casimir eigenvalues ofthe lassial Lie Algebras An; Bn; Cn and Dn and in one ase, [17℄, also for G2. In [22, 23℄ formulasfor G2 and F4 are obtained, whereas E8 was onsidered, up to order 14, in [25℄. The issue ofompleteness of a set of Casimir operators was studied in [20, 21℄.In appliations to Feynman diagrams indies are more important than Casimir invariants, be-ause traes over matter loops yield indies and sub-indies, and not Casimir invariants. Indieshave been disussed most frequently in relation to hiral anomalies. The seond index was intro-dued by Dynkin, [27℄, and generalized to higher order in [28℄. Shortly afterwards [6℄ it was realizedthat the de�nition of the indies ould be improved by imposing the orthogonality onstraint (21).In [6℄ formulas are given for the indies of lassial Lie algebras. Indies of exeptional algebras havebeen studied up to sixth order, mainly for the purpose of anomaly anellation in ten dimensions,9



relevant for string theory. Sub-indies, when de�ned in the orthogonal basis, an be expressed interms of indies. Unfortunately these relations are diÆult to obtain, and beome very ompliatedat higher orders unless some lower indies vanish. In [6℄ formulas for SU(n) have been given up to�fth order. We have omputed the sixth order formula, but the result is rather awkward and doesnot enourage extension to higher orders.Although, as explained above, indies are losely related to Casimir invariants, the availableformulas for the latter are of little use to us sine they do not use orthogonal tensors for thede�nition of the Casimirs. Even if they did, one would still need the normalization fator Nn, (23).The omputation of this fator for all Lie-groups and all values of n is a diÆult problem, relatedto the even more diÆult problem of determining the tensors da1:::an? expliitly. For reent progresson the latter problem for the lassial Lie algebras see [24℄. We do not present expliit expressionsfor the symmetri tensors here. Sine they always appear in ontrated form, we never need themexpliitly.Furthermore the Casimir eigenvalues give no information on sub-indies.3 Redution to symmetrized traesIn this setion we will disuss the redution of traes as they our in Feynman diagrams intothe invariants of the previous setion. This is by no means a trivial a�air beause the neessarysymmetrizations make that the algorithms typially involveO(n!) terms when there are n generatorsin the trae. It is therefore important to hoose the method arefully. We will have to distinguishtwo ases. In this setion we will make the redution of traes of the type Str T a1R : : : T anR inwhih R an be any representation with the exeption of the adjoint representation. In the nextsetion we will onsider suh traes for the adjoint representation. The speial role of the adjointrepresentation lies in the fat that, beause of the equation (3), the ommutation relation[T aA; T bA℄ = i fabT A (28)does not really diminish the number of generators of the adjoint representation. It is atuallyjust a di�erent way of writing the Jaobi identity. A related reason for onsidering the adjointrepresentation separately is that the redution of the other traes generates new struture onstants.We will ontinuously keep in mind that the algorithms we derive are for implementation ina symboli omputer program. This means that in many ases a reursion type algorithm maysuÆe, even though it may not be very pratial for hand alulations.3.1 First stage eliminationThe �rst part of the redution is dediated to the replaement of the traes over the generators TRby the invariants dR. For all representations exept for the adjoint this an be done in a generalalgorithm. One should realize however that for very ompliated traes the results may not be veryshort.In general a trae is not symmetrized. Therefore the introdution of the tensors dR needs somework with ommutation relations to make it symmetri. On the other hand, omputer algebra needsalgorithms that work from a formula, rather than towards one. Hene one an use the substitutionTr[T a1R � � � T anR ℄ = Tr[T a1R � � � T anR ℄� Str T a1R � � � T anR + da1���anR (29)Writing out the symmetrized trae will of ourse give n! terms, eah with a fator 1=n!. Then wean ommute the various T aiR T ajR till they are all in the order of the original trae after whih the n!10



terms with n generators will anel the original trae. At this point we are left with the symmetritensor dR and O(n n!) terms whih all have n � 1 generators. As a reursion it will eventuallyresult in terms with only two generators for whih we know the trae. This algorithm is howeverrather ostly when the number of generators inside the trae is large.The above formula has as its main bene�t that it proves that one an express a trae ofgenerators T of any representation R 6= A in terms of symmetrized traes and struture onstantsf . For pratial purposes we have a better algorithm. It is based on the formula:T fa1R � � � T angR T bR = nXj=0 (�1)jj! BjEa1���anbj (30)in whih Bj is the j-th Bernoulli number. ( B0 = 1, B1 = �1=2, B2 = 1=6 and B4 = �1=30) andthe funtion Ej is de�ned by the reursionEa1 ���an0 = T fa1R � � � T angR (31)Ea1���anbj = nXi=1Ea1���ai�1ai+1���ankj�1 ifaibk (32)Basially in the Ej one extrats a string of j struture onstants f . By writing out the funtionsEj one an show with some work that the proof of this formula is equivalent to proving the relationR0 = 1n+ 1B0 nXi=0Ri+ nXi=1 n!(n+ 1� i)! (�1)ii! Bi i�1Xj=0(�1)j (i� 1)!j!(i� 1� j)! (Rj + (�1)iRn�j) (33)This equation should hold for any positive value of n and any hoie of the Ri (The Ri representthe symmetri ombination of T i1 to T in with a T b inserted at i plaes from the right. Hene R0is the left hand side term of equation (30)). Atually the Ri are independent objets and hene wehave a set of equations eah of whih is haraterized by a value for n and the index j of Rj . Toprove the whole formula we have to prove that all of these equations are valid. We use the followingapproah: One an test their validity for any small value of n and all allowed values of j (omputeralgebra lets one hek this easily up to n = 100). Next one takes the speial ase of only R0 notequal to zero and the ase of only Rn not equal to zero. These are rather easy to prove. Then onetakes the ase for R1 not equal to zero. This is only a little bit more ompliated. Finally one anexpress the ase for other values of n and j in terms of the equation for n� 1; j � 1 and n; j � 1.This then ombines into a proper indution proof. The above formula an give some interestingsummations when one selets speial values for the Ri like Ri = xi after whih the inner sum anbe done.An important part in the appliation of equation (30) is how to terminate the reursion. Wenote that due to the yli property of traesTr hT fa1R � � � T angR T bRi = da1 ���anbR (34)Additionally we an terminate two ases in whih there are still two generators outside the sym-metrization: Tr [T a1R T a2R T a3R ℄ = da1a2a3R + i2fa1a2a3I2(R) (35)11



Tr hT fa1R T a2gR T a3R T a4R i = da1a2a3a4R + i2fa3a4kda1a2kR+ 112I2(R)(fa1a3kfa2a4k + fa1a4kfa2a3k) (36)All together this algorithm is far superior. For a trae of 7 generators TR all with di�erent indiesit is about 50 times faster than the one based on equation (29).Just as with traes of -matries one an make the algorithms muh faster with a number ofsupporting triks for ontrated indies. This is however not quite as simple as with -matries.When the ontrated indies are lose to eah other, we useT bRT aRT aRT R = CRT bRT R (37)T aRT bRT aR = (CR � 12CA)T bR : (38)The relation between I2(R) and CR is given by NRCR = I2(R)NA. Additionally we haveT a1R T a2R T bR � � � T RT a1R T a2R = T a1R T a2R T bR � � � T RT a2R T a1R � 12CAT a1R T bR � � � T RT a1R (39)And then for ontrated indies that are not very lose to eah other we an use:T jR � � � T aRT bRT jR = T jR � � � T aRT jRT bR + if bjT jR � � � T aRT R= T jR � � � T aRT jRT bR + if bjT jR � � � T RT aR � f bjfadT jR � � � T dR (40)We ommute the T R matrix also towards the T jR matrix beauseif bjT jRT R = i2f bj(T jRT R � T RT jR)= �12f bjf jdT dR= �12CAT bR (41)Hene we an always eliminate two generators TR when there is a pair of ontrated indies. Someterms may however obtain two f -matries in exhange. The above equation shows also that thetrae of a string of generators of whih two generators are ontrated with the same strutureonstant f , will lead to simpli�ations by ommuting the two generators towards eah other. Inthis ase many of the terms that ome from a ommutator have just one generator fewer than theoriginal term.By now it should be lear why the adjoint representation annot be treated in exatly the sameway. Eliminating two generators at the ost of introduing two struture onstants f leaves us withexatly the same number of generators of the adjoint representation.We an use a few extra shortuts for simple ases to avoid the use of equation (30) in thoseases: Tr[T a1R T a2R T a3R ℄ = da1a2a3R + i2I2(R)fa1a2a3Tr[T a1R T a2R T a3R T a4R ℄ = da1a2a3a4R + i2(da1a4nR fa2a3n � da2a3nR fa1a4n)+16I2(R)(fa1a4nfa2a3n � fa1a2nfa3a4n) (42)12



To get the last equation into its minimal form we have used the Jaobi identities:0 = f i1i2jf i3i4j + f i2i3jf i1i4j + f i3i1jf i2i4j0 = di1i2jf i3i4j + di2i3jf i1i4j + di3i1jf i2i4j (43)It is possible to reate similar shortuts for the higher traes. This serves however not muhpurpose. The majority of ases involves short traes and these expressions are rather lengthy.4 Redution of adjoint traesAt this stage we have only tensors of the type dR and struture onstants f left as objets withindies. All these indies are indies in the adjoint spae and hene all have NA dimensions.Additionally there an be various onstants like the seond order Casimir's and the seond orderindies I2(R), but these do not play a role in the following.For the other representations the loops that de�ne the trae were rather easy to �nd. For theadjoint representation this is more ompliated: all three indies of the struture onstant f anplay a role and hene there are more possibilities. The advantage is that very often one an �nd`smaller' loops. If for instane we have a diagram that onsists of only verties in the adjointrepresentation and there are no loose ends we have the results of table 2 in whih `girth' is the sizegirth 2 3 4 5 6 7 8 9nmin 2 4 6 10 14 24 30 54Table 2: Minimum number of verties needed for a diagram with a given smallest loop.of the smallest loop in the diagram and nmin is the minimal number of verties needed to onstrutsuh a diagram. Of ourse in mixed diagrams in whih other representations are involved one anget loops in the adjoint representation that have up to n=2 verties if n is the total number of vertiesin the diagram. Suh would be the ase of there is one loop of n=2 verties in a representation Rand a parallel loop of adjoint verties. But in that ase the loop is easy to �nd, and the symmetryof the invariant dR that is present already makes the introdution of the dA into a triviality: dueto its ontration with dR the trae over the adjoint generators has already been symmetrized.Let us �rst have a look at the anonial redution algorithm of equation (29). At �rst one mightbe worried that it will not terminate for the adjoint representation. After all it does not diminishthe number of struture onstants f . One an see quikly however that the ommutator terms havea simpler loop struture. Hene eah term will end up having a number of f 's grouped into aninvariant or have a loop with fewer f 's even though the total number of f 's is still the same. Onewe have a loop with at most three struture onstants it an be redued with the equationf i1i2a1f i2i3a2f i3i1a3 = 12CAfa1a2a3 (44)whih an be derived from the Jaobi identity. Hene in all ases the number of struture onstantsf will beome less. Similarly the algorithm of equation (30) will redue a number of generators ofthe adjoint representation to a symmetrized trae and a smaller number of struture onstants f .Hene also this algorithm will terminate.It is however possible to be more eÆient about the redutions inside the adjoint representation.Our �rst observation is that for loops with an odd number of verties in the adjoint representationreverting the order of the verties gives a minus sign. Hene the fully symmetri objet with an13



