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tWe present algorithms for the group independent redu
tion of group theory fa
tors of Feyn-man diagrams. We also give formulas and values for a large number of group invariants inwhi
h the group theory fa
tors are expressed. This in
ludes formulas for various 
ontra
tionsof symmetri
 invariant tensors, formulas and algorithms for the 
omputation of 
hara
ters andgeneralized Dynkin indi
es and tra
e identities. Tables of all Dynkin indi
es for all ex
eptionalalgebras are presented, as well as all tra
e identities to order equal to the dual Coxeter number.Further results are available through eÆ
ient 
omputer algorithms.

1



1 Introdu
tionAs the number of loops to whi
h perturbative �eld theories are evaluated in
reases, the group1stru
ture of the individual diagrams be
omes more and more 
ompli
ated. This problem has beenre
ognized many years ago and on a group-by-group basis some very 
ompa
t algorithms wereproposed [1℄ for their 
omputation. Espe
ially for the de�ning and the adjoint representations ofthe 
lassi
al groups SU(N), SO(N) and Sp(N) these algorithms 
an be implemented rather easilyin a symboli
 program that will then give the 
olor tra
e of a diagram as a fun
tion of the parameterN [2℄. The disadvantage of these algorithms is however that these results give no information aboutgroup invariants and hen
e it is only possible for very simple diagrams to generalize the results su
hthat they are valid for arbitrary groups and arbitrary representations. Hen
e a di�erent type ofalgorithm is needed, if one would like a more general answer. That su
h information is useful 
anbe seen from some re
ent 
al
ulations in QCD [3℄ in whi
h the representation in terms of invariants
ould show immediately why extrapolations of lower orders in perturbation theory 
ould not besu

essful. In addition the presentation in terms of group invariants is more general and needshardly any new work when one needs to apply it for di�erent groups or representations. The needfor this kind of generality is 
lear, for example, from grand uni�
ation and string theory, where allsemi-simple Lie groups may o

ur.We 
onsider non-abelian gauge theories based on simple 
ompa
t Lie groups. The extensionto semi-simple algebras and additional U(1) fa
tors is then straightforward. The gauge bosonsare assumed to 
ouple to matter in some irredu
ible representation R of the gauge group. Thegeneralization to redu
ible representations is also straightforward. The group-theoreti
al quantitiesthat appear in the initial expressions are the stru
ture 
onstants fab
 (appearing in gauge self-
ouplings and ghost 
ouplings) and the Lie-algebra generators T aR in the representation R, appearingin the 
oupling of the gauge bosons to matter. In this paper we 
onsider only \va
uum bubbles", i.e.diagrams without external lines. As far as the group theoreti
al fa
tor is 
on
erned, our results arerelevant for any diagram whose external lines 
arry no gauge quantum number, or for the absolutevalue squared of any amplitude if one sums over the gauge quantum numbers of all external lines.The group theoreti
al fa
tor of other diagrams 
an be obtained by multiplying the diagram byproje
tion operators.The group theory fa
tor of a va
uum bubble diagram 
onsists of tra
es of a 
ertain numberof matri
es T aR, whose indi
es are fully 
ontra
ted among ea
h other and with some 
ombina-tion of stru
ture 
onstants. Our goal is to obtain an expression for this fa
tor that is minimallyrepresentation- or group-dependent. In prin
iple, this goal 
an be a
hieved as follows.1. Express the tra
es in terms of symmetrized tra
es. This 
an always be done at the expenseof some additional fa
tors fab
Now one may simplify the resulting expression further by observing that the stru
ture 
on-stants 
an be viewed as representation matri
es in the adjoint representation. This allows usto2. Eliminate all 
losed loops of stru
ture 
onstants fab
.This amounts to performing step 1. on tra
es of adjoint matri
es T aA. Step 2. 
an also beperformed in an algorithmi
 way to arbitrary order. However, the algorithm is not identi
alto that of step 1 be
ause of the spe
ial properties of the adjoint representation.1Sin
e we are dealing with perturbation theory we only en
ounter Lie algebras, and we are insensitive to the globalproperties of the Lie group. Nevertheless, following standard pra
ti
e, we will often use the word \group" ratherthan \algebra". 2



3. Express the symmetrized tra
es in terms of a standard basis of symmetri
 invariant tensors.A Lie algebra of rank r has pre
isely r su
h tensors [4, 5℄.At this point we have su

eeded in expressing every group theory fa
tor in terms of r + 1representation-independent quantities, namely the symmetri
 tensors and fab
. The repre-sentation dependen
e is en
apsulated in terms of (generalized) indi
es [6℄. We show howthese indi
es 
an be 
omputed for any representation of any Lie-algebra to any desired or-der. This algorithm requires a 
onvenient 
hoi
e for the basis of tensors, whi
h is not themathemati
ally more elegant \orthogonal" basis advo
ated in [6℄. The result is also to areasonable extent group-independent. The only way group-dependen
e enters is trough the(non)-existen
e of 
ertain invariant tensors, but one may simply take all possible tensors intoa

ount, and only eliminate them at the end. The only problem is that the group SO(4N)has two distin
t tensors of rank 2N . This 
ase 
an rather easily be dealt with expli
itly.Although our main goal has now been a
hieved, the result is expressed in terms of many
ombinations of symmetri
 tensors and stru
ture 
onstants that are not all independent. Un-fortunately there do not seem to exist many mathemati
al results regarding these invariants.In parti
ular, we are not aware of any theorem regarding the minimal number of invariant
ombinations. For this reason the rest of our program is limited to �nite orders, and is notguaranteed to yield the optimal answer in all 
ases. As a �rst step we4. Eliminate as mu
h as possible the remaining stru
ture 
onstants fab
.We do not know of a proof that this is always possible, and in fa
t we have only been ableto do this expli
itly up to a 
ertain order. The �rst obje
t where we were unable to performstep 4 is built out of two stru
ture 
onstants and three rank 4 symmetri
 tensors.5. If step 4 is 
ompleted, one is left with a fully 
ontra
ted 
ombination of symmetri
 invarianttensors. We derive formulas expressing many su
h 
ontra
tions in terms of a few basi
 ones.The last step is essentially group dependent (and therefore somewhat outside our main inter-est):6. Compute a formula for the basi
 invariants for ea
h group.Here \basi
 invariant" is any of the 
ontra
ted 
ombinations of symmetri
 tensors that 
ouldnot be expressed in terms of others, and any 
ombination involving additional stru
ture
onstants that 
ould not be eliminated.None of these steps is new in itself, but we believe that in all 
ases we are going 
onsiderablybeyond previous results (see e.g [7-25℄). Sin
e the appli
ation we have in mind is to Feynmandiagrams, it is essential not just to develop an algorithm, but also to make sure it 
an be 
arriedout eÆ
iently. Compli
ated group theory fa
tors appear only at higher orders in perturbationtheory, whi
h implies that one must be able to deal with a very large number of diagrams.The organization of this paper is as follows. In the next se
tion we give some de�nitions and
onventions, and present some well-known general results on invariant tensors. In se
tion 3 wepresent the algorithm to perform step 1. Although this is in prin
iple straightforward, withoutproper 
are su
h an algorithm may qui
kly get out of 
ontrol. The same is true for step 2, whi
his presented in se
tion 4. In se
tion 5 we present the 
hara
ter method for 
omputing indi
es andsymmetrized tra
es. This se
tion is based on results presented in [26℄ and [6℄ , the main noveltybeing the extension to all higher indi
es of ex
eptional algebras. In se
tion 6 we dis
uss steps 4 and5. Se
tion 7 
ontains some remarks regarding the advantages and disadvantages of the two basis
hoi
es for the symmetri
 tensors. 3