odd number of indies must be zero. And beause of this we do not need a full symmetrization toexpress loops with an odd number of indies. For example for �ve indies we writeF i1i2i3i4i5 = �F i5i4i3i2i1= �F i1i5i4i3i2= �F i1i2i3i4i5 + F ki4i3i2f i1i5k+F i1i4ki5f i3i2k + F i1i3ki5f i4i2k + F i1i2ki5f i4i3k (45)in whih F represents the trae over a number of f 's. Its di�erene with a trae over the TA-generators (3) is just powers of i. Similarly one an use the reversal symmetry for traes of an evennumber of f 's to redue the amount of work by a fator two.Beause of the above simpli�ations the eÆieny of the two algorithms ((29) and (30)) is notvery di�erent for the adjoint representation.The redution algorithm should be lear now. One looks for the smallest loop among thevarious f 's. Suh a loop will not have ontrated indies, beause otherwise there would be asmaller loop. Hene we do not have to worry about ontrated indies as we had to do for the otherrepresentations. If the loop has only two or three f 's, we an eliminate it with either equation (11)or equation (44). Otherwise we an use a simpli�ed version of the anonial redution algorithm ofequation (29) to obtain an invariant and terms with a simpler loop. Atually the fastest way hereis to tabulate this redution all the way up to loops with 7 f 's. For loops of 8 or more verties inthe adjoint representation we use an adapted version of equation (30).5 Computation of symmetrized traesAt this point our group theory fators onsist of ombinations of struture onstants, symmetrizedtraes da1 ;:::;anA over the adjoint representation, and symmetrized traes over one or more otherirreduible representations. We will now show how suh traes an be expressed in terms of rtraes over a single representation, where r is the rank of the algebra.As explained in setion 2, in priniple there are three quantities one might be interested in:Casimir invariants, indies and symmetri tensors.The results presented here amount to a omputation of the oeÆients of ombinations offundamental traes appearing in the expansion of a trae in an arbitrary representation. In otherwords, we ompute indies and sub-indies (but, as explained in setion 2, the latter are basis-hoiedependent).With our method these quantities an rather straightforwardly be omputed to any desiredorder, and for any representation of any Lie algebra. To demonstrate this we will ompute all theindies for the lowest-dimensional representations of the exeptional algebras, inluding the 30thindex of E8.The method we follow here is an extension of results of [26℄ (where it was used to obtain the"ellipti genus" in string theory), whih in its turn was an extension of results presented in [6℄(where it was used for omputing the indies of the lassial algebras).5.1 CharatersAn extremely useful tool for omputing traes are the haratersChR(F ) = Tr eFR (46)14



where FR = F aT aR. Hene the expansion of the exponential gives us all symmetrized traes in termsof the polynomials de�ned in equation (14). What makes the haraters espeially useful is theirtensor property ChR1
R1(F ) = ChR1(F )ChR2(F ) ; (47)whih follows diretly from its de�nition. In addition haraters are ombinations of traes andtherefore also have nie properties on diret sumsChR1�R1(F ) = ChR1(F ) + ChR2(F ) : (48)With a little more e�ort one an also derive a formula for haraters of symmetrized and anti-symmetrized tensor produts [29℄. These formulas an be derived from the following generatingfuntions 1Xk=0xkCh[k℄�R(F ) = det(1 + xeFR) = 1Yl=1 exp(�(�x)lChR(lF )) (49)1Xk=0xkCh(k)�R(F ) = det(1� xeFR)�1 = 1Yl=1 exp((x)lChR(lF )) : (50)Here [k℄ denotes the order k anti-symmetri tensor produt of some representation R, and (k) theorder k symmetri produt. We use the notation [k℄ �R or (k) �R to denote the anti-symmetrizedor symmetrized tensor produt of the representation R. Note that the sum in equation (49) is infat always �nite.The generating funtions an be expanded expliitly to obtainCh[k℄�R(F ) = � Xfni;migk=nimi Yi 1mi! ��ChR(niF )ni �mi (51)Ch(k)�R = Xni;mik=nimi Yi 1mi! �ChR(niF )ni �mi ; (52)where the sum is over all partitions of the integer k into di�erent integers ni, eah appearing withmultipliity mi.5.2 Charater omputation methodOur method for omputing the haraters is as follows. We begin by hoosing a referene repre-sentation, whih in all ases is the one of smallest dimension. The referene representations wehoose for the simple Lie algebras are shown in table 3. (the last olumn of this table is explainedlater) Note that for SO(N) the referene representation is the vetor representation for N � 7,but for lower values of N it is a spinor representation. Another way of saying this is that we treatSO(N); N � 6 aording to the Lie-algebra isomorphisms D3 � A3, B2 � C2 and B1 � A1. Thelast olumn of table 3 is disussed below. The algebras B3; B4;D4 and D5 are listed separatelybeause, although they have the \standard" referene representation, they have non-standard indexnormalizations.For the referene representation the harater is left in the formCh(F ) = Tr eF ; (53)All traes whose order does not appear in table 1 an be expressed in terms of lower traes. Heneequation (53) must be supplemented by trae identities for those traes. These trae identities will15



Algebra Referene representation Dimension IndiesAr (1; 0; : : : ; 0) r + 1 1; : : : ; 1B1 (1) 2 1B2 (0,1) 4 1,1B3 (1,0,0) 7 2,2,1B4 (1,0,0,0) 9 2,1,1,2Br; r � 5 (1; 0; : : : ; 0) 2r + 1 2; 1; : : : ; 1Cr (1; 0; : : : ; 0) 2r 1; : : : ; 1D3 (0; 0; 1) 4 1,1,1D4 (1; 0; 0; 0) 8 2,2,1,0D5 (1; 0; 0; 0; 0) 10 2,1,1,2,0Dr; r � 3 (1; 0; : : : ; 0) 2r 2; 1; : : : ; 1; 0G2 (0; 1) 7 2,1F4 (0; 0; 0; 1) 26 6,1,1,1E6 (1; 0; 0; 0; 0; 0) 27 6,1,1,1,1,1E7 (0; 0; 0; 0; 0; 1; 0) 56 12,1,1,1,1,29,1229E8 (1; 0; 0; 0; 0; 0; 0; 0) 248 60,1,1,1,1,41,199,61Table 3: Referene representations, dimensions and indies.be derived below. The remaining traes will be alled \fundamental" and equation (53) is taken tobe the de�nition of the orresponding polynomials and symmetri tensors. This then de�nes a setof referene tensors: da1:::;anr = Str T a1r : : : T anr (54)where n is the order of a fundamental Casimir operator. The preise form of this tensor, orequivalently the preise form of the fundamental polynomials Tr F n depends on the details of theLie algebra basis hoie, but will never be needed.Any other harater is now written in terms of traes of F n over the referene representation,using all available trae identities. By di�erentiating with respet to F (.f. eq. (19)) one an thenread o� the expression of any dR in terms of referene tensors.This fails if the referene representation has an index that is zero. This happens only for thenth index of the algebra Dn, and we will deal with that ase separately.The next step is to express the haraters of all \basi" representations in terms of the refereneharater. The ith basi representation is de�ned by Dynkin labels aj = Æij , j = 1; : : : ; r. Themost important tool for obtaining these haraters is equation (51). This yields all fundamentalrepresentations of the algebras Ar and Cr, whereas for the orthogonal groups only the spinorrepresentations are still missing. The spinors, as well as the basi representations of the exeptionalalgebras, require some extra work, and are disussed below.Finally one an ompute the haraters of all other representations by using in a systematiway the sum rule for tensor produts. It an be proved that for any simple Lie-algebra this allowsone to relate the haraters of all other irreps linearly to those of the basi ones. In priniple thisstill allows for the possibility that ompliated linear equations need to be solved. We �nd however,that one an organize the tensor produts in suh a way that only one unknown harater appearsat every step. This an be proved for the lassial Lie algebras (see below), and we have hekedit empirially for the exeptional ones.
16



Let us ontrast this proedure with the omputation via Weyl's harater formulaCh�(h) = Pw2W �w exp(w(� + �); h)Pw2W �w exp(w(�); h) (55)where � is the highest weight of a representation, the summation is over all elements w in the Weylgroup W , �w is the determinant of w, � is the Weyl vetor (with Dynkin labels all equal to 1), andh is a vetor in weight spae, whih plays the rôle of F in the foregoing disussion. One obviousdisadvantage of this formula is the summation over all elements of the Weyl group, although thisis still manageable in most ases of interest. A less obvious disadvantage is that numerator anddenominator both have a zero of order N+, the number of positive roots, in h. For example, toobtain the highest non-trivial Casimir eigenvalue of E8, whih is of order 30, one needs to expandnumerator and denominator to order N+ + 30 = 150. This is an impossible task. The methodskethed above, and worked out below, does allow an expansion of the harater to order 30, evenfor E8.An important ingredient in our proedure is obviously the omputation of tensor produts.Coneptually this is ertainly not easier than the omputation of haraters, but nowadays omputerprograms exist that an do this very eÆiently.4 Rather than using haraters (and in partiularindex sum rules) to ompute tensor produts, it is then more eÆient to use tensor produtsto ompute haraters. The proedure desribed here requires just a small e�ort to omputethe haraters of the basi representations up to a ertain desired order. The omputation ofthe harater of any other representation is then just a matter of simply polynomial operations(multipliations, additions and subtrations whih an be eÆiently performed by any symbolimanipulation program, suh as FORM) guided by the output of a program that omputes tensorproduts.5We will now disuss the various types of algebras in more detail.5.3 Ar haratersLet us now apply these tools �rst of all to Lie algebras of type Ar (SU(r + 1)). For the referenerepresentation we hoose the vetor representation (r + 1). Using equation (49) we an thenimmediately write down the haraters for all the anti-symmetri tensor produt representations[k℄. In terms of Dynkin labels these are all the representations with labels (0; : : : ; 0; 1; 0; : : : ; 0), i.e.a single entry 1. These are preisely the basi representations.Now we an systematially use the tensor produt rule (47) and the sum rule (48) to obtainharater formulas for all other irreduible representations. IfR1 
R2 =Xi �niRi (56)then ChR1(F )ChR2(F ) =Xi niChRi(F ) (57)By omputing the produt of two known haraters and subtrating the known haraters on theright hand side one is left with the harater of some (in general reduible) representation, whihis thereby determined.4We have used the programs LiE [30℄ that omputes tensor produts of Lie-algebra representations diretly andKa [31℄ that uses the Verlinde formula to ompute fusion rules of Ka-Moody algebras. A subset of these fusion rulesoinides with tensor produt rules, and it turns out that this preisely inludes the tensor produt rules we need.5We have implemented this idea in the program Ka. The results in the appendix were produed in that way. Ata given Ka-Moody level, the fusion rules that oinide with tensor produts are found to be suÆient to obtain theharaters of all representations at that level. For examples and software see http://norma.nikhef.nl/pub/�t5817



To show how this works we label the SU(r + 1) irreps by Young tableaux and assign a partialordering to them. We use Young tableaux beause for Ar they provide a onvenient desription ofthe tensor produt rule. A Young tableau is ordered above another one if it has more olumns; ifthe number of olumns is the same the one with the largest last olumn is ordered above the otherone. Suppose now that we know the haraters of all representations ordered below a representationR with Young tableau [k1; : : : ; kl℄. Consider then the tensor produt [k1; : : : ; kl�1℄
 [kl℄. Both areordered below R and hene their haraters are known aording to our assumption. The tensorprodut yields [k1; : : : ; kl℄ plus representations ordered below [k1; : : : ; kl℄, and hene we an nowdetermine the harater of R. Proeeding like this we an systematially ompute all haraters.Not only the haraters, but also the trae identities for Ar were obtained in [26℄Xfni;migk=nimi Yi 1mi! ��Tr F nini �mi = 0 (k > r + 1) ; (58)where the summation is as in equation (51). This result was obtained from equation (51) using thefat that for Ar anti-symmetri tensors of rank larger than the rank of the algebra are trivial.To illustrate this let us return to the Weyl formula, equation(55). For A1 this yields a verysimple result for a representation of spin j:Chj(h) = sinh((2j + 1)h)sinh(h) (59)Expanding this for the spin-12 representation (j = 12) we getCh12 (h) = 2 + h2 + 112h4 + 1360h6 + : : : (60)The spin-12 representation serves as the referene representation in our method. Hene its harateris Tr eF = 2 + 12(TrF 2) + 124(TrF 4) + 1720(TrF 6) + : : : (61)Using the SU(2) trae identities (58) Tr F 4 = 12(TrF 2)2 andTr F 6 = 6(� 148((TrF 2)3) + 18(TrF 2)(TrF 4)= 14(TrF 2)3 (62)we arrive at the answer Tr eF = 2 + 12(2h2) + 124(2h4) + 1720(2h6) + : : : (63)were we substituted F = h�3, so that Tr F 2 = 2h2 (Obviously we ould have substituted thediagonal form of F diretly in equation (61), but the use of trae identities is far more onvenientfor larger algebras).Clearly the equations (59) and (63) agree, as expeted. However, the way the agreement omesout is not entirely trivial (although it an easily be derived). Note in partiular that the Weylformula is a priori expressed in terms of only r variables, so that all trae identities are alreadybuilt in. On the other hand, in writing down the formal expression Tr eF there is no need to18



speify the number of variables, and indeed the formula is the same for any algebra. The non-trivial group struture is thus enapsulated in the trae identities. It is instrutive to ompare thetwo formulations also for other representations.In this ase the Weyl formula is superior in elegane and simpliity, although it is somewhatmore diÆult to expand to higher orders due to its denominator. For higher rank groups the Weylformula beomes extremely umbersome, as explained earlier, while our method does not grow inomplexity.5.4 Br haratersThe basi representations are the anti-symmetri tensors of rank 1 : : : ; r� 1 plus the spinor repre-sentation. The haraters of the anti-symmetri tensors are related to the vetor harater as in thease of Ar. The spinor harater an be expressed in terms of traes of the vetor representationby expliit omputation. The result is [26℄Ch(0;:::;0;1)(F ) = 2r exp " 1Xn=1 (22n � 1)B2n4n(2n)! Tr F 2n# ; (64)where B2n are the Bernoulli numbers.For algebras of type Br the same trae identity as for Ar holds, but with order k > 2r+1. Thisis true beause of the embedding Br � A2r. All traes of odd order vanish trivially.The demonstration that the other haraters an be obtained reursively from the tensor produtrule is similar as for Ar, with some ompliations due to the spinors. We will omit the details (andthe same holds for Cr and Dr).5.5 Cr haratersThe fundamental representations are the anti-symmetri tensors of rank l = 1 : : : ; r with a sym-pleti trae removed. The harater of the fundamental representation l is equal to the lth anti-symmetri tensor power of the vetor harater minus the (l � 2)th anti-symmetri power of thevetor harater (if l � 2).The Cr trae identities an be derived using the embedding Cr � A2r�1, whih leads to traeidentities for traes of order k > 2r. Just as for Br, the odd traes vanish.5.6 Dr haratersThe fundamental representations are the anti-symmetri tensors of rank l = 1 : : : ; r � 2 plus thetwo onjugate spinor representations. The anti-symmetri tensor haraters are omputed as forBr, but the spinor haraters annot be expressed ompletely in terms of traes over the vetorrepresentation. This is beause there exists a symmetri tensor of rank r whih never appearsin traes over the vetor representation, namely the Levi-Civita tensor. This tensor is an anti-symmetri tensor of rank 2r with vetor indies. Combining the 2r vetor indies in pairs, witheah pair labelling an element of the adjoint representation, we an view the Levi-Civita tensoralso as a symmetri tensor of rank r with adjoint indies.Using this new invariant, we an write down the spinor harater:Ch(0;:::;1;0)(F ) = 2r�1 exp " 1Xn=1 (22n � 1)B2n4n(2n)! Tr F 2n#+ 1r!�r(F ) exp " 1Xn=1 B2n4n(2n)!Tr F 2n# (65)19



Ch(0;:::;0;1)(F ) = 2r�1 exp " 1Xn=1 (22n � 1)B2n4n(2n)! Tr F 2n#� 1r!�r(F ) exp " 1Xn=1 B2n4n(2n)!Tr F 2n# : (66)where 1r!�r(F ) is a polynomial of order r in F de�ned by the leading term in the di�erene of theseexpressions. It is proportional to the Levi-Civita tensor with indies pairwise ontrated with F a.The preise de�nition of the tensor is given in appendix E.The trae identities forDr are as those for Br for k > 2r. However, due to the extra fundamentaltrae of order r, there must be an additional trae identity to redue the number of independentones bak to r. Indeed, it turns out the the trae of order 2r an be eliminated using the identityXni;minimi=2r Yi 1mi! ��Tr F ni)ni �mi = 4(�1)r [ 1r!�r(F )℄2 (67)This identity was also obtained in [26℄ (the oeÆient on the right hand side is inorret in [26℄).5.7 G2 haratersExeptional group haraters an be omputed by expressing them in terms of haraters of aregular subalgebra. Sine the subalgebra has the same rank, one gets polynomials in the samenumber of variables and hene no information is lost. For G2 the only option is the subalgebra A2.We have ChG2;7 = ChA2;3 +ChA2;�3 +ChA2;1 ; (68)denoting representations by their dimension and omitting the argument F . Sine all G2 represen-tations are real, the third order invariant of A2 is always anelled out, and all other odd invariantsvanish as well. The fourth order invariant an be expressed in terms of seond order ones usingthe A2 trae identity. The sixth order invariant of A2 an be expressed in terms of lower ones, butthis expression involves the third order invariant whih doesn't exist in G2. Hene in G2 the sixthorder invariant is new. After a little algebra we an write the referene harater of G2 asChG2;7 = 7 + 12Tr F 2 + 14! 14(Tr F 2)2 + 16!Tr F 6 + 18! [23(Tr F 2)(Tr F 6)� 5192(Tr F 2)4℄ + : : : (69)Here all expliit traes are over the referene representation (0; 1) of dimension 7. The haraterof the other fundamental representation, (1,0) of dimension 14 is easily omputed from the anti-symmetri tensor produt (7
 7)A = (7) + (14). Expliitly:ChG2;14 = 14 + 12!4Tr F 2 + 14! 52(Tr F 2)2 + 16! [�26Tr F 6 + 154 (Tr F 2)3℄+ 18! [�1603 (Tr F 2)(Tr F 6)� 51596 (Tr F 2)4℄ + : : : (70)Note that all traes here are over the referene representation. From this expression we read o�the seond and sixth indies of the representation (14): they are 4 and �26 respetively.Sine the (7) of G2 an be embedded in the vetor representation of SO(7), G2 inherits all B3trae identities for traes of order 8 and higher. There is an additional trae identity for the fourthorder trae, whih an be read o� diretly from ChG2;7:Tr F 4 = 14(Tr F 2)2 (71)This exhausts the set of trae identities for G2. 20



5.8 F4 haratersThe omputation is similar to the previous ase, now using the sub-algebra B4. We haveChF4;26 = ChB4;16 +ChB4;9 +ChB4;1 (72)The vanishing of the fourth order invariant is not obvious in this ase, but follows easily. The sixthand eight order polynomials are diretly related to those of B4. The tenth order one vanishes againby inspetion (i.e. the tenth order trae an be expressed in terms of B4 traes of order 2,6 and 8,but not 4), and the twelfth order trae involves the third power of the fourth order polynomial ofB4, whih did not our before. It is absorbed in the de�nition of Tr F 12, the 12th order term inChF4;26 (up to a fator 112!). To obtain the harater of (1; 0; 0; 0) (dimension (52)) we useChF4;52 = ChB4;36 +ChB4;16 (73)and we express all B4 traes into F4 traes using the de�nitions introdued when omputing 72. Theother haraters of basi representations an be obtained from the anti-symmetri tensor produtsChF4;273 = ChF4;[2℄�26 � ChF4;52 (74)ChF4;1274 = ChF4;[3℄�26 � ChF4;52ChF4;26 +ChF4;26 (75)The last identity involves a little algebra. In the third order anti-symmetri tensor power of(26) ours, in addition to (1274) also the representations (273) and (1053) (with Dynkin labels(1,0,0,1)). The former harater is known, the latter an be omputed using the tensor produt(26) 
 (52).Of ourse the haraters of (273) and (1274) an also be omputed using the B4 embedding.We have used this as a hek.Just as for G2 one may read o� the Dynkin indies from the haraters. They are shown in theappendix. Furthermore there are trae relations for traes of fourth and tenth order whih are reado� from Ch(26). By expanding the haraters to suÆiently high order one obtains trae identitiesfor traes of order 14 and higher. The embedding F4 � D13 gives trae identities for all traes oforder 26 and higher, namely preisely those of D13. We will only present the identities for orderslower than that of the maximal Casimir operator.5.9 E6 haratersHere we used the sub-algebra A1�A5, and the deompositionsChE6;27 = ChA1;2ChA5;�6 +ChA5;15 (76)ChE6;78 = ChA1;2 +ChA5;35 +ChA1;2ChA5;20 (77)The omputation is very similar to the previous ases. We get another basi representation, the(27), by onjugation: ChE6;27(F ) = ChE6;27(�F ) : (78)Furthermore the anti-symmetri tensor power of order 2 gives us the representations (0,1,0,0,0,0)(351) and (0,0,0,1,0,0) (351) and the order three anti-symmetri power yields preisely the repre-sentation (0,0,1,0,0,0) (2925).The indies and trae identities for orders up to 12 are listed in the appendix.21



5.10 E7 haratersHere we used the sub-algebra A7, and the deompositions or anti-symmetri tensor produtsChE7;56 = ChA7;28 +ChA7;28 (79)ChE7;133 = ChA7;70 +ChA7;63 (80)ChE7;912 = ChA7;420 +ChA7;420 +ChA7;36 +ChA7;36 (81)ChE7;1539 = ChE7;[2℄�56 � ChE7;1 (82)ChE7;8645 = ChE7;[2℄�133 � ChE7;133 (83)ChE7;27664 = ChE7;[3℄�56 � ChE7;56 (84)ChE7;365750 = ChE7;[4℄�56 � ChE7;1539 � ChE7;1 (85)5.11 E8 haratersHere we used the sub-algebra D8, andChE8;248 = ChD8;128 +ChD8;120 (86)ChE8;3875 = ChD8;1920 +ChD8;1820 +ChD8;135 (87)ChE8;147250 = ChD8;60060 +ChD8;56320 +ChD8;15360+ChD8;7020 +ChD8;6435 +ChD8;1920 +ChD8;135 (88)ChE8;30380 = ChE8;[2℄�248 � ChE8;248 (89)ChE8;2450240 = ChE8;[3℄�248 � (ChE8;248)2 +ChE8;248 (90)ChE8;6696000 = ChE8;[2℄�3875 � ChE8;3875(ChE8;248 � 1) + ChE8;147250 (91)ChE8;146325270 = ChE8;[4℄�248 � (ChE8;[2℄�248 � ChE8;248)(ChE8;248 � 1) (92)ChE8;6899079264 = ChE8;[5℄�248 � ChE8;248(ChE8;[3℄�248 � 2ChE8;[2℄�248 +ChE8;248 � 1) (93)In the �rst three lines all D8 spinor representations must be from the same onjugay lass, whihis �xed by the deomposition one hooses for the (248). Sine the hoie one makes for the lassis irrelevant, there is no need for a label to distinguish onjugate spinors. The representation(6435) is an (anti-)selfdual tensor. It belongs to the trivial onjugay lass, but it does arry anon-trivial hirality. If for the representation denoted (128) we hoose the one with Dynkin labels(0; 0; 0; 0; 0; 0; 0; 1), then the orret set of Dynkin labels for the 6345 is (0; 0; 0; 0; 0; 0; 2; 0).5.12 Normalization of indiesThe normalization of the symmetri tensors is �xed by �xing a normalization for the indies. Wewill do this in suh a way that they are always integers, as the word \index" suggests. For the seondindex there is a natural normalization in terms of the Atiyah-Singer index theorem for instantonson S3. For any representation of any algebra we an hoose the seond index equal to the netnumber of zero modes of a Weyl fermion in that representation in an instanton �eld of minimalnon-trivial topologial harge (where \net" means the di�erene between the two hiralities). Thenthe seond index is equal to 1 for the referene representations of Ar and Cr, 2 for those of Br andCr, and 2,6,6,12,60 respetively for the referene representations of G2; F4; E6; E7 and E8. For theadjoint representation the seond index is always equal to twie the dual Coxeter number g listedin table 1. This hoie orresponds to setting � = 2 in (27). This value of � was used in the lastolumn of table 3. 22