In appendix A we present expli
it results for indi
es and tra
e identities of the ex
eptionalalgebras; appendix B 
ontains a des
ription of the 
omputer methods used, and in appendix C wegive a few examples to demonstrate the eÆ
ien
y of the algorithm. Appendix D 
ontains manyexpli
it formulas for invariants (step 6). In appendix E we dis
uss 
hiral tra
es in SO(2N)2 Generalities2.1 De�nitionsWe 
onsider simple Lie-algebras whose generators satisfy the 
ommutation relation[T a; T b℄ = ifab
T 
 (1)Our 
onventions is to use hermitean generators T a and to 
hoose the Killing form proportional toÆab: Tr T aT b / Æab (2)with a positive and representation dependent proportionality 
onstant that will be �xed later. Withthis 
onvention the stru
ture 
onstants fab
 are real and 
ompletely anti-symmetri
.
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Figure 1: Dynkin diagrams and labelling 
onventionsRepresentations are denoted either by their dimensions (if no 
onfusion is possible), or by theirDynkin labels (a1; : : : ; ar), where r is the rank. Our labelling 
onvention is indi
ated in �g 1. Abar denotes the 
omplex 
onjugate representation; \A" denotes the adjoint representation, \R" ageneri
 representation and \r" the referen
e representation to be de�ned later. The dimensions of4



these representations are denoted by NA, NR or Nr; the quadrati
 Casimir eigenvalues (de�nedmore pre
isely below) by CA, CR and Cr respe
tively.The generators of the adjoint representation are related to the stru
ture 
onstants(TA)ab
 = �i fab
 : (3)2.2 Invariant TensorsWe will en
ounter tra
es Tr T a1R : : : T anR (4)in any representation R of any simple Lie algebra. We wish to express the result in the minimalnumber of quantities.Every tra
e de�nes an invariant tensor M :Tr T a1R : : : T anR =Ma1:::anR : (5)This tensor is invariant be
ause the tra
e is invariant under the repla
ementT aR ! URT aRU�1R = UabA T bR ; (6)where UR is an element of the group in the representation R; UA is the same group element in theadjoint representation. Hen
e we haveMa1:::anR = Ua1b1A : : : UanbnA M b1:::bnR ; (7)whi
h implies, in in�nitesimal form Xi f 
baiMa1:::b:::anR = 0 ; (8)with b inserted at position i. This \generalized Ja
obi-identity" may be taken as the de�nition ofan invariant tensor.2.3 Casimir OperatorsEvery invariant tensor M de�nes a Casimir operator C(M)CR(M) = Xa1;:::;an T a1R : : : T anR Ma1:::an : (9)It follows from equation (8) that CR(M) 
ommutes with all generators TR in the representationR. If R is irredu
ible S
hur's lemma implies that CR(M) is 
onstant on the representation spa
eR. Note that this is true independent of the symmetry of M , and irrespe
tive of any 
on
retede�nition of M in terms of tra
es. All that is used is the Ja
obi-identity (equation (8)).Of spe
ial interest are the quadrati
 Casimir operators CR, whi
h we de�ne as(T aRT aR)ij = CRÆij : (10)As a spe
ial 
ase of this identity we 
an write, using equation (3)fa
df b
d = CAÆab : (11)5



2.4 Symmetrized tra
esNot all invariant tensors and Casimir operators 
onstru
ted so far are independent. We would liketo express all tra
es in terms of a minimal set of invariant tensors. As a �rst step one may use the
ommutation relations to express the tra
e in a 
ompletely symmetri
 tra
e plus terms of lowerorder in the generators, whi
h in their turn 
an also be expressed in terms of symmetrized tra
es.An eÆ
ient algorithm for doing this will be dis
ussed in the next se
tion. After this step we onlyneed to 
onsider symmetrized tra
esStr T a1 : : : T an � 1n!X� Tr T a�(1) : : : T a�(n) ; (12)where the sum is over all permutations of the indi
es (the 
y
li
 permutation may of 
ourse befa
tored out using the 
y
li
 property of the tra
e).For ea
h representation one may de�ne a symmetri
 invariant tensor dR withda1 :::anR � Str T a1R : : : T anR ; (13)but this still vastly overparametrizes the problem, be
ause a new tensor is de�ned for every ordern and for every representation R.2.5 Basi
 Casimir invariantsIt is well-known that the number of independent symmetri
 invariant tensors is equal to the rankof the algebra. This 
an be seen as follows. For ea
h invariant symmetri
 tensor d of order n de�nea polynomial Pd(F ) = F a1 : : : F anda1:::an ; (14)where F a is a real ve
tor of dimension equal to the dimension of the algebra, NA. The tensor d
an be derived from Pd(F ) by di�erentiating with respe
t to F :da1:::an = 1n! ��F a1 : : : ��F an Pd(F ) : (15)Although a priori Pd(F ) is a polynomial in NA variables, the fa
t that d is an invariant tensorimplies that Pd depends in fa
t only on r variables, where r is the rank of the algebra. This is truebe
ause the polynomial is invariant underF a ! Ua
A F 
 ; (16)and it is well-known that for every F a one 
an �nd a transformation UA that rotates F a into theCartan subalgebra. Hen
e Pd(F ) depends only on as many parameters as the dimension of theCartan subalgebra, i.e. r. Therefore it is not surprising that any su
h polynomial 
an be expressedin terms of r basi
 ones, although the pre
ise details (e.g. the orders of the basi
 polynomials) don'tfollow from this simple argument.The orders of the basi
 polynomials for ea
h group are known [4, 5℄, and are given in the followingtable (for future purposes this table also gives the \dual Coxeter number" g). As explained above,ea
h basi
 polynomial 
orresponds to an invariant tensor, whi
h in its turn 
orresponds to a Casimirinvariant. The impli
ation of table 1 is that for any given algebra the polynomialsTr F nR � Tr (Xa F aT aR)n (17)6



Algebra g Invariant tensor ranksAr r + 1 2; 3; 4; : : : ; r; r + 1Br 2r � 1 2; 4; 6; : : : ; 2rCr r + 1 2; 4; 6; : : : ; 2rDr 2r � 2 2; 4; 6; : : : ; 2r � 2; rG2 4 2; 6F4 9 2; 6; 8; 12E6 12 2; 5; 6; 8; 9; 12E7 18 2; 6; 8; 10; 12; 14; 18E8 30 2; 8; 12; 14; 18; 20; 24; 30Table 1: Ranks of basi
 invariant tensors
an be expressed in terms of r basi
 polynomials of degrees as indi
ated above. In se
tion 5 we willshow how to obtain su
h expressions for any irredu
ible representation (irrep) of any (semi)-simpleLie algebra. The ranks of the invariant tensors { or more a

urately those2 that 
an be written astra
es over some representation R { are in fa
t an out
ome of these 
al
ulations.If we 
an express a polynomial 
orresponding to some invariant tensor d in terms of basi
polynomials, we 
an also express the invariant tensors into basi
 ones. Namely, supposePd(F ) =XYi Pdi(F ) (18)where the sum is over various terms of this type, with 
oeÆ
ients. Then the di�erentiation (eq.15)of a term on the right hand side yields pre
isely the fully symmetrized 
ombination of the tensorsdi, with weight 1; this means that the overall 
ombinatorial fa
tor equals the number of terms. Forexample 14! ��F a ��F b ��F 
 ��F d (Xe (F e)2)2 = 13(ÆabÆ
d + Æa
Æbd + ÆadÆb
) : (19)In pra
ti
e we will express all higher tra
es in terms of r basi
 ones, but we do not obtainthe full dependen
e on F of the basi
 tra
es, and 
onsequently we 
annot say anything about theexpli
it form of the basi
 invariant tensors. Given an expli
it basis for the Lie-algebra one may
ompute the full F -dependen
e, but that is the same as 
omputing the invariant tensor dire
tly by
omputing a tra
e.2.6 Indi
esSin
e a Casimir operator is 
onstant on a irrep, its value 
an be 
omputed by taking the symmetrizedtra
e over this irrep. We will see expli
itly how to expand a tra
e in terms of fundamental symmetri
invariant tensors. In general one hasStr T a1R : : : T anR = In(R)da1:::an + produ
ts of lower orders : (20)The invariant tensors 
an be 
hosen in some representation-independent way, for example by 
om-puting it for one given referen
e representation. Then all symmetrized tra
es 
an be expressedin terms of this basis of tensors. The leading term ne
essarily has the indi
ated form, with a
omputable representation dependent 
oeÆ
ient In(R). This 
oeÆ
ient is 
alled the nth index of2We are not aware of others, but also not of a proof that they do not exist.7



the representation. If there is no fundamental invariant tensor of order n the indi
es In(R) areobviously zero for any representation.3The extra terms in equation (20) are symmetrized produ
ts of lower order tensors su
h thatthe total order is n, without 
ontra
ted indi
es. The 
oeÆ
ients of these terms will be 
alledsub-indi
es.There is a lot of freedom in de�ning da1:::an sin
e we 
ould have modi�ed it by any 
ombinationof lower order terms in equation (20). Note that modifying the tensors by lower order terms doesnot a�e
t the indi
es, but does 
hange the sub-indi
es. This freedom 
an be used to impose the
onditions [6, 24℄ da1 :::al:::an? da1:::al? = 0 l < n (21)This then de�nes the symmetrized tensors up to an overall normalization. The normalization 
anbe �xed by �xing a normalization for the indi
es. This basis will be referred to as the orthogonalbasis. It is the most elegant one from a mathemati
al point of view, but, as we will see, not the most
onvenient one for our purposes. In the following we will use the notation da1:::al:::an? for tensors inthe orthogonal basis.As mentioned before, tensors de�ned in any basis 
an be used to de�ne Casimir invariants, butusing the orthogonal basis has a 
lear advantage be
ause it leads to a simple relation with theindi
es (NR is the dimension of R) : In(R) = NRNnCp(R) ; (22)where Nn = da1:::an? da1:::an? : (23)This relation holds be
ause when 
ontra
ting with an orthogonal tensor only the leading termssurvive. Note that this is true even if we do not expand equation (20) in terms of the orthogonalbasis, but in terms of any other basis. Hen
e the Casimir eigenvalues are determined up to arepresentation independent fa
tor on
e the indi
es are known.The indi
es are of interest in their own right, as was in parti
ular emphasized in [6℄. In some
ases they have a topologi
al interpretation via index theorems. Furthermore they satisfy a usefultensor produ
t sum rule. If R1 
R1 =Xi �Ri (24)then NR1Ip(R2) +NR2Ip(R1) =Xi Ip(Ri) : (25)In subgroup embeddings H � G there is also su
h a sum rule for bran
hing rules: if R ! Pi�rithen IGp (R) = Ip(G=H)Xi IHp (ri) ; (26)where Ip(G=H) is the embedding index (here we assume that both G and H have pre
isely oneindex of order p; other 
ases require just slightly more dis
ussion).3For Dr, r even, there are two indi
es of order r. The additional one will be denoted as ~Ir. We will deal with this
ase in more detail below.
8



2.7 NormalizationTo arrive at a universal normalization we make use of the following general formula for the quadrati
Casimir invariant CR = �2 rXi=1 rXj=1(ai + 2)Gijaj (27)Here ai are the Dynkin labels of the representation R, and Gij is the inverse Cartan matrix. Theadvantage of this formula is that the Dynkin labels as well as the Cartan matrix have a �xednormalization that is not subje
t to 
onventions. Only the overall normalization is 
onventiondependent. The fa
tor � is introdu
ed to allow the reader to �x the normalization a

ording totaste. The dependen
e on � will be shown expli
itly in all formulas. Given the universality of (27)it is natural to 
hoose � in a group-independent way. Using (27) get for CA:CA = �g ;where g is the dual Coxeter number.This 
onvention de�nes the normalization of the generators on
e we have �xed the rank 2symmetri
 tensor. The natural de�nition isdab = dab? = Æab:Then N2 � dab? dab? = NA. Now the se
ond index I2(R) is also �xed via (22):I2(R) = NRNACR :For the ve
tor representations V of the 
lassi
al Lie algebras we �nd then I2(V ) = 12� for SU(N)and Sp(N), and I2(V ) = � for SO(N).There are (at least) two 
onsiderations that might lead to a 
hoi
e for �. First of all it is possibleto �x the 
onventions in su
h a way that I2(R) is always an integer. This leads to the 
hoi
e � = 2.On the other hand there are standard 
hoi
es for the generators of SU(2) namely T a = 12�a (where�a are the Pauli-matri
es), and for SO(N), namely T ��ij = i(Æ�i Æ�j � Æ�j Æ�i ), where the pair �� with� < � represents an adjoint index. Unfortunately these two 
hoi
es 
orrespond to di�erent valuesof �, namely � = 1 for SU(2) and � = 2 for SO(N).2.8 Indi
es versus Casimir invariantsWe 
on
lude this se
tion with a few histori
al remarks.A vast amount of literature exists on the 
omputation and properties of Casimir invariants.Most of these papers, [7-19℄, give more or less expli
it expressions for the Casimir eigenvalues ofthe 
lassi
al Lie Algebras An; Bn; Cn and Dn and in one 
ase, [17℄, also for G2. In [22, 23℄ formulasfor G2 and F4 are obtained, whereas E8 was 
onsidered, up to order 14, in [25℄. The issue of
ompleteness of a set of Casimir operators was studied in [20, 21℄.In appli
ations to Feynman diagrams indi
es are more important than Casimir invariants, be-
ause tra
es over matter loops yield indi
es and sub-indi
es, and not Casimir invariants. Indi
eshave been dis
ussed most frequently in relation to 
hiral anomalies. The se
ond index was intro-du
ed by Dynkin, [27℄, and generalized to higher order in [28℄. Shortly afterwards [6℄ it was realizedthat the de�nition of the indi
es 
ould be improved by imposing the orthogonality 
onstraint (21).In [6℄ formulas are given for the indi
es of 
lassi
al Lie algebras. Indi
es of ex
eptional algebras havebeen studied up to sixth order, mainly for the purpose of anomaly 
an
ellation in ten dimensions,9



relevant for string theory. Sub-indi
es, when de�ned in the orthogonal basis, 
an be expressed interms of indi
es. Unfortunately these relations are diÆ
ult to obtain, and be
ome very 
ompli
atedat higher orders unless some lower indi
es vanish. In [6℄ formulas for SU(n) have been given up to�fth order. We have 
omputed the sixth order formula, but the result is rather awkward and doesnot en
ourage extension to higher orders.Although, as explained above, indi
es are 
losely related to Casimir invariants, the availableformulas for the latter are of little use to us sin
e they do not use orthogonal tensors for thede�nition of the Casimirs. Even if they did, one would still need the normalization fa
tor Nn, (23).The 
omputation of this fa
tor for all Lie-groups and all values of n is a diÆ
ult problem, relatedto the even more diÆ
ult problem of determining the tensors da1:::an? expli
itly. For re
ent progresson the latter problem for the 
lassi
al Lie algebras see [24℄. We do not present expli
it expressionsfor the symmetri
 tensors here. Sin
e they always appear in 
ontra
ted form, we never need themexpli
itly.Furthermore the Casimir eigenvalues give no information on sub-indi
es.3 Redu
tion to symmetrized tra
esIn this se
tion we will dis
uss the redu
tion of tra
es as they o

ur in Feynman diagrams intothe invariants of the previous se
tion. This is by no means a trivial a�air be
ause the ne
essarysymmetrizations make that the algorithms typi
ally involveO(n!) terms when there are n generatorsin the tra
e. It is therefore important to 
hoose the method 
arefully. We will have to distinguishtwo 
ases. In this se
tion we will make the redu
tion of tra
es of the type Str T a1R : : : T anR inwhi
h R 
an be any representation with the ex
eption of the adjoint representation. In the nextse
tion we will 
onsider su
h tra
es for the adjoint representation. The spe
ial role of the adjointrepresentation lies in the fa
t that, be
ause of the equation (3), the 
ommutation relation[T aA; T bA℄ = i fab
T 
A (28)does not really diminish the number of generators of the adjoint representation. It is a
tuallyjust a di�erent way of writing the Ja
obi identity. A related reason for 
onsidering the adjointrepresentation separately is that the redu
tion of the other tra
es generates new stru
ture 
onstants.We will 
ontinuously keep in mind that the algorithms we derive are for implementation ina symboli
 