For the higher indies there is a similar topologial interpretation in terms of gauge bundleson higher dimensional manifolds, but we will not explore that here in detail. One may howeverfollow the spirit of suh an interpretation and de�ne all higher indies in suh a way that they areintegers. This is automatially true if they are integers for the basi representations, beause theharaters of all representations are polynomials with integer oeÆients in terms of the haratersof the basi representations. Furthermore, within the set of basi representations the ones obtainedby means of anti-symmetri tensor produts of a given representation R, have indies that are aninteger multiple of those of R. Then only the spinor representations of SO(N), one representationof F4, E6 and E7 and two of E8 require speial attention.For the referene representations we hoose all higher indies equal to 1, exept when a largerinteger is required to make all indies integral. The 2nth index of a spinor representation of SO(N)follows diretly from the harater equations (64), (65) and (66):dim(S)(22n � 1)B2n4n ; (94)where dim(S) is the dimension of a spinor representation, i.e. dim(S) = 2r for algebras of typeBr(SO(2r+1) and dim(S) = 2r�1 for type Dr(SO(2r)). This assumes that the (2n)th index of thevetor representation is set to 1. By inspetion, this expression is an integer exept for the fourthindex for SO(N); N � 8 and the eighth index for N � 10. We have heked that the spinor indexis an integer in all other ases for 2n < 100. Table 4 gives the indies for the SO(N) vetor andspinor representations, aording to our normalization (the index ~Ir is not listed here; its valueis 0 for the vetor representation and hosen �1 for the two fundamental spinors of SO(N), Neven). Note that for N = 3; : : : ; 6 the spinor representation, and not the vetor is the referenerepresentation, whih automatially leads to the entries in the table.N I2 I4 I6 I8 I10 I12 I143 4,1 | | | | | |4 4,1 | | | | | |5 2,1 -4,1 | | | | |6 2,1 -4,1 | | | | |7 2,2 2,{1 1,1 | | | |8 2,2 2,{1 1,1 | | | |9 2,4 1,{1 1,2 2,{17 | | |10 2,4 1,{1 1,2 2,{17 | | |11 2,8 1,{2 1,4 1,{17 1,124 | |12 2,8 1,{2 1,4 1,{17 1,124 | |13 2,16 1,{2 1,8 1,{34 1,248 1,{2764 |14 2,16 1,{4 1,8 1,{34 1,248 1,{2764 |15 2,32 1,{4 1,16 1,{68 1,496 1,{5528 1,8737616 2,32 1,{8 1,16 1,{68 1,496 1,{5528 1,87376Table 4: Indies for the SO(N) vetor and spinor representations. The hiral index ~Ir is notlisted here; we hoose it equal to +1 for the fundamental spinor (0; : : : ; 1; 0) and equal to �1 for(0; : : : ; 0; 1).For the exeptional algebras the two highest indies of E7 and the three highest ones of E8ome out frational unless we hoose a di�erent normalization for the referene representation.Our preferred index normalization for the referene representations is summarized in the lastolumn of table 3. For SO(2N) the last entry indiates the index ~IN of the spinor representation23



(0; : : : ; 1; 0). Only the seond index is a�eted by the hoie of �. For all higher order traes we�x the normalization of the index, and then the �-dependene goes into the normalization of thesymmetri tensor.This also �xes the normalization of all symmetri tensors asStr T a1r : : : T anr = In(r)da1:::an : (95)This de�nes the tensors given a hoie of generators in the referene representation.In Appendix D we present some results for ontrations of these tensors.6 Redution identitiesAt this stage we have terms that ontain ombinations of the invariants dr and the strutureonstant f . Our task is now to eliminate f from the terms as muh as possible, and redue thetotal number of invariants in the �nal answer.Unlike the results obtained so far, for these redutions we annot give a general algorithm. Infat, we do not even know what the desirable outome is, sine we are not aware of a mathematialtheorem that gives us a basi set of invariants in terms of whih all others an be expressed. Atany given order we an derive large numbers of identities among the various invariants, but therewill be new relations at every order. In pratie this is not a major problem. First of all we haveobtained results relevant for vauum bubble Feynman diagrams of up to nine loops, and seondlythe number of invariants we are left with is small, although possibly not minimal.The most useful identities for doing this are the Jaobi identities. Thus far we have seen twoof them in equation (43). The seond equation there an be generalized into0 = Xyli permutations of i1���in di1���in�1aR f inba (96)for all representations R, inluding the adjoint representation. In fat, there is an advantageto postponing the replaement of the adjoint symmetri tensors by referene tensors, sine theysatisfy additional identities. Furthermore some identities produe new tensors dA. For this reasonwe present the results in terms of dR and dA rather than dr.The �rst identity that an be derived from this is one for invariants with three indies:dabiR fajf bl = 12CA dijkR (97)It is atually the simplest identity in a lass of triangle redutions that involve one or two invarianttensors dR. We have alsodi1j1���jnk1R1 di2j1���jnk2R2 fk1k2i3 = 1NA 1n+ 1dj1���jn+2R1 dj1���jn+2R2 f i1i2i3 (98)di1j1���jnk1R1 di3���imj1���jnk2R2 fk1k2i2 = �1n+ 1dj1���jn+1kR1 di3���imj1���jn+1R2 fki1i2 (99)These identities are very powerful when a large number of invariants is involved.For showing further redution identities we will use a speial notation whih orresponds loselyto a notation that an be used inside a omputer program. We will represent a (symmetri) invariantby a produt of vetors: di1���inR1 = pi11 � � � pin1 (100)24



The lower index on the vetor refers to the partiular invariant. In this notation we have noproblems with the symmetri property of the invariants. Of ourse we are not implying that eahinvariant an be mathematially written this way. It is just notation.Additionally we will use Shoonship notation on ontrated indies. That is: if the index of avetor is ontrated with an index of a tensor we put the vetor in the plae of this index. Henefp1p2ifp1p2i(p1 � p2)n = di1���inj1j2R1 di1���ink1k2R2 f j1k1if j2k2i (101)Furthermore we an add a weight to eah formula. This weight is basially the number of verties(assuming that all verties are three-point verties) in the diagram before we started the eliminationproedures. For our urrent algorithms the weight is the total number of vetors pi plus the numberof struture onstants f . Hene the weight of the above formula is 2n + 6. We will present allredution identities that are relevant for weights up to 12. This orresponds to 7-loop vauumbubbles or 6-loop propagator diagrams. The derivation of all these identities involves the use ofthe generalized identity of equation (96).fp1p2ifp1p2i(p1 �p2)n = 1n+ 1 CA (p1 �p2)n+2 (102)fp1p2i1fp1p2i2fp1i1i3fp1i2i3(p1 �p2)n = 1n+ 1 dp1p1p1p2A (p1 �p2)n+1 (103)fp1p2i1fp1i1i2fp2i2i3fp1p2i3(p1 �p2)n = 56(n+ 1)(n+ 2) C2A (p1 �p2)n+3� 1n+ 1 dp1p1p2p2A (p1 �p2)n+1 (104)fp1p2i1fp1p2i2fp1p2i3f i1i2i3(p1 �p2)n = 0 (105)fp1p2i1fp1p2i1fp1p2i2fp1p2i2(p1 �p2)n = 2 n!(n+ 2)! dp1p1p2p2A (p1 �p2)n+2+(3n+ 1) n!3 (n+ 3)! C2A (p1 �p2)n+4 (106)fp1p2ifp1p2i(p1 �p3)(p2 �p3)n = 12 CA (p1 �p2)2(p1 �p3)(p2 �p3)n (107)fp1p2ifp1p3i(p1 �p2)(p2 �p3)n = 12 CA (p1 �p2)2(p1 �p3)(p2 �p3)n (108)fp1p2ifp1p3i(p1 �p2)(p2 �p3)(p1 �p3)n = CA2(n+ 1) (p1 �p2)2(p2 �p3)(p1 �p3)n+1 (109)fp1p2p3fp1p2p3(p1 �p2)(p1 �p3) = 14 CA (p1 �p2)2(p1 �p3)2(p2 �p3) (110)The equations with an odd number of f 's that are relevant are all zero. This has been expliitlyshown, but for many of them one an see this already on the basis of symmetry priniples.We are not going to present the identities that would be needed for diagrams of weight 14 or16. There would be too many of them and moreover, this is not how we have onstruted theomputer program. In the program we have found a way to apply equation (96) reursively in suha way that it redues all ombinations with the exeption of one (at weight 14). The program hasto guess at what ombination of invariants and f 's to take for the appliation of the formula andwe let it guess several times. In the end this overs all ases exept for the one that we annot doby these methods anyway.The �rst objet that auses some real problems beause the above algorithms are not suÆientto handle them, ours at weight 14. This objet an either be written asfp1p2p3fp1p2p3(p1 �p2)(p1 �p3)(p2 �p3) (111)25



or with some rewriting (and omitting trivial terms that are a byprodut of the rewriting):fp1p2ifp1p2i(p1 �p3)2(p2 �p3)2 (112)If at least two of the three invariants are in the adjoint representation this objet an be reduedwith the same tehnique that we use below to simplify some ombinations of invariants only (seeequation (119)).6.1 Combinations of invariantsHere we will onsider ombinations of invariants only. The easiest ombinations are full ontrationsbetween two invariants as in di1���inR1 di1���inR2 (113)Unfortunately, when the weight of the diagrams inreases, the omplexity of the ombinationsinreases orrespondingly. In some ases one an make redutions. For instane:dj i1���inR1 dk i1���inR2 = 1NA Æjkdi0i1���inR1 di0i1���inR2 (114)and hene da i1���inR1 db i1���inR2 da j1���jmR3 db j1���jmR4 = 1NA di0i1���inR1 di0i1���inR2 dj0j1���jmR3 dj0j1���jmR4 (115)but for objets of the type di1i2i3i4R1 di1i2i5R2 di3i4i5R3 (116)or di1i2i3i4i5R1 di1i2i3i6R2 di4i5i6R3 (117)there does not seem to be a general simpli�ation of this type. In the ase of all invariants belongingto the adjoint representation we an still do things as we see in the next formula:dabdefA dabdefA � 58dabdA ddefA defabA + 7240C2AdabdA dabdA + 1864C6ANA = 0 (118)The derivation of this formula is a matter of evaluating a irular ladder with 6 rungs in twodi�erent ways. In the �rst way one sees it as two loops with 6 verties, and in the seond way asthree loops with 4 verties. The algorithms of the previous setions are then suÆient to obtainthis formula. Note however that suh derivations usually need the use of a omputer program: theintermediate stages an ontain large numbers of terms. A similar tehnique an be used for theobjet in equation (112). We look at a irular ladder with 7 rungs. If we see this as three loopswith 4 verties (and two f 's left) we get the form of the equation, and if we see it as two loopswith 7 verties, we get a representation involving two dA invariants with 6 indies (the ones with7 indies are zero for the adjoint representation). The result is (after a rather lengthy alulation,applying equation (118) and normalizing):dabdR ddefA defghA fagif bhi + 227C3AdabdR dabdA�1915CAdabdR ddefA defabA + 89dabdefA dabgR ddefgA = 0 (119)with R replaed by A. Beause a similar exhange of the order of evaluation in one of the examplesbelow gives the same equation with a slightly extended generality we have already presented this26



more general form with the representation R. One an also derive this equation from equation(148), but the derivation of that formula uses basially the same tehnique.Considering that the algorithms we have presented an redue all ombinations of invariantsand f 's, with the exeption of the above ombination with at least two invariants not in the adjointrepresentation, up to weight 14 we have only a limited number of topologies (ontrations betweeninvariants) left. We will show them graphially, omitting the very trivial ones that an be reduedwith equation 114 and objets of the type daai1���inR . The elements of this pitorial language are= di1i2i3R= di1i2i3i4R= di1i2i3i4A= di1i2i3i4?= f i1i2i3= f i3i2i1 (120)in whih we assume the indies of f to run ounterlokwise in the diagram. For weight 6 we haved33(p1; p2) = dijkR1 dijkR2= 31 2 (121)For weight 8 there is also only one topology:d44(p1; p2) = 41 2 (122)For weight 10 there are two topologies:d55(p1; p2) = 51 2 (123)d433(p1; p2; p3) = 12 3 (124)For weight 12 we have 5 topologies: d66(p1; p2) = 61 2 (125)d633(p1; p2; p3) = 2 1 3 (126)d543(p1; p2; p3) = 12 3 (127)d444(p1; p2; p3) = 12 3 (128)d3333(p1; p2; p3; p4) = 12 34 (129)27