omputer program. This means that in many 
ases a re
ursion type algorithm maysuÆ
e, even though it may not be very pra
ti
al for hand 
al
ulations.3.1 First stage eliminationThe �rst part of the redu
tion is dedi
ated to the repla
ement of the tra
es over the generators TRby the invariants dR. For all representations ex
ept for the adjoint this 
an be done in a generalalgorithm. One should realize however that for very 
ompli
ated tra
es the results may not be veryshort.In general a tra
e is not symmetrized. Therefore the introdu
tion of the tensors dR needs somework with 
ommutation relations to make it symmetri
. On the other hand, 
omputer algebra needsalgorithms that work from a formula, rather than towards one. Hen
e one 
an use the substitutionTr[T a1R � � � T anR ℄ = Tr[T a1R � � � T anR ℄� Str T a1R � � � T anR + da1���anR (29)Writing out the symmetrized tra
e will of 
ourse give n! terms, ea
h with a fa
tor 1=n!. Then we
an 
ommute the various T aiR T ajR till they are all in the order of the original tra
e after whi
h the n!10



terms with n generators will 
an
el the original tra
e. At this point we are left with the symmetri
tensor dR and O(n n!) terms whi
h all have n � 1 generators. As a re
ursion it will eventuallyresult in terms with only two generators for whi
h we know the tra
e. This algorithm is howeverrather 
ostly when the number of generators inside the tra
e is large.The above formula has as its main bene�t that it proves that one 
an express a tra
e ofgenerators T of any representation R 6= A in terms of symmetrized tra
es and stru
ture 
onstantsf . For pra
ti
al purposes we have a better algorithm. It is based on the formula:T fa1R � � � T angR T bR = nXj=0 (�1)jj! BjEa1���anbj (30)in whi
h Bj is the j-th Bernoulli number. ( B0 = 1, B1 = �1=2, B2 = 1=6 and B4 = �1=30) andthe fun
tion Ej is de�ned by the re
ursionEa1 ���an0 = T fa1R � � � T angR (31)Ea1���anbj = nXi=1Ea1���ai�1ai+1���ankj�1 ifaibk (32)Basi
ally in the Ej one extra
ts a string of j stru
ture 
onstants f . By writing out the fun
tionsEj one 
an show with some work that the proof of this formula is equivalent to proving the relationR0 = 1n+ 1B0 nXi=0Ri+ nXi=1 n!(n+ 1� i)! (�1)ii! Bi i�1Xj=0(�1)j (i� 1)!j!(i� 1� j)! (Rj + (�1)iRn�j) (33)This equation should hold for any positive value of n and any 
hoi
e of the Ri (The Ri representthe symmetri
 
ombination of T i1 to T in with a T b inserted at i pla
es from the right. Hen
e R0is the left hand side term of equation (30)). A
tually the Ri are independent obje
ts and hen
e wehave a set of equations ea
h of whi
h is 
hara
terized by a value for n and the index j of Rj . Toprove the whole formula we have to prove that all of these equations are valid. We use the followingapproa
h: One 
an test their validity for any small value of n and all allowed values of j (
omputeralgebra lets one 
he
k this easily up to n = 100). Next one takes the spe
ial 
ase of only R0 notequal to zero and the 
ase of only Rn not equal to zero. These are rather easy to prove. Then onetakes the 
ase for R1 not equal to zero. This is only a little bit more 
ompli
ated. Finally one 
anexpress the 
ase for other values of n and j in terms of the equation for n� 1; j � 1 and n; j � 1.This then 
ombines into a proper indu
tion proof. The above formula 
an give some interestingsummations when one sele
ts spe
ial values for the Ri like Ri = xi after whi
h the inner sum 
anbe done.An important part in the appli
ation of equation (30) is how to terminate the re
ursion. Wenote that due to the 
y
li
 property of tra
esTr hT fa1R � � � T angR T bRi = da1 ���anbR (34)Additionally we 
an terminate two 
ases in whi
h there are still two generators outside the sym-metrization: Tr [T a1R T a2R T a3R ℄ = da1a2a3R + i2fa1a2a3I2(R) (35)11



Tr hT fa1R T a2gR T a3R T a4R i = da1a2a3a4R + i2fa3a4kda1a2kR+ 112I2(R)(fa1a3kfa2a4k + fa1a4kfa2a3k) (36)All together this algorithm is far superior. For a tra
e of 7 generators TR all with di�erent indi
esit is about 50 times faster than the one based on equation (29).Just as with tra
es of 
-matri
es one 
an make the algorithms mu
h faster with a number ofsupporting tri
ks for 
ontra
ted indi
es. This is however not quite as simple as with 
-matri
es.When the 
ontra
ted indi
es are 
lose to ea
h other, we useT bRT aRT aRT 
R = CRT bRT 
R (37)T aRT bRT aR = (CR � 12CA)T bR : (38)The relation between I2(R) and CR is given by NRCR = I2(R)NA. Additionally we haveT a1R T a2R T bR � � � T 
RT a1R T a2R = T a1R T a2R T bR � � � T 
RT a2R T a1R � 12CAT a1R T bR � � � T 
RT a1R (39)And then for 
ontra
ted indi
es that are not very 
lose to ea
h other we 
an use:T jR � � � T aRT bRT jR = T jR � � � T aRT jRT bR + if bj
T jR � � � T aRT 
R= T jR � � � T aRT jRT bR + if bj
T jR � � � T 
RT aR � f bj
fa
dT jR � � � T dR (40)We 
ommute the T 
R matrix also towards the T jR matrix be
auseif bj
T jRT 
R = i2f bj
(T jRT 
R � T 
RT jR)= �12f bj
f j
dT dR= �12CAT bR (41)Hen
e we 
an always eliminate two generators TR when there is a pair of 
ontra
ted indi
es. Someterms may however obtain two f -matri
es in ex
hange. The above equation shows also that thetra
e of a string of generators of whi
h two generators are 
ontra
ted with the same stru
ture
onstant f , will lead to simpli�
ations by 
ommuting the two generators towards ea
h other. Inthis 
ase many of the terms that 
ome from a 
ommutator have just one generator fewer than theoriginal term.By now it should be 
lear why the adjoint representation 
annot be treated in exa
tly the sameway. Eliminating two generators at the 
ost of introdu
ing two stru
ture 
onstants f leaves us withexa
tly the same number of generators of the adjoint representation.We 
an use a few extra short
uts for simple 
ases to avoid the use of equation (30) in those
ases: Tr[T a1R T a2R T a3R ℄ = da1a2a3R + i2I2(R)fa1a2a3Tr[T a1R T a2R T a3R T a4R ℄ = da1a2a3a4R + i2(da1a4nR fa2a3n � da2a3nR fa1a4n)+16I2(R)(fa1a4nfa2a3n � fa1a2nfa3a4n) (42)12