Finally for weight 14 we have 9 topologies:d77(p1; p2) = 71 2 (130)d743(p1; p2; p3) = 42 1 3 (131)d653(p1; p2; p3) = 31 24 (132)d644(p1; p2; p3) = 12 3 (133)d554(p1; p2; p3) = 31 2 (134)d5333(p1; p2; p3; p4) = 12 34 (135)d4433a(p1; p2; p3; p4) = 13 42 (136)d4433b(p1; p2; p3; p4) = 13 42 (137)d4433(p1; p2; p3; p4) = 13 42 (138)For weight 16 there are more than 20 non-trivial topologies. We will not show them here.In terms of these diagrams of invariants we an ompose a few extra equations that an be veryuseful: = 16C2A (139)i1i2 = (CR � 16CA) I2(R) Æi1i2 (140)= (CR � 14CA) (141)= (CR � 13CA) + 130I2(R) (142)= (CR � 512CA) + 112 (143)2 1 = �38CA 2 1 � 140I2(R1)C2A 2 + 1NR1 2 1 1 (144)2 1 = �12CA 2 1 + 1NR1 2 1 1 � 43120 1NA 2 1� 231440C2A 2 1 + 4960 1 2 (145)We assume symmetrization over the external legs in the terms of the right hand sides.28



One of the spin-o�s of equation (144) is2 1 3 = �38CA 12 3� 140I2(R1)C2A 2 3 + 1NR1 2 1 1 3 (146)This allows us to eliminate the topology d633 ompletely. For groups for whih dijk exists and I4(A)is not zero we an use the tehniques of the next setion to also eliminate the topologies d433, d4433aand d4433. Similarly equation (145) gives43 1 2 = �12CA 13 2+ 1NR1 2 1 41 3 � 43120 1NA 2 1 4 3� 231440C2A 31 2+ 4960 1 23 (147)and therefore also the topology d743 an be eliminated.An equation that is also rather interesting is1 = �191864C3A 1 + 95CA 1 � 119288C2A 1+32 1 + 34 1 (148)It an be used to derive equation (119), but it an also be useful for bigger diagrams. It is derivedby writing a diagram with 10 f 's into loops in two di�erent ways. After that the appliation of theredution algorithms and some rewriting leads to this formula.7 Representation independent invariantsThe invariants that we have used thus far were only symmetrized traes. It is possible to de�ne anew set of invariants that is not only symmetri, but also orthogonal (see equation (21)). Beausethe invariant with two indies is proportional to the Kroneker delta in the adjoint spae, thismeans for instane that these invariants have a zero trae (a ontration of any two indies giveszero). But also ontrations with all the indies of invariants with fewer indies than the invariantunder study should give zero. For most algebras we an de�ne (the exeptions are ertain SO(4N)algebras with two independent tensors of order 2N):di1i2i3R = I3(R) di1i2i3? (149)di1i2i3i4R = I4(R) di1i2i3i4? + I2;2(R) (Æi1i2Æi3i4 + Æi1i3Æi2i4 + Æi1i4Æi2i3)=3 (150)di1i2i3i4i5R = I5(R) di1i2i3i4i5? + I3;2(R) (di1i2i3? Æi4i5 + � � �)=10 (151)di1i2i3i4i5i6R = I6(R) di1i2i3i4i5i6? + I4;2(R) (di1i2i3i4? Æi5i6 + � � �)=15+I3;3(R) (di1i2i3? di4i5i6? + � � �)=10 + I2;2;2(R) (Æi1i2Æi3i4Æi5i6 + � � �)=15 (152)di1i2i3i4i5i6i7R = I7(R) di1i2i3i4i5i6i7? + I5;2(R) (di1i2i3i4i5? Æi6i7 + � � �)=21+I4;3(R) (di1i2i3i4? di5i6i7? + � � �)=35 + I3;2;2(R) (di1i2i3? Æi4i5Æi6i7 + � � �)=105(153)and higher ones are de�ned analogously. The omposite onstants like I2;2(R) an now be derivedby the orthogonality onditions. When we multiply equation (150) by Æi3i4 we obtainNA + 23 I2;2(R)Æi1i2 = di1i2i3i3R29



= (CR � CA=6)di1i2R= (CR � CA=6)I2(R)Æi1i2NA + 23 I2;2(R) = (I2(R)NANR � 16I2(A))I2(R) (154)Similarly we an derive I3;2(R) = 10NA + 6(CR � 14CA)I3(R) (155)For the next level of onstants we get oupled equations. The easiest way to derive them is withthe use of the equations (142) and (146). If we ontrat the �rst equation one with di1i2i3i4? andone with Æi1i2Æi3i4 and substitute equation (152) in all three of the equations that we obtain thisway we have enough to ome to a solution. Unfortunately this solution is not very elegant. Inmany ases one an make simpli�ations. For instane one an write (using equation (139))= 16C2A= I4(A) + 23I2;2(A) (156)whih then redues to I4(A) = 16C2ANA � 8NA + 2 (157)We notie that whenever I4(A) = 0 or di1i2i3i4? = 0 we must have that either = 0 orNA = 8 (assuming that CA is never zero). The last is indeed the ase for SU(3). Hene a generalappliation of this relation is rather dangerous.The equations for I4;2(R), I3;3(R) and I2;2;2(R) an be derived by taking the de�nition ofthe deomposition in equation (152) and multiplying either by Æi1i2Æi3i4Æi5i6 or di1i2i3i4? Æi5i6 ordi1i2i3? di4i5i6? . With the use of the equations (142) and (144) we obtain:0 = (25I3;3(R))+NA(NA + 2)(NA + 415 I2;2;2(R)� 13(CR � 13CA)I2;2(R)� 190I2;2(A)I2(R)) (158)0 = (35I3;3(R))+ (NA + 815 I4;2(R)� (CR � 13CA)I4(R)� 130I4(A)I2(R)) (159)0 = (35I4;2(R) + 38CAI4(R))+( )2(NA + 910NA I3;3(R)� 1NR (I3(R))2)+ (25I2;2;2(R) + 14CAI2;2(R) + 14C2AI2(R)) (160)Beause for eah group either some of the objets in these equations are zero, or there are simpli�-ations, it does not seem wise to solve this system in this form. For all groups with the exeption30



of SU(N) we have that di1i2i3? = 0, and hene the system redues to two equations in I4;2(R) andI2;2;2(R). For SU(3) we have that di1i2i3i4? = 0 and again we have a simpler system. For the otherSU(N) groups we an apply equation (157) improving the solutions somewhat. Beause of thesingularity (zero divided by zero) of the solutions for all groups but SU(N); N > 3, we do notpresent the general solution here. It serves no purpose beause we will not use them. Along thesame lines one an derive the equations for I5;2(R), I4;3(R) and I3;2;2(R).The expressions at rank 6 and 7 beome rather ompliated due to the fat that the tensors in theright hand side of the equations (152) and (153) are not orthogonal. Hene the various orthogonalityrelations mix and this gives the ompliated result. It should be lear that invariants with a higherrank will give even more ompliated relations. The exeption is the adjoint representation. Forthis representation all invariants with an odd number of indies are zero. Hene I3(A) = I5(A) =I3;2(A) = � � � = 0.We an use the above relations for the redution of some ontrations of invariants. We haveseen in the previous setion that for the adjoint representation more things are possible than forthe other representations. However we an rewrite the invariants only to invariants of the adjointrepresentation when the orresponding d's an indeed be expressed as suh. This means thatthe orresponding I(A) should never be zero. Unfortunately this exludes many ontrations ofinvariants. Hene we do not see many bene�ts here.7.1 Orthogonal versus Referene tensorsHere we will ompare the omputation of a symmetrized trae in two ways, using the orthogonalbasis (satisfying (21)) and using haraters, with tensors de�ned for a referene representation. Thelatter will be referred to as \referene tensors". We onsider fourth order traes in SU(N). In thisase an expliit expression exists for any representationStr T aRT bRT RT dR = I4(R)dabd? + 3NA + 2I2(R)2 �NANR � 16 I2(A)I2(R)� dabd2;2 ; (161)where dabd2;2 � 13(ÆabÆd + ÆaÆbd + ÆadÆb) : (162)Here \d" without subsript denotes the orthogonal tensor. The referene representation is thevetor, and the referene fourth rank tensor is by de�nition equal to (161) with \R" equal to thereferene representation: dabdr = dabd? + 3NA + 2  23N2 � 1N ! dabd2;2 (163)(Note that d2;2 is the same in both bases). This allows us to express (161) in terms of referenerather than orthogonal tensors:Str T aRT bRT RT dR = I4(R)dabdr+ 3NA + 2  I2(R)2 �NANR � 16 I2(A)I2(R)�� 23N2 � 1N !dabd2;2 (164)Consider now for example the anti-symmetri tensor representation. Its harater, expanded tofourth order is Ch[2℄(F ) = 12N(N � 1) + 12(N � 2)Tr F 2 + 16(N � 4)Tr F 3+ 124(N � 8)Tr F 4 + 18Tr F 2Tr F 2 + : : : ; (165)31



where all traes are over the vetor representation. From the fourth order terms we dedue, bydi�erentiating with respet to F a; : : : ; F b:Tr T a[2℄T b[2℄T [2℄T d[2℄ = (N � 8)dabdr + 3dabd2;2 (166)We may now verify this using (164). Although the oeÆient of the seond term does not lookvery enouraging, substituting I2(R) = N � 2, NA = N2 � 1 and NR = 12N(N � 1), it does indeedprodue the oeÆient 3 in (166).This illustrates several points. Trae formulas in terms of orthogonal tensors suh as (161) havea simpler form than those in terms of referene tensors, if one tries to write down expressions forarbitrary representations R. However, expressions suh as (166) an be written down fairly easilyfor any representation although not (easily) in losed form. Furthermore they an be extended toarbitrary order in a straightforward way while this rapidly beomes extremely diÆult for (161) or(164).Note that the indies (the oeÆients of fundamental tensors) are basis independent (apart fromnormalizations), whereas the sub-indies (oeÆients of ombinations of fundamental tensors) arenot. In the orthogonal basis it is not hard to see that all sub-indies an in fat be expressed interms of indies, so that they do not onstitute an additional set of variables. In any referenebasis the same is then true, sine it an be related to an orthogonal basis, but the expression are(even) more ompliated, as in (164). For orders larger than six, expression of sub-indies in termsof indies are not available and hard to obtain.In our method the sub-indies are essentially treated as additional variables, whih an beomputed for any representation as easily as the indies themselves. This allows the omputationof a trae for any representation, whih was our goal. The result is a ombination of symmetrifundamental tensors with expliit numerial oeÆients, as in (166), or an expression involvingboth indies and sub-indies. Unfortunately it is muh harder to present the result in minimalform, with all representation dependene enapsulated in the indies.A Indies and Trae identities for Exeptional AlgebrasIn this appendix we summarize our results on traes for exeptional algebras. All the indies for thelowest dimensional representations are given, inluding all basi representations. Trae identitiesare given for all traes of order less than the dual Coxeter number g.For the lassial algebras A : : : D the trae identities were already given in hapter 6, and indexformulas for some representations are given in [6℄.The indies provide only a small part of the information ontained in the full haraters,but it is impratial to present the latter in printed form. We do have an eÆient proedureto generate the haraters of any representation of any simple Lie-algebra to any desired order.This proedure uses a ombination of Ka [31℄ (to ompute tensor produts) and FORM [32℄ (tomultiply, add and subtrat haraters aording to these tensor produts), and is available viahttp://norma.nikhef.nl/pub/�t58. Obviously this then also provides all indies for algebras andrepresentations not listed in this appendix.A.1 Indies and trae identities for G2Trae identity in the representation (7):Tr F 4 = 14(Tr F 2)2 (167)The indies of the lowest-dimensional representations are shown in table 5.32