To get the last equation into its minimal form we have used the Ja
obi identities:0 = f i1i2jf i3i4j + f i2i3jf i1i4j + f i3i1jf i2i4j0 = di1i2jf i3i4j + di2i3jf i1i4j + di3i1jf i2i4j (43)It is possible to 
reate similar short
uts for the higher tra
es. This serves however not mu
hpurpose. The majority of 
ases involves short tra
es and these expressions are rather lengthy.4 Redu
tion of adjoint tra
esAt this stage we have only tensors of the type dR and stru
ture 
onstants f left as obje
ts withindi
es. All these indi
es are indi
es in the adjoint spa
e and hen
e all have NA dimensions.Additionally there 
an be various 
onstants like the se
ond order Casimir's and the se
ond orderindi
es I2(R), but these do not play a role in the following.For the other representations the loops that de�ne the tra
e were rather easy to �nd. For theadjoint representation this is more 
ompli
ated: all three indi
es of the stru
ture 
onstant f 
anplay a role and hen
e there are more possibilities. The advantage is that very often one 
an �nd`smaller' loops. If for instan
e we have a diagram that 
onsists of only verti
es in the adjointrepresentation and there are no loose ends we have the results of table 2 in whi
h `girth' is the sizegirth 2 3 4 5 6 7 8 9nmin 2 4 6 10 14 24 30 54Table 2: Minimum number of verti
es needed for a diagram with a given smallest loop.of the smallest loop in the diagram and nmin is the minimal number of verti
es needed to 
onstru
tsu
h a diagram. Of 
ourse in mixed diagrams in whi
h other representations are involved one 
anget loops in the adjoint representation that have up to n=2 verti
es if n is the total number of verti
esin the diagram. Su
h would be the 
ase of there is one loop of n=2 verti
es in a representation Rand a parallel loop of adjoint verti
es. But in that 
ase the loop is easy to �nd, and the symmetryof the invariant dR that is present already makes the introdu
tion of the dA into a triviality: dueto its 
ontra
tion with dR the tra
e over the adjoint generators has already been symmetrized.Let us �rst have a look at the 
anoni
al redu
tion algorithm of equation (29). At �rst one mightbe worried that it will not terminate for the adjoint representation. After all it does not diminishthe number of stru
ture 
onstants f . One 
an see qui
kly however that the 
ommutator terms havea simpler loop stru
ture. Hen
e ea
h term will end up having a number of f 's grouped into aninvariant or have a loop with fewer f 's even though the total number of f 's is still the same. On
ewe have a loop with at most three stru
ture 
onstants it 
an be redu
ed with the equationf i1i2a1f i2i3a2f i3i1a3 = 12CAfa1a2a3 (44)whi
h 
an be derived from the Ja
obi identity. Hen
e in all 
ases the number of stru
ture 
onstantsf will be
ome less. Similarly the algorithm of equation (30) will redu
e a number of generators ofthe adjoint representation to a symmetrized tra
e and a smaller number of stru
ture 
onstants f .Hen
e also this algorithm will terminate.It is however possible to be more eÆ
ient about the redu
tions inside the adjoint representation.Our �rst observation is that for loops with an odd number of verti
es in the adjoint representationreverting the order of the verti
es gives a minus sign. Hen
e the fully symmetri
 obje
t with an13



odd number of indi
es must be zero. And be
ause of this we do not need a full symmetrization toexpress loops with an odd number of indi
es. For example for �ve indi
es we writeF i1i2i3i4i5 = �F i5i4i3i2i1= �F i1i5i4i3i2= �F i1i2i3i4i5 + F ki4i3i2f i1i5k+F i1i4ki5f i3i2k + F i1i3ki5f i4i2k + F i1i2ki5f i4i3k (45)in whi
h F represents the tra
e over a number of f 's. Its di�eren
e with a tra
e over the TA-generators (3) is just powers of i. Similarly one 
an use the reversal symmetry for tra
es of an evennumber of f 's to redu
e the amount of work by a fa
tor two.Be
ause of the above simpli�
ations the eÆ
ien
y of the two algorithms ((29) and (30)) is notvery di�erent for the adjoint representation.The redu
tion algorithm should be 
lear now. One looks for the smallest loop among thevarious f 's. Su
h a loop will not have 
ontra
ted indi
es, be
ause otherwise there would be asmaller loop. Hen
e we do not have to worry about 
ontra
ted indi
es as we had to do for the otherrepresentations. If the loop has only two or three f 's, we 
an eliminate it with either equation (11)or equation (44). Otherwise we 
an use a simpli�ed version of the 
anoni
al redu
tion algorithm ofequation (29) to obtain an invariant and terms with a simpler loop. A
tually the fastest way hereis to tabulate this redu
tion all the way up to loops with 7 f 's. For loops of 8 or more verti
es inthe adjoint representation we use an adapted version of equation (30).5 Computation of symmetrized tra
esAt this point our group theory fa
tors 
onsist of 
ombinations of stru
ture 
onstants, symmetrizedtra
es da1 ;:::;anA over the adjoint representation, and symmetrized tra
es over one or more otherirredu
ible representations. We will now show how su
h tra
es 
an be expressed in terms of rtra
es over a single representation, where r is the rank of the algebra.As explained in se
tion 2, in prin
iple there are three quantities one might be interested in:Casimir invariants, indi
es and symmetri
 tensors.The results presented here amount to a 
omputation of the 
oeÆ
ients of 
ombinations offundamental tra
es appearing in the expansion of a tra
e in an arbitrary representation. In otherwords, we 
ompute indi
es and sub-indi
es (but, as explained in se
tion 2, the latter are basis-
hoi
edependent).With our method these quantities 
an rather straightforwardly be 
omputed to any desiredorder, and for any representation of any Lie algebra. To demonstrate this we will 
ompute all theindi
es for the lowest-dimensional representations of the ex
eptional algebras, in
luding the 30thindex of E8.The method we follow here is an extension of results of [26℄ (where it was used to obtain the"ellipti
 genus" in string theory), whi
h in its turn was an extension of results presented in [6℄(where it was used for 
omputing the indi
es of the 
lassi
al algebras).5.1 Chara
tersAn extremely useful tool for 
omputing tra
es are the 
hara
tersChR(F ) = Tr eFR (46)14



where FR = F aT aR. Hen
e the expansion of the exponential gives us all symmetrized tra
es in termsof the polynomials de�ned in equation (14). What makes the 
hara
ters espe
ially useful is theirtensor property ChR1
R1(F ) = ChR1(F )ChR2(F ) ; (47)whi
h follows dire
tly from its de�nition. In addition 
hara
ters are 
ombinations of tra
es andtherefore also have ni
e properties on dire
t sumsChR1�R1(F ) = ChR1(F ) + ChR2(F ) : (48)With a little more e�ort one 
an also derive a formula for 
hara
ters of symmetrized and anti-symmetrized tensor produ
ts [29℄. These formulas 
an be derived from the following generatingfun
tions 1Xk=0xkCh[k℄�R(F ) = det(1 + xeFR) = 1Yl=1 exp(�(�x)lChR(lF )) (49)1Xk=0xkCh(k)�R(F ) = det(1� xeFR)�1 = 1Yl=1 exp((x)lChR(lF )) : (50)Here [k℄ denotes the order k anti-symmetri
 tensor produ
t of some representation R, and (k) theorder k symmetri
 produ
t. We use the notation [k℄ �R or (k) �R to denote the anti-symmetrizedor symmetrized tensor produ
t of the representation R. Note that the sum in equation (49) is infa
t always �nite.The generating fun
tions 
an be expanded expli
itly to obtainCh[k℄�R(F ) = � Xfni;migk=nimi Yi 1mi! ��ChR(niF )ni �mi (51)Ch(k)�R = Xni;mik=nimi Yi 1mi! �ChR(niF )ni �mi ; (52)where the sum is over all partitions of the integer k into di�erent integers ni, ea
h appearing withmultipli
ity mi.5.2 Chara
ter 
omputation methodOur method for 
omputing the 
hara
ters is as follows. We begin by 
hoosing a referen
e repre-sentation, whi
h in all 
ases is the one of smallest dimension. The referen
e representations we
hoose for the simple Lie algebras are shown in table 3. (the last 
olumn of this table is explainedlater) Note that for SO(N) the referen
e representation is the ve
tor representation for N � 7,but for lower values of N it is a spinor representation. Another way of saying this is that we treatSO(N); N � 6 a

ording to the Lie-algebra isomorphisms D3 � A3, B2 � C2 and B1 � A1. Thelast 
olumn of table 3 is dis
ussed below. The algebras B3; B4;D4 and D5 are listed separatelybe
ause, although they have the \standard" referen
e representation, they have non-standard indexnormalizations.For the referen
e representation the 
hara
ter is left in the formCh(F ) = Tr eF ; (53)All tra
es whose order does not appear in table 1 
an be expressed in terms of lower tra
es. Hen
eequation (53) must be supplemented by tra
e identities for those tra
es. These tra
e identities will15



Algebra Referen
e representation Dimension Indi
esAr (1; 0; : : : ; 0) r + 1 1; : : : ; 1B1 (1) 2 1B2 (0,1) 4 1,1B3 (1,0,0) 7 2,2,1B4 (1,0,0,0) 9 2,1,1,2Br; r � 5 (1; 0; : : : ; 0) 2r + 1 2; 1; : : : ; 1Cr (1; 0; : : : ; 0) 2r 1; : : : ; 1D3 (0; 0; 1) 4 1,1,1D4 (1; 0; 0; 0) 8 2,2,1,0D5 (1; 0; 0; 0; 0) 10 2,1,1,2,0Dr; r � 3 (1; 0; : : : ; 0) 2r 2; 1; : : : ; 1; 0G2 (0; 1) 7 2,1F4 (0; 0; 0; 1) 26 6,1,1,1E6 (1; 0; 0; 0; 0; 0) 27 6,1,1,1,1,1E7 (0; 0; 0; 0; 0; 1; 0) 56 12,1,1,1,1,29,1229E8 (1; 0; 0; 0; 0; 0; 0; 0) 248 60,1,1,1,1,41,199,61Table 3: Referen
e representations, dimensions and indi
es.be derived below. The remaining tra
es will be 
alled \fundamental" and equation (53) is taken tobe the de�nition of the 
orresponding polynomials and symmetri
 tensors. This then de�nes a setof referen
e tensors: da1:::;anr = Str T a1r : : : T anr (54)where n is the order of a fundamental Casimir operator. The pre
ise form of this tensor, orequivalently the pre
ise form of the fundamental polynomials Tr F n depends on the details of theLie algebra basis 
hoi
e, but will never be needed.Any other 
hara
ter is now written in terms of tra
es of F n over the referen
e representation,using all available tra
e identities. By di�erentiating with respe
t to F (
.f. eq. (19)) one 
an thenread o� the expression of any dR in terms of referen
e tensors.This fails if the referen
e representation has an index that is zero. This happens only for thenth index of the algebra Dn, and we will deal with that 
ase separately.The next step is to express the 
hara
ters of all \basi
" representations in terms of the referen
e
hara
ter. The ith basi
 representation is de�ned by Dynkin labels aj = Æij , j = 1; : : : ; r. Themost important tool for obtaining these 
hara
ters is equation (51). This yields all fundamentalrepresentations of the algebras Ar and Cr, whereas for the orthogonal groups only the spinorrepresentations are still missing. The spinors, as well as the basi
 representations of the ex
eptionalalgebras, require some extra work, and are dis
ussed below.Finally one 
an 
ompute the 
hara
ters of all other representations by using in a systemati
way the sum rule for tensor produ
ts. It 
an be proved that for any simple Lie-algebra this allowsone to relate the 
hara
ters of all other irreps linearly to those of the basi
 ones. In prin
iple thisstill allows for the possibility that 
ompli
ated linear equations need to be solved. We �nd however,that one 
an organize the tensor produ
ts in su
h a way that only one unknown 
hara
ter appearsat every step. This 
an be proved for the 
lassi
al Lie algebras (see below), and we have 
he
kedit empiri
ally for the ex
eptional ones.
16



Let us 
ontrast this pro
edure with the 
omputation via Weyl's 
hara
ter formulaCh�(h) = Pw2W �w exp(w(� + �); h)Pw2W �w exp(w(�); h) (55)where � is the highest weight of a representation, the summation is over all elements w in the Weylgroup W , �w is the determinant of w, � is the Weyl ve
tor (with Dynkin labels all equal to 1), andh is a ve
tor in weight spa
e, whi
h plays the rôle of F in the foregoing dis
ussion. One obviousdisadvantage of this formula is the summation over all elements of the Weyl group, although thisis still manageable in most 
ases of interest. A less obvious disadvantage is that numerator anddenominator both have a zero of order N+, the number of positive roots, in h. For example, toobtain the highest non-trivial Casimir eigenvalue of E8, whi
h is of order 30, one needs to expandnumerator and denominator to order N+ + 30 = 150. This is an impossible task. The methodsket
hed above, and worked out below, does allow an expansion of the 
hara
ter to order 30, evenfor E8.An important ingredient in our pro
edure is obviously the 
omputation of tensor produ
ts.Con
eptually this is 
ertainly not easier than the 
omputation of 
hara
ters, but nowadays 
omputerprograms exist that 
an do this very eÆ
iently.4 Rather than using 
hara
ters (and in parti
ularindex sum rules) to 
ompute tensor produ
ts, it is then more eÆ
ient to use tensor produ
tsto 
ompute 
hara
ters. The pro
edure des
ribed here requires just a small e�ort to 
omputethe 
hara
ters of the basi
 representations up to a 
ertain desired order. The 
omputation ofthe 
hara
ter of any other representation is then just a matter of simply polynomial operations(multipli
ations, additions and subtra
tions whi
h 
an be eÆ
iently performed by any symboli
manipulation program, su
h as FORM) guided by the output of a program that 
omputes tensorprodu
ts.5We will now dis
uss the various types of algebras in more detail.5.3 Ar 
hara
tersLet us now apply these tools �rst of all to Lie algebras of type Ar (SU(r + 1)). For the referen
erepresentation we 
hoose the ve
tor representation (r + 1). Using equation (49) we 
an thenimmediately write down the 
hara
ters for all the anti-symmetri
 tensor produ
t representations[k℄. In terms of Dynkin labels these are all the representations with labels (0; : : : ; 0; 1; 0; : : : ; 0), i.e.a single entry 1. These are pre
isely the basi
 representations.Now we 
an systemati
ally use the tensor produ
t rule (47) and the sum rule (48) to obtain
hara
ter formulas for all other irredu
ible representations. IfR1 
R2 =Xi �niRi (56)then ChR1(F )ChR2(F ) =Xi niChRi(F ) (57)By 
omputing the produ
t of two known 
hara
ters and subtra
ting the known 
hara
ters on theright hand side one is left with the 
hara
ter of some (in general redu
ible) representation, whi
his thereby determined.4We have used the programs LiE [30℄ that 
omputes tensor produ
ts of Lie-algebra representations dire
tly andKa
 [31℄ that uses the Verlinde formula to 
ompute fusion rules of Ka
-Moody algebras. A subset of these fusion rules
oin
ides with tensor produ
t rules, and it turns out that this pre
isely in
ludes the tensor produ
t rules we need.5We have implemented this idea in the program Ka
. The results in the appendix were produ
ed in that way. Ata given Ka
-Moody level, the fusion rules that 
oin
ide with tensor produ
ts are found to be suÆ
ient to obtain the
hara
ters of all representations at that level. For examples and software see http://norma.nikhef.nl/pub/�t5817



To show how this works we label the SU(r + 1) irreps by Young tableaux and assign a partialordering to them. We use Young tableaux be
ause for Ar they provide a 
onvenient des
ription ofthe tensor produ
t rule. A Young tableau is ordered above another one if it has more 
olumns; ifthe number of 
olumns is the same the one with the largest last 
olumn is ordered above the otherone. Suppose now that we know the 
hara
ters of all representations ordered below a representationR with Young tableau [k1; : : : ; kl℄. Consider then the tensor produ
t [k1; : : : ; kl�1℄
 [kl℄. Both areordered below R and hen
e their 
hara
ters are known a