Rep. Dimension I22 I6(0,1) 7 1 1(1,0) 14 4 �26(0,2) 27 9 39(1,1) 64 32 �208(0,3) 77 44 494(2,0) 77 55 �1235(0,4) 182 156 3666(1,2) 189 144 �456(3,0) 273 351 �20709(2,1) 286 286 �7904(0,5) 378 450 19500(1,3) 448 480 2640(0,6) 714 1122 82212(2,2) 729 972 �27378(4,0) 748 1496 �193324(3,1) 896 1472 �109408Table 5: Indies for G2.A.2 Indies and trae identities for F4Trae identities in the representation (26):Tr F 4 = 3(16Tr F 2)2 (168)Tr F 10 = 94(16Tr F 2)(Tr F 8)� 74(16Tr F 2)2(Tr F 6) + 2116(16Tr F 2)5 (169)The indies are listed in table 6.Rep. Dimension I26 I6 I8 I12(0,0,0,1) 26 1 1 1 1(1,0,0,0) 52 3 �7 17 �63(0,0,1,0) 273 21 1 �119 �1959(0,0,0,2) 324 27 57 153 2073(1,0,0,1) 1053 108 �132 612 372(2,0,0,0) 1053 135 �645 2907 �134373(0,1,0,0) 1274 147 �133 �1309 125811Table 6: Indies for F4.A.3 Indies and trae identities for E6Trae identities in the representation (56):Tr F 4 = 12( 112Tr F 2)2 (170)Tr F 7 = 72(Tr F 5)( 112Tr F 2) (171)33



Tr F 10 = 92(Tr F 8)( 112Tr F 2)� 7(Tr F 6)( 112Tr F 2)2 + 740(Tr F 5)2 + 42( 112Tr F 2)5 (172)Tr F 11 = 1136(Tr F 6)(Tr F 5) + 605126(Tr F 9)( 112Tr F 2)� 552 (Tr F 5)( 112Tr F 2)3 (173)The indies are in table 7.Rep. Dimension I26 I5 I6 I8 I9 I12(1,0,0,0,0,0) 27 1 1 1 1 1 1(0,0,0,0,1,0) 27 1 �1 1 1 �1 1(0,0,0,0,0,1) 78 4 0 �6 18 0 �62(0,1,0,0,0,0) 351 25 11 �5 �101 �229 �2021(0,0,0,1,0,0) 351 25 �11 �5 �101 229 �2021(0,0,0,0,2,0) 351 28 �44 58 154 �284 2074(2,0,0,0,0,0) 351 28 44 58 154 284 2074(1,0,0,0,1,0) 650 50 0 60 36 0 116(0,0,0,0,1,1) 1728 160 �88 �80 664 152 424(1,0,0,0,0,1) 1728 160 88 �80 664 �152 424(0,0,0,0,0,2) 2430 270 0 �720 3672 0 �131928(0,0,1,0,0,0) 2925 300 0 �270 �918 0 122202Table 7: Indies for E6.A.4 Indies and trae identities for E7Trae identities in the representation (56):Tr F 4 = 24( 124Tr F 2)2 (174)Tr F 16 = �85675220( 124Tr F 2)(Tr F 6)(Tr F 8)+2360319 ( 124Tr F 2)(Tr F 14)+6160723490( 124Tr F 2)2(Tr F 6)2�637002871 ( 124Tr F 2)2(Tr F 12)+21164783 ( 124Tr F 2)3(Tr F 10)+7397522 ( 124Tr F 2)4(Tr F 8)�72254783 ( 124Tr F 2)5(Tr F 6)+222898261 ( 124Tr F 2)8+1354(Tr F 6)(Tr F 10)+ 13160(Tr F 8)2 (175)The indies are in table 8. 34



Rep. Dim. I212 I6 I8 I10 I12 I14 I18(0,0,0,0,0,1,0) 56 1 1 1 1 1 29 1229(1,0,0,0,0,0,0) 133 3 �2 10 �2 �30 542 �111658(0,0,0,0,0,0,1) 912 30 �10 �82 230 �2082 �39170 96018190(0,0,0,0,0,2,0) 1463 55 90 174 570 2134 238650 161267970(0,0,0,0,1,0,0) 1539 54 24 �72 �456 �1992 �235944 �161018664(1,0,0,0,0,1,0) 6480 270 30 774 �210 534 73350 �102108810(2,0,0,0,0,0,0) 7371 351 �354 2682 �834 �63438 4748094 �14489069226(0,1,0,0,0,0,0) 8645 390 �200 40 760 57480 �4368520 14620498520(0,0,0,0,0,3,0) 24320 1440 3600 10176 50160 292896 59512080 167838228720(0,0,0,1,0,0,0) 27664 1430 �10 �3442 �7450 63998 32976190 149694252430(0,0,0,0,0,1,1) 40755 2145 530 �3658 13490 �171138 2436850 �9081228710(0,0,0,0,1,1,0) 51072 2832 2872 256 �16568 �172464 �46178632 �158703316792(1,0,0,0,0,0,1) 86184 4995 �3165 963 36195 �366717 �37725705 �137019575865(1,0,0,0,0,2,0) 150822 9450 8400 41328 59280 410928 30093840 30366263760(1,0,0,0,1,0,0) 152152 9152 �328 9320 �78088 �197560 �28617992 �27126731432(3,0,0,0,0,0,0) 238602 17940 �26380 271676 �116620 �13615284 1492228660 �16354668799100(0,0,0,0,0,0,2) 253935 17820 �9000 �94824 404280 �6024744 �323856360 12685209865560(0,0,0,0,0,4,0) 293930 24310 88400 329888 2153840 17066368 4880546320 30243257914480(2,0,0,0,0,1,0) 320112 21762 �9318 155826 �75318 �3178974 303759378 �674257133022(0,1,0,0,0,1,0) 362880 23760 600 12672 22440 3531792 �239671080 806089955880(0,0,1,0,0,0,0) 365750 24750 �9000 �63240 79800 2601720 278208600 �12473996293800Table 8: Indies for E7.A.5 Indies and trae identities for E8Trae identities in the representation (248):Tr F 4 = 36( 160Tr F 2)2 (176)Tr F 6 = 30( 160Tr F 2)3 (177)Tr F 10 = 154 (Tr F 8)( 160Tr F 2)� 3154 ( 160Tr F 2)5 (178)Tr F 16 = 300364 (Tr F 8)( 160Tr F 2)4+ 1431920(Tr F 8)2�27320 (Tr F 12)( 160Tr F 2)2+295 (Tr F 14)( 160Tr F 2)�147147128 ( 160Tr F 2)8 (179)Tr F 22 = �2939339360 (Tr F 8)(Tr F 12)( 160Tr F 2)+ 3231920(Tr F 8)(Tr F 14)35



+31934612711679360 (Tr F 8)( 160Tr F 2)7+36115179150380800 (Tr F 8)2( 160Tr F 2)3�298544701524800 (Tr F 12)( 160Tr F 2)5+343898116400 (Tr F 14)( 160Tr F 2)4�1634576560 (Tr F 18)( 160Tr F 2)2+62382 (Tr F 20)( 160Tr F 2)�1644750861393358720 ( 160Tr F 2)11 (180)Tr F 26 = 188850956360344213686272 (Tr F 8)(Tr F 12)( 160Tr F 2)3�132991451691347978240 (Tr F 8)(Tr F 14)( 160Tr F 2)2+ 22517145152 (Tr F 8)(Tr F 18)�4000779140581027097074189803520 (Tr F 8)( 160Tr F 2)9�1041598407385864935370949017600 (Tr F 8)2( 160Tr F 2)5� 15835512121221838704640 (Tr F 8)3( 160Tr F 2)+ 508342336(Tr F 12)(Tr F 14)+969600581890335554483200 (Tr F 12)( 160Tr F 2)7�34818556318648 (Tr F 12)2( 160Tr F 2)�283735920466074386278400 (Tr F 14)( 160Tr F 2)6+14467214654171973825280 (Tr F 18)( 160Tr F 2)4�13545773417441008 (Tr F 20)( 160Tr F 2)3+929825105868 (Tr F 24)( 160Tr F 2)+506251846536678653336866181120 ( 160Tr F 2)13 (181)Tr F 28 = 6662452927065912412453120000 (Tr F 8)(Tr F 12)( 160Tr F 2)4�5754884582308099649812480000 (Tr F 8)(Tr F 14)( 160Tr F 2)3+ 5727698511766476800 (Tr F 8)(Tr F 18)( 160Tr F 2)36



+10904536133600 (Tr F 8)(Tr F 20)�2028144607034777518356144363520000 (Tr F 8)( 160Tr F 2)10� 191279272770944000 (Tr F 8)2(Tr F 12)�1076029152338172071561443635200000 (Tr F 8)2( 160Tr F 2)6�1388664477588736092805120000 (Tr F 8)3( 160Tr F 2)2+34322218131200 (Tr F 12)(Tr F 14)( 160Tr F 2)+108447101840059177969830400000 (Tr F 12)( 160Tr F 2)8�70795943271941730560 (Tr F 12)2( 160Tr F 2)2�23843919029848581574393600000 (Tr F 14)( 160Tr F 2)7+ 1577571936000 (Tr F 14)2+1607603265138373344636160000 (Tr F 18)( 160Tr F 2)5�6178872753444354567392000 (Tr F 20)( 160Tr F 2)4+2866807716654560 (Tr F 24)( 160Tr F 2)2+56572065918676414420758817904640000 ( 160Tr F 2)14 (182).B The omputer program for the redution into invariantsWe have implemented the redution algorithms into a omputer program6 in the language ofFORM [32℄. This language is partiularly suited for these types of problems. Beause of all theproblems with redution identities when the number of verties beomes large, we have restritedthe program to the ase of no more than 16 verties. If the user needs to run the program withmore verties, it an be extended by analogy, but many new redution identities would have to bederived. Alternatively one ould deide to not redue a number of ontrations with f 's in themand leave them for later evaluation. The user should be warned however that some diagrams with16 verties may need quite some omputer time and resoures for their evaluation.The program onsists of three parts. The �rst part redues all traes of matries whih do notbelong to the adjoint representation. Muh attention is given to a potential ontration of indies.The speial ases have been written out in one highly nested loop to take the maximum bene�t ofthese ontrations. This saves muh work when we have to use the algorithm of equation (30) forthe remaining trae. It is quite useful to rewrite eah invariant immediately with the notation ofequation (100). This removes invariants whih have more than one line ontrated with the same6This program an be obtained from "http://norma.nikhef.nl/�t68/FORMappliations/Color"37



Rep. Dimension I230 I8 I12 I14(1,0,0,0,0,0,0,0) 248 1 1 1 1(0,0,0,0,0,0,1,0) 3875 25 �17 223 �521(2,0,0,0,0,0,0,0) 27000 225 393 2073 8961(0,1,0,0,0,0,0,0) 30380 245 119 �1801 �7945(0,0,0,0,0,0,0,1) 147250 1425 �801 �3921 90423(1,0,0,0,0,0,1,0) 779247 8379 357 64677 �207291(3,0,0,0,0,0,0,0) 1763125 22750 64330 653050 3872050(0,0,1,0,0,0,0,0) 2450240 29640 576 �300624 �407160(1,1,0,0,0,0,0,0) 4096000 51200 59264 �176896 �1416448(0,0,0,0,0,0,2,0) 4881384 65610 �68202 1623078 �5978610(0,0,0,0,0,1,0,0) 6696000 88200 �64176 344544 2464392(1,0,0,0,0,0,0,1) 26411008 372736 12544 �928256 20640256(2,0,0,0,0,0,1,0) 70680000 1083000 991440 15398400 1956600(0,1,0,0,0,0,1,0) 76271625 1148175 �64071 732969 �67564287(4,0,0,0,0,0,0,0) 79143000 1404150 6100842 97389402 723747954(0,0,0,1,0,0,0,0) 146325270 2360085 �942669 �20062029 81822195(0,2,0,0,0,0,0,0) 203205000 3441375 3576615 �53721225 �402564225(2,1,0,0,0,0,0,0) 281545875 4843800 10500696 50453496 233862408(0,0,0,0,0,0,1,1) 301694976 5068800 �4540800 36284160 244435200(1,0,1,0,0,0,0,0) 344452500 5740875 3591945 �51773175 �133939575(1,0,0,0,0,0,2,0) 820260000 14773500 �7295820 368355300 �1650963300(1,0,0,0,0,1,0,0) 1094951000 19426550 �3552406 74388314 342570098(2,0,0,0,0,0,0,1) 2172667860 40883535 36197469 182867949 3494811285(0,1,0,0,0,0,0,1) 2275896000 42214200 �2179296 �439704336 1139298552(0,0,0,0,0,0,3,0) 2903770000 60885500 �95237740 3610174100 �17484769900(3,0,0,0,0,0,1,0) 3929713760 79228100 167887580 2727186380 10466026340(0,0,0,0,0,0,0,2) 4076399250 83281275 �77203203 �459950403 17875089309(0,0,1,0,0,0,1,0) 4825673125 93400125 �36251565 �180072525 �4026565725(0,0,0,0,1,0,0,0) 6899079264 139094340 �107301348 �484327668 13082745060Table 9: Indies for E8, part one.f in a very natural way without any extra pattern mathing. For this type of rewriting FORM evenhas a speial statement (ToVetor).The seond part eliminates the loops of f 's. Here we do not have to worry about ontratedindies inside the trae, beause FORM looks eah time for the smallest loop to make its nextredution. Hene this part of the program is muh simpler. Beause this redution is muh fasterthan the general redution the �rst routine alls this redution routine eah time after it hasremoved ontrated indies and generated more f 's. Very often suh a removal generates a loopof f 's and if this is removed it may introdue new ontrated indies. The net result an be asigni�ant inrease in speed. In some ases this is not faster however. Hene there is the optionnot to hunt for f -loops until all other representations have been rewritten.The third part of the program ontains the redution identities. Here the program tries toeliminate ontrations with f 's that are obviously zero and to rewrite the ontrations for whih itan onstrut meaningful identities. This is a rather peuliar piee of programming. The derivationof the redution identities is by no means a �xed algorithm. The equation (96) an be applied toone of the dR and one of the f 's, but it is not always lear whih pair will give good results andwhih will make things worse. In general it seems to be a good strategy to try to inrease thenumber of ontrations between the invariants (number of ommon indies). In that ase therewill be more ontrations between the f 's and hene more hane of loops that ontain only f 's.38



I18 I20 I24 I301 41 199 61�281 720023 �8538743 107370139131601 20785953 1677921087 32641770621�130825 �21485681 �1669283839 �32749110565�3057657 1091333799 69614416281 �133328258297973122949 �891843603 �70053431037 13392095601009158684770 53898275690 19220216027590 418121545780753096664440 42322995216 18320504001024 4178331237939240�129144448 �47849709056 �18734041431424 �4186512285307648�131658210 336853672758 �90053043268518 5347928934453519032750232 �373796000256 71666802925296 �57656847733698648�887500544 601951099904 �72720785548544 501719490709212161422281640 �496637707680 79406160046320 �50034441438444840368688753 �283297282191 �5188200203889 735602019523737352000832994 23915855965002 18712064549246118 1861788105676652951410867212915 �105084506709 �9407941453913691 �16544807547516665625�32456806065 �12291541050705 �4580281352771055 �1096019298618319485�14097200472 �10058442950664 �14025344636105496 �17530899917498537112�22110000000 4164533921280 9773219242968960 1643980297648414080013626625545 10661778671985 13958084762321535 17581170727669309605�10809258420 79696508512740 �32082728508187860 �318013107264332418019892530658 �97084816917686 17486065830031526 �14251422467900989462�107677764315 118967521198869 �19927893621180789 12855700625814459585�134688633528 112636179273744 �29916313535701344 �3637801450738060968�675793438060 2261894204588980 �1168369134581957620 7589921677844796014660721988940500 90443981815180 94451334234961220 3296282167094693780�1346442094371 689963459361477 507354515738178603 �7162275330089795125911518531279235 147692804386155 73753893160393605 17639532662269149015104563589460 �617925299730228 �535510167643211772 7128890471280203011860Table 10: Indies for E8, part two.This is not always possible in a diret way, and sometimes we have to just try equation (96) in thehope that in the next pass the improvement will follow. The seletion of the invariant and the fthat take part in this game has to be done arefully and the ode onsists of two piees that makea slightly di�erent hoie. By running a loop that ontains the �rst hoie twie and the seondhoie one, we ould redue nearly everything up to 16 verties. Of ourse we had to de�ne theobjet of formula (112) as a separate entity. Similarly we had to de�ne three suh objets at level16. The program also de�nes the topologies at level 16 that we did not present in the text.C Some examplesWe have run a number of olor traes with the program. Here we present the results with sometiming information. All runs were done on a PentiumPro 200 proessor running NextStep. Firstwe look at traes of the type Tr[T i1R � � � T inR T i1R � � � T inR ℄as suh traes represent some type of maximal omplexity. Here we show the results to n = 7 intable 11.Atually the program an go to n = 8. For this it took about 1520 se. We do not give the answerhere. Similarly we an alulate this in the adjoint representation only. This is of ourse muh39



n time result2 0.23 s NAI2(R)(CR � CA=2)3 0.23 s NAI2(R)(CR � CA)(CR � CA=2)4 0.25 s dabdR dabdA +NAI2(R)(C3R � 3 C2RCA + 11=4 CRC2A � 19=24 C3A)5 0.95 s dabdR dabdA (5CR � 6CA) + 1=3I2(R) dabdA dabdA+NAI2(R)(C4R � 5 C3RCA + 35=4 C2RC2A � 155=24 CRC3A + 125=72 C4A)6 2.59 s �8dabdefR dabdefA + 6dabdR dabefA ddefA + I2(R)dabefA ddefA (2 CR � 199=60 CA)+dabefR ddefA (15 C2R � 87=2 CRCA + 179=6 C2A) +NAI2(R)(C5R�15=2 C4RCA+85=4 C3RC2A�115=4 C2RC3A+905=48 CRC4A �1405=288 C5A)7 34.9 s +112=3 dabdefR dabgA ddefgA � 328=9 dabdefA dabgR ddefgA+dabdefR dabdefA (�56 CR + 296=3 CA)+dabdR dabefA ddefA (42 CR � 749=10 CA) + 67=15 I2(R)dabdA dabefA ddefA+dabdR dabdA (35 C3R � 357=2C2RCA + 868=3 CRC2A � 2695=18 C3A)+I2(R)dabdA dabdA (7 C2R � 1603=60CRCA + 497=20 C2A)+NAI2(R)(+C6R � 21=2 C5RCA + 175=4 C4RC2A � 280=3 C3RC3A+5215=48 C2RC4A � 19075=288 CRC5A + 43357=2592 C6A)Table 11: Results for traes of the type Tr[T i1R � � � T inR T i1R � � � T inR ℄.faster beause the program selets automatially the smallest loops. These results an be foundin table 12. For n = 8 the program took 1:5 se We notie that here the omputer time does notn time result2 0.15 s 12NAC2A3 0.20 s 04 0.23 s dabdA dabdA � 124NAC4A5 0.78 s 23CAdabdA dabdA � 136NAC5A6 0.81 s dabdA dabefA ddefA + 14C2AdabdA dabdA � 13864NAC6A7 0.89 s �89dabdefA dabgA ddefgA + 5330CA dabdA dabefA ddefA� 5648NAC7ATable 12: Like the previous table but now in the adjoint representation.inrease very muh with the number of rossing lines (the number of verties and hene the weightis 2n). There is atually more `ompilation time' than `exeution' time. The jump in time goingfrom n = 4 to n = 5 represents the use of the redution algorithms to eliminate f 's. In that asethe program needs onsiderably more ompilation time.The fat that diagrams with only verties in the adjoint representation are easier to evaluatethan the diagrams with verties in the other representations is exatly the opposite of what happenswith the Cvitanovi algorithms [1℄. For them eah f is onverted to one or more terms with oneor more matries in the fundamental representation. This an lead to an avalanhe of terms at theintermediate stages, beause no advantage is taken from the potentially simpler strutures. In thease of the traes in the fundamental representation the Cvitanovi algorithms are muh faster.These algorithms do not worry about symmetrizations and are diretly appliable to suh traes.As an example of high omplexity for purely adjoint diagrams we take the one topology of girth6 with 14 verties. It is also alled the Coxeter graph. In this the smallest loop has 6 verties. The40



result is rather short:G6(n = 14) = 169 dabdefA dabgA ddefgA � 815CA dabdA dabefA ddefA + 1648NAC7A (183)This took 1.6 se.D Expliit expressionsHere we present some expressions for a number of invariants. These are mostly invariants forrepresentations that an be used as referene representations. The expressions are given in termsof the normalization fator � de�ned in (27).In all ases the tensors (referred to as dn(R)) are de�ned asda1 :::anR = Str T a1R : : : T anR : (184)In partiular no traes are subtrated and no overall fators are inluded. For SO(N) we deviatefrom the preferred index normalization of table (4), sine otherwise we would have to deal with afew low-N SO(N) ases separately.Results for the fundamental (vetor) representation V of SU(N):CV = aN (N2 � 1) (185)CA = 2aN (186)d33(V V ) = a32N (N2 � 1)(N2 � 4) (187)d44(V V ) = a46N2 (N2 � 1)(N4 � 6N2 + 18) (188)d55(V V ) = a524N3 (N2 � 1)(N2 � 2)(N4 + 24) (189)d433(V V V ) = a56N2 (N2 � 1)(N2 � 4)(N2 � 6) (190)d66(V V ) = a6120N4 (N2 � 1)(N8 + 6N6 � 60N4 + 600) (191)d633(V V V ) = a6480N3 (N2 � 1)2(N2 � 4)2 (192)d543(V V V ) = a6288N3 (N2 � 1)(N2 � 4)(N4 � 6N2 + 18) (193)d444(V V V ) = a627N3 (N2 � 1)(N6 � 9N4 + 81N2 � 189) (194)d3333(V V V V ) = a68N2 (N2 � 1)(N2 � 4)(N2 � 12) (195)with a = 12� (see equation(27)). The hoie � = 1; a = 12 orresponds to the most ommonly usednormalization. Then Tr T aV T bV = 12Æab. In SU(N) the vetor representation is always equal to thereferene representation.For the vetor representation of SO(N) we have:CV = a2(N � 1) (196)CA = a(N � 2) (197)41



NA = 12N(N � 1) (198)d44(V V ) = a424NA(N2 �N + 4) (199)= a412NA(NA + 2) (200)d66(V V ) = a61920NA(N4 � 2N3 + 33N2 � 32N + 52) (201)= a6480NA(N2A + 16NA + 13) (202)d444(V V V ) = a6432NA(2N3 � 3N2 + 33N � 16) (203)(204)with a = � (see equation(27)). In this ase a = � = 2 is the most frequently used onvention. ThenTr T aV T bV = 2Æab.Note that for SO(N), N � 6 the vetor representation is not the referene representation. Theformulas for the referene representation for those groups an be read o� from the appropriateSU(N) or Sp(N) results. The tensors used in the foregoing formulas are normalized so that I4(V ) =I6(V ) = 1 in (95). As explained above, this di�ers from the index normalization hosen in table(4) for SO(7) and SO(8). For these groups our onvention is to make I4 twie as large, and hened4 twie as small.For the vetor representation of Sp(N) we have:CV = a2(N + 1) (205)CA = a(N + 2) (206)NA = 12N(N + 1) (207)d44(V V ) = a424NA(N2 +N + 4) (208)= a412NA(NA + 2) (209)d66(V V ) = a61920NA(N4 + 2N3 + 33N2 + 32N + 52) (210)= a6480NA(N2A + 16NA + 13) (211)d444(V V V ) = a6432NA(2N3 + 3N2 + 33N + 16) (212)(213)with a = 12� (see equation(27)). In this ase the vetor oinides with the referene representation.For all groups for whih I4(A) = 0 we an derive a number of invariants with relatively sim-ple methods. This is of partiular interest for the exeptional algebras, whih have I4(R) = 0for any representation. We will present the following formulas for tensors de�ned in the adjointrepresentation, whih is not the referene representation (exept for E8). The reason for doingthis is that it allows us to write a single set of relations for all algebras. It is straightforward tore-express these results in terms of the referene representation. To do so one needs the relationbetween adjoint tensors and referene tensors, whih follows diretly from the haraters of both42