ording to our assumption. The tensorprodu
t yields [k1; : : : ; kl℄ plus representations ordered below [k1; : : : ; kl℄, and hen
e we 
an nowdetermine the 
hara
ter of R. Pro
eeding like this we 
an systemati
ally 
ompute all 
hara
ters.Not only the 
hara
ters, but also the tra
e identities for Ar were obtained in [26℄Xfni;migk=nimi Yi 1mi! ��Tr F nini �mi = 0 (k > r + 1) ; (58)where the summation is as in equation (51). This result was obtained from equation (51) using thefa
t that for Ar anti-symmetri
 tensors of rank larger than the rank of the algebra are trivial.To illustrate this let us return to the Weyl formula, equation(55). For A1 this yields a verysimple result for a representation of spin j:Chj(h) = sinh((2j + 1)h)sinh(h) (59)Expanding this for the spin-12 representation (j = 12) we getCh12 (h) = 2 + h2 + 112h4 + 1360h6 + : : : (60)The spin-12 representation serves as the referen
e representation in our method. Hen
e its 
hara
teris Tr eF = 2 + 12(TrF 2) + 124(TrF 4) + 1720(TrF 6) + : : : (61)Using the SU(2) tra
e identities (58) Tr F 4 = 12(TrF 2)2 andTr F 6 = 6(� 148((TrF 2)3) + 18(TrF 2)(TrF 4)= 14(TrF 2)3 (62)we arrive at the answer Tr eF = 2 + 12(2h2) + 124(2h4) + 1720(2h6) + : : : (63)were we substituted F = h�3, so that Tr F 2 = 2h2 (Obviously we 
ould have substituted thediagonal form of F dire
tly in equation (61), but the use of tra
e identities is far more 
onvenientfor larger algebras).Clearly the equations (59) and (63) agree, as expe
ted. However, the way the agreement 
omesout is not entirely trivial (although it 
an easily be derived). Note in parti
ular that the Weylformula is a priori expressed in terms of only r variables, so that all tra
e identities are alreadybuilt in. On the other hand, in writing down the formal expression Tr eF there is no need to18



spe
ify the number of variables, and indeed the formula is the same for any algebra. The non-trivial group stru
ture is thus en
apsulated in the tra
e identities. It is instru
tive to 
ompare thetwo formulations also for other representations.In this 
ase the Weyl formula is superior in elegan
e and simpli
ity, although it is somewhatmore diÆ
ult to expand to higher orders due to its denominator. For higher rank groups the Weylformula be
omes extremely 
umbersome, as explained earlier, while our method does not grow in
omplexity.5.4 Br 
hara
tersThe basi
 representations are the anti-symmetri
 tensors of rank 1 : : : ; r� 1 plus the spinor repre-sentation. The 
hara
ters of the anti-symmetri
 tensors are related to the ve
tor 
hara
ter as in the
ase of Ar. The spinor 
hara
ter 
an be expressed in terms of tra
es of the ve
tor representationby expli
it 
omputation. The result is [26℄Ch(0;:::;0;1)(F ) = 2r exp " 1Xn=1 (22n � 1)B2n4n(2n)! Tr F 2n# ; (64)where B2n are the Bernoulli numbers.For algebras of type Br the same tra
e identity as for Ar holds, but with order k > 2r+1. Thisis true be
ause of the embedding Br � A2r. All tra
es of odd order vanish trivially.The demonstration that the other 
hara
ters 
an be obtained re
ursively from the tensor produ
trule is similar as for Ar, with some 
ompli
ations due to the spinors. We will omit the details (andthe same holds for Cr and Dr).5.5 Cr 
hara
tersThe fundamental representations are the anti-symmetri
 tensors of rank l = 1 : : : ; r with a sym-ple
ti
 tra
e removed. The 
hara
ter of the fundamental representation l is equal to the lth anti-symmetri
 tensor power of the ve
tor 
hara
ter minus the (l � 2)th anti-symmetri
 power of theve
tor 
hara
ter (if l � 2).The Cr tra
e identities 
an be derived using the embedding Cr � A2r�1, whi
h leads to tra
eidentities for tra
es of order k > 2r. Just as for Br, the odd tra
es vanish.5.6 Dr 
hara
tersThe fundamental representations are the anti-symmetri
 tensors of rank l = 1 : : : ; r � 2 plus thetwo 
onjugate spinor representations. The anti-symmetri
 tensor 
hara
ters are 
omputed as forBr, but the spinor 
hara
ters 
annot be expressed 
ompletely in terms of tra
es over the ve
torrepresentation. This is be
ause there exists a symmetri
 tensor of rank r whi
h never appearsin tra
es over the ve
tor representation, namely the Levi-Civita tensor. This tensor is an anti-symmetri
 tensor of rank 2r with ve
tor indi
es. Combining the 2r ve
tor indi
es in pairs, withea
h pair labelling an element of the adjoint representation, we 
an view the Levi-Civita tensoralso as a symmetri
 tensor of rank r with adjoint indi
es.Using this new invariant, we 
an write down the spinor 
hara
ter:Ch(0;:::;1;0)(F ) = 2r�1 exp " 1Xn=1 (22n � 1)B2n4n(2n)! Tr F 2n#+ 1r!�r(F ) exp " 1Xn=1 B2n4n(2n)!Tr F 2n# (65)19



Ch(0;:::;0;1)(F ) = 2r�1 exp " 1Xn=1 (22n � 1)B2n4n(2n)! Tr F 2n#� 1r!�r(F ) exp " 1Xn=1 B2n4n(2n)!Tr F 2n# : (66)where 1r!�r(F ) is a polynomial of order r in F de�ned by the leading term in the di�eren
e of theseexpressions. It is proportional to the Levi-Civita tensor with indi
es pairwise 
ontra
ted with F a.The pre
ise de�nition of the tensor is given in appendix E.The tra
e identities forDr are as those for Br for k > 2r. However, due to the extra fundamentaltra
e of order r, there must be an additional tra
e identity to redu
e the number of independentones ba
k to r. Indeed, it turns out the the tra
e of order 2r 
an be eliminated using the identityXni;minimi=2r Yi 1mi! ��Tr F ni)ni �mi = 4(�1)r [ 1r!�r(F )℄2 (67)This identity was also obtained in [26℄ (the 
oeÆ
ient on the right hand side is in
orre
t in [26℄).5.7 G2 
hara
tersEx
eptional group 
hara
ters 
an be 
omputed by expressing them in terms of 
hara
ters of aregular subalgebra. Sin
e the subalgebra has the same rank, one gets polynomials in the samenumber of variables and hen
e no information is lost. For G2 the only option is the subalgebra A2.We have ChG2;7 = ChA2;3 +ChA2;�3 +ChA2;1 ; (68)denoting representations by their dimension and omitting the argument F . Sin
e all G2 represen-tations are real, the third order invariant of A2 is always 
an
elled out, and all other odd invariantsvanish as well. The fourth order invariant 
an be expressed in terms of se
ond order ones usingthe A2 tra
e identity. The sixth order invariant of A2 
an be expressed in terms of lower ones, butthis expression involves the third order invariant whi
h doesn't exist in G2. Hen
e in G2 the sixthorder invariant is new. After a little algebra we 
an write the referen
e 
hara
ter of G2 asChG2;7 = 7 + 12Tr F 2 + 14! 14(Tr F 2)2 + 16!Tr F 6 + 18! [23(Tr F 2)(Tr F 6)� 5192(Tr F 2)4℄ + : : : (69)Here all expli
it tra
es are over the referen
e representation (0; 1) of dimension 7. The 
hara
terof the other fundamental representation, (1,0) of dimension 14 is easily 
omputed from the anti-symmetri
 tensor produ
t (7
 7)A = (7) + (14). Expli
itly:ChG2;14 = 14 + 12!4Tr F 2 + 14! 52(Tr F 2)2 + 16! [�26Tr F 6 + 154 (Tr F 2)3℄+ 18! [�1603 (Tr F 2)(Tr F 6)� 51596 (Tr F 2)4℄ + : : : (70)Note that all tra
es here are over the referen
e representation. From this expression we read o�the se
ond and sixth indi
es of the representation (14): they are 4 and �26 respe
tively.Sin
e the (7) of G2 
an be embedded in the ve
tor representation of SO(7), G2 inherits all B3tra
e identities for tra
es of order 8 and higher. There is an additional tra
e identity for the fourthorder tra
e, whi
h 
an be read o� dire
tly from ChG2;7:Tr F 4 = 14(Tr F 2)2 (71)This exhausts the set of tra
e identities for G2. 20