representations; the latter an be omputed by means of the methods used in Appendix A. Theadjoint representation is unsuitable for the odd traes of E6, whih are disussed separately below.To do the omputations, �rst we notie thatdi1i2i3i4A = I22(A)(Æi1i2Æi3i4 + Æi1i3Æi2i4 + Æi1i4Æi2i3)=3 (214)with I22(A) = 52C2A=(NA + 2). Using this and equation (118) we an determine d66(AA). Next wean go even further by using a tehnique similar to the one used to derive equation(118): We runthe program for the produt of two traes with 8 verties. First we run it for a representation Rin one trae and the adjoint representation in the other. After the run we put R equal to A. Thisgives an expression that inludes d88(AA) and d844(AAA) and objets that ontain ombinationsof d4 and d6. We an run the same traes with the program, but starting with both of them in theadjoint representation. In that ase we obtain an expression that does not ontain d88(AA). Thisgives us the required equation. Now we substitute d4 and we need an equation for djji1���i68 whihis also easy to obtain with the program:djji1���i6A = 1021di1����6A + 16(dji1i2i3A dji4i5i6A + � � �)=10 (215)in whih we have to take the 10 symmetri ombinations over the indies in the last term. For d6we have a similar equation whih is given by equation (142). In total we obtain:d44(AA) = 25 C4A12(NA + 2) (216)d66(AA) = C6ANA(NA + 2)2 (797288 + 827NA � 1864N2A) (217)d444(AAA) = C6ANA(NA + 2)2 (12527 + 125216NA) (218)d644(AAA) = 17548 C7ANA(NA + 2)2 (219)d88(AA) = C8ANA(NA + 2)3 (34251008 + 111025145152NA + 1256804N2A + 25435456N3A) (220)d844(AAA) = C8ANA(NA + 2)3 (12524 + 625288NA) (221)d664(AAA) = C8ANA(NA + 2)3 (5455864 + 34852592NA � 52592N2A) (222)d4444a(AAAA) = C8ANA(NA + 2)3 (3125324 + 625216NA + 6251296N2A) (223)d4444b(AAAA) = C8ANA(NA + 2)3 (6875648 + 31251296NA) (224)The last two topologies are de�ned asd4444a(p1; p2; p3; p4) = 13 42 (225)d4444b(p1; p2; p3; p4) = 13 42 (226)43



group G2 F4 E6 E7 E8NA 14 52 78 133 248CA 4 � 9 � 24 � 18 � 30 �Table 13: Values of NA and CA for the exeptional groups.The appropriate values to be substituted for the various groups are given in table 13.For E6 we also have to onsider the invariants with 5 indies. These we an obtain with thereferene representation r. For invariants that involve this representation we have:Cr = 523 � (227)Nr = 27 (228)d44(rr) = 18720 �4 (229)d55(rr) = 291200 �5 (230)d66(rr) = 1023152 �6 (231)d444(rrr) = 536640 �6 (232)d77(rr) = 112112003 �7 (233)d644(rrr) = 206165445 �7 (234)d554(rrr) = 582400 �7 (235)d88(rr) = 46634619227 �8 (236)A number of these quantities an be obtained in various ways and serve as a hek of our programs.E Chiral representations of SO(2m)The algebra Dm has an index of order m that vanishes for the vetor representation, and is non-zero only for hiral representations. The latter are haraterized by having unequal values for thelast two Dynkin labels, am�1 6= am. The simplest representations of this type are the spinors,S = (0; : : : ; 0; 1; 0) and S0 = (0; : : : ; 0; 1). If m is odd S0 is the omplex onjugate of S. Note thatfor odd m the extra index (heneforth referred to as the \hiral index") has odd order, unlike allother SO(N) indies, whereas for m even there are two distint indies of even order, namely thehiral index and one of the regular indies.Sine the hiral index vanishes for the vetor representation, whereas all indies are non-zerofor the spinor, it might be argued that the latter is perhaps a more suitable hoie for the referenerepresentation. However, the vetor representation has other advantages, perhaps most importantlythat the trae-identities for traes of order larger than 2m are simpler. The main drawbak of thishoie is that it requires a separate disussion of hiral traes, whih we give here.Our onventions for SO(2m) are as follows. The generators in the vetor representation areM��ij = iq�=2(Æ�i Æ�j � Æ�i Æ�j ) (237)This is a omplete set of generators for � < �. The normalization fator p�=2 is introdued in(27). Clearly for SO(N) the most attrative hoie is � = 2.44



The generators of the (hiral plus anti-hiral) spinor representation are then��� = i4q�=2 [�; � ℄ ; (238)with f�; �g = 2g�� . The dimension of this Cli�ord algebra is 2m.For the hiral -matrix (often referred to as 5) we hoose = (i)m1 : : : 2m (239)The phase is hosen so that  is hermitean (assuming the other -matries are hosen hermiteanas well). Hermitiity �xes the overall fator up to an m-dependent sign, for whih we have made aonventional hoie.The hiral spinor generators are ���� = 12���(1� ) (240)The symmetrized trae of m suh generators isStr��1�1� : : :��m�m� = 12Str��1�1 : : :��m�m � 12Str��1�1 : : :��m�m (241)The �rst term yields (for m even) an ordinary d-tensor, the seond one yields the ~d tensor. Bygeneral arguments, Str��1�1� : : :��n�n� = In(S�)d[�1�1℄;:::;[�n�n℄ + lower order�~In(S�) ~d[�1�1℄;:::;[�n�n℄ ; (242)where [�1�1℄ denotes an adjoint index. By onvention~In(S�) = �1 (243)then ~d[�1�1℄;:::;[�m�m℄ = 12Str��1�1 : : :��m�m = 12(�=2)m=2��1;:::;�m ; (244)with the de�nition �1;:::;2m = 1. Note that the interpretation requires pairs of indies to be identi�edwith an adjoint index, and that the � tensor is indeed fully symmetri under permutation of pairsof indies.This gives us an expliit expression for the extra tensor, and omputing invariants that involvethis tensor is now straightforward. One an either do that by omputing all other tensors alsoin the spinor representation. Then omputing the invariants amounts to simple -algebra. Sineexpressions for the spinor haraters in terms of vetor traes are expliitly known (see (65) and(66)), all tensors in the spinor representation an be re-expanded in terms of referene tensors.Alternatively it is also very easy to work diretly with the referene tensors, whih, using (237)an be expressed ompletely in terms of kroneker Æ's with vetor indies. These indies are to betaken in pairs and identi�ed with adjoint indies, and an then be pairwise ontrated with the �tensor.For the normalization of the tensor ~d of SO(2m) we getdmm(CC) = 142�m(2m)!45



The fator 2�m ompensates the double ounting of index pairs �� as ompared to adjoint indies.The argument \CC" indiates that two hiral tensors ~d are used. Furthermore we havedmm(CV ) = dmm(CS) = 0 :Here \V" is the fundamental representation, as before, and \S" refers to the non-hiral tensoromputed in the spinor representation,d[�1�1℄;:::;[�m�m℄S = 12Str��1�1 : : :��m�mThis tensor is related to the one in the referene representation V .To order 12, the maximal order we used for the other SO(N) tensors, the only other quantityof interest is d444, whih has hiral tensor ontributions only for SO(8). Here is a omplete set ofresults for that group. d44(V V ) = 70�4 (245)d44(SS) = 2458 �4 (246)d44(CC) = 3158 �4 (247)d66(V V ) = 5818 �6 (248)d444(V V V ) = 70�6 (249)d444(SSS) = 66532 �6 (250)d444(SSC) = d444(V V C) = 0 (251)d444(SCC) = 52532 �6 (252)d444(V CC) = �1058 �6 (253)d444(CCC) = 0 (254)The fundamental quantities here are the ones involving d4(V ); d6(V ) and d4(C). The tensor d4(S)is related to d4(V ): dabdS = �12dabdV + 32dabd2;2The results involving d4(S) are given here beause one may use them to hek the triality relationsd44(V V ) = d44(SS) + 2d444(SC) + d44(CC)and d444(V V V ) = d444(SSS) + 3d444(SSC) + 3d444(SCC) + d444(CCC)whih are due to the fat that the tensors d4(V ) and the ombinations d4(S)� d4(C) are given bysymmetrized traes of the triality-related representations (8v), (8s) and (8).Referenes[1℄ P.Cvitanovi�, Phys. Rev. D14 (1976) 1536.[2℄ For the group SU(N), see for instane J.Vermaseren, \The use of omputer algebra in QCD",in H. Latal, W. Shweiger, Proeedings Shladming 1996, Springer ISBN 3-540-62478-3.[3℄ T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, Phys. Lett. B400 (1997) 379.46



[4℄ G. Raah, Linei-Rend. S. �s. mat. e nat. VIII, 108-112 (1950).[5℄ I.M. Gel'fand, Math. Sbornik 26, 103, (1950)[6℄ S. Okubo, J. Math. Phys. 23,8, (1979); S. Okubo and J. Patera, J. Math Phys. 24 2722 (1983);ibid. 25, 219 (1984)[7℄ L. C. Biedenharn, J. Math. Phys. 4, 436, (1963)[8℄ A. Klein, J. Math. Phys. 4, 1283, (1963)[9℄ M. Umezawa, Nul. Phys. 48, 111 (1963); 53, 54 (1964); 57, 65 (1964);[10℄ B. Gruber and L. O'Raifeartaigh, J. Math. Phys. 5, 1796, (1964)[11℄ A. M. Perelomov and V. S. Popov, Sov. J. Nul. Phys. 3, 676 (1966); ibid Sov. J. Nul. Phys.3, 819 (1966); ibid. Sov. J. Nul. Phys. 5, 489 (1967); ibid. Sov. J. Math. Phys. 7. 290 (1968).[12℄ J.D. Louk and L. C. Biedenharn, J. Math. Phys. 11, 2368, (1970)[13℄ A. Braken and H. Green, J.Math.Phys. 12, 2099, (1971).[14℄ R.L. Hudson, J. Math. Phys. 15, 1067 (1974).[15℄ M.K.F. Wong and H-Y. Yeh, J. Math. Phys. 16, 1239 (1975).[16℄ C.O. Nwahuku and M.A. Rashid, J. Math. Phys. 17, 1611 (1976).[17℄ S. Okubo, J. Math. Phys. 18, 2382 (1977).[18℄ S. Edwards, J. Math. Phys. 19, 164 (1978).[19℄ M. Engle�eld and R. King, J. Phys. A, Math. Gen. 13, 2297, (1980)[20℄ F. Berdjis, J. Math. Phys. 22, 1851 (1981)[21℄ F. Berdjis and E. Beslmuller, J. Math. Phys. 22, 1857 (1981)[22℄ A M. Biner, J. Phys. A 27 3847, (1994).[23℄ A.M. Biner and K. Riesselmann, J.Math.Phys. 34, 5935, (1993).[24℄ J. A. de Az�arraga, A. J. Mafarlane, A. J. Mountain and J. C. P�erez Bueno, physis/9706006(1997).[25℄ H.R. Karadayi and M. Gungormez, J.Math.Phys. 38 5976 (1997); ibid. J.Math.Phys. 38 5991(1997); ibid. physis/9701004; ibid. hep-th/9705051.[26℄ A.N. Shellekens and N.P. Warner, Nul. Phys B287 (1987) 317.[27℄ E.B. Dynkin, Math. Sbornik 30, 349 (1952); Am. Math. Transl. 6, 111 (1957).[28℄ J. Patera, R.T. Sharp and P. Winternitz, J. Math. Phys. 17, 1972 (1976), Erratum: 18, 1519(1977).[29℄ H. Weyl, The Classial Lie Groups, Prineton University Press (1939).47



[30℄ M.A.A van Leeuwen, A.M. Cohen, B. Lisser,LiE, a pakage for Lie group omputations, Computer Algebra Nederland, 1992.Software freely available athttp://www.an.nl/SystemsOverview/Speial/GroupTheory/LiE/index.html[31℄ A.N. Shellekens, Ka.Software freely available at http://norma.nikhef.nl/�t58/ka.html.[32℄ J.A.M. Vermaseren, FORM. Version 1 is freely available from ftp.nikhef.nl in /pub/form. Version2 and later are ommerial. For information ontat form�an.nl. For the urrent appliationversion 3 is needed. It is sheduled to appear later in 1998.

48