5.8 F4 
hara
tersThe 
omputation is similar to the previous 
ase, now using the sub-algebra B4. We haveChF4;26 = ChB4;16 +ChB4;9 +ChB4;1 (72)The vanishing of the fourth order invariant is not obvious in this 
ase, but follows easily. The sixthand eight order polynomials are dire
tly related to those of B4. The tenth order one vanishes againby inspe
tion (i.e. the tenth order tra
e 
an be expressed in terms of B4 tra
es of order 2,6 and 8,but not 4), and the twelfth order tra
e involves the third power of the fourth order polynomial ofB4, whi
h did not o

ur before. It is absorbed in the de�nition of Tr F 12, the 12th order term inChF4;26 (up to a fa
tor 112!). To obtain the 
hara
ter of (1; 0; 0; 0) (dimension (52)) we useChF4;52 = ChB4;36 +ChB4;16 (73)and we express all B4 tra
es into F4 tra
es using the de�nitions introdu
ed when 
omputing 72. Theother 
hara
ters of basi
 representations 
an be obtained from the anti-symmetri
 tensor produ
tsChF4;273 = ChF4;[2℄�26 � ChF4;52 (74)ChF4;1274 = ChF4;[3℄�26 � ChF4;52ChF4;26 +ChF4;26 (75)The last identity involves a little algebra. In the third order anti-symmetri
 tensor power of(26) o

urs, in addition to (1274) also the representations (273) and (1053) (with Dynkin labels(1,0,0,1)). The former 
hara
ter is known, the latter 
an be 
omputed using the tensor produ
t(26) 
 (52).Of 
ourse the 
hara
ters of (273) and (1274) 
an also be 
omputed using the B4 embedding.We have used this as a 
he
k.Just as for G2 one may read o� the Dynkin indi
es from the 
hara
ters. They are shown in theappendix. Furthermore there are tra
e relations for tra
es of fourth and tenth order whi
h are reado� from Ch(26). By expanding the 
hara
ters to suÆ
iently high order one obtains tra
e identitiesfor tra
es of order 14 and higher. The embedding F4 � D13 gives tra
e identities for all tra
es oforder 26 and higher, namely pre
isely those of D13. We will only present the identities for orderslower than that of the maximal Casimir operator.5.9 E6 
hara
tersHere we used the sub-algebra A1�A5, and the de
ompositionsChE6;27 = ChA1;2ChA5;�6 +ChA5;15 (76)ChE6;78 = ChA1;2 +ChA5;35 +ChA1;2ChA5;20 (77)The 
omputation is very similar to the previous 
ases. We get another basi
 representation, the(27), by 
onjugation: ChE6;27(F ) = ChE6;27(�F ) : (78)Furthermore the anti-symmetri
 tensor power of order 2 gives us the representations (0,1,0,0,0,0)(351) and (0,0,0,1,0,0) (351) and the order three anti-symmetri
 power yields pre
isely the repre-sentation (0,0,1,0,0,0) (2925).The indi
es and tra
e identities for orders up to 12 are listed in the appendix.21



5.10 E7 
hara
tersHere we used the sub-algebra A7, and the de
ompositions or anti-symmetri
 tensor produ
tsChE7;56 = ChA7;28 +ChA7;28 (79)ChE7;133 = ChA7;70 +ChA7;63 (80)ChE7;912 = ChA7;420 +ChA7;420 +ChA7;36 +ChA7;36 (81)ChE7;1539 = ChE7;[2℄�56 � ChE7;1 (82)ChE7;8645 = ChE7;[2℄�133 � ChE7;133 (83)ChE7;27664 = ChE7;[3℄�56 � ChE7;56 (84)ChE7;365750 = ChE7;[4℄�56 � ChE7;1539 � ChE7;1 (85)5.11 E8 
hara
tersHere we used the sub-algebra D8, andChE8;248 = ChD8;128 +ChD8;120 (86)ChE8;3875 = ChD8;1920 +ChD8;1820 +ChD8;135 (87)ChE8;147250 = ChD8;60060 +ChD8;56320 +ChD8;15360+ChD8;7020 +ChD8;6435 +ChD8;1920 +ChD8;135 (88)ChE8;30380 = ChE8;[2℄�248 � ChE8;248 (89)ChE8;2450240 = ChE8;[3℄�248 � (ChE8;248)2 +ChE8;248 (90)ChE8;6696000 = ChE8;[2℄�3875 � ChE8;3875(ChE8;248 � 1) + ChE8;147250 (91)ChE8;146325270 = ChE8;[4℄�248 � (ChE8;[2℄�248 � ChE8;248)(ChE8;248 � 1) (92)ChE8;6899079264 = ChE8;[5℄�248 � ChE8;248(ChE8;[3℄�248 � 2ChE8;[2℄�248 +ChE8;248 � 1) (93)In the �rst three lines all D8 spinor representations must be from the same 
onjuga
y 
lass, whi
his �xed by the de
omposition one 
hooses for the (248). Sin
e the 
hoi
e one makes for the 
lassis irrelevant, there is no need for a label to distinguish 
onjugate spinors. The representation(6435) is an (anti-)selfdual tensor. It belongs to the trivial 
onjuga
y 
lass, but it does 
arry anon-trivial 
hirality. If for the representation denoted (128) we 
hoose the one with Dynkin labels(0; 0; 0; 0; 0; 0; 0; 1), then the 
orre
t set of Dynkin labels for the 6345 is (0; 0; 0; 0; 0; 0; 2; 0).5.12 Normalization of indi
esThe normalization of the symmetri
 tensors is �xed by �xing a normalization for the indi
es. Wewill do this in su
h a way that they are always integers, as the word \index" suggests. For the se
ondindex there is a natural normalization in terms of the Atiyah-Singer index theorem for instantonson S3. For any representation of any algebra we 
an 
hoose the se
ond index equal to the netnumber of zero modes of a Weyl fermion in that representation in an instanton �eld of minimalnon-trivial topologi
al 
harge (where \net" means the di�eren
e between the two 
hiralities). Thenthe se
ond index is equal to 1 for the referen
e representations of Ar and Cr, 2 for those of Br andCr, and 2,6,6,12,60 respe
tively for the referen
e representations of G2; F4; E6; E7 and E8. For theadjoint representation the se
ond index is always equal to twi
e the dual Coxeter number g listedin table 1. This 
hoi
e 
orresponds to setting � = 2 in (27). This value of � was used in the last
olumn of table 3. 22



For the higher indi
es there is a similar topologi
al interpretation in terms of gauge bundleson higher dimensional manifolds, but we will not explore that here in detail. One may howeverfollow the spirit of su
h an interpretation and de�ne all higher indi
es in su
h a way that they areintegers. This is automati
ally true if they are integers for the basi
 representations, be
ause the
hara
ters of all representations are polynomials with integer 
oeÆ
ients in terms of the 
hara
tersof the basi
 representations. Furthermore, within the set of basi
 representations the ones obtainedby means of anti-symmetri
 tensor produ
ts of a given representation R, have indi
es that are aninteger multiple of those of R. Then only the spinor representations of SO(N), one representationof F4, E6 and E7 and two of E8 require spe
ial attention.For the referen
e representations we 
hoose all higher indi
es equal to 1, ex
ept when a largerinteger is required to make all indi
es integral. The 2nth index of a spinor representation of SO(N)follows dire
tly from the 
hara
ter equations (64), (65) and (66):dim(S)(22n � 1)B2n4n ; (94)where dim(S) is the dimension of a spinor representation, i.e. dim(S) = 2r for algebras of typeBr(SO(2r+1) and dim(S) = 2r�1 for type Dr(SO(2r)). This assumes that the (2n)th index of theve
tor representation is set to 1. By inspe
tion, this expression is an integer ex
ept for the fourthindex for SO(N); N � 8 and the eighth index for N � 10. We have 
he
ked that the spinor indexis an integer in all other 
ases for 2n < 100. Table 4 gives the indi
es for the SO(N) ve
tor andspinor representations, a

ording to our normalization (the index ~Ir is not listed here; its valueis 0 for the ve
tor representation and 
hosen �1 for the two fundamental spinors of SO(N), Neven). Note that for N = 3; : : : ; 6 the spinor representation, and not the ve
tor is the referen
erepresentation, whi
h automati
ally leads to the entries in the table.N I2 I4 I6 I8 I10 I12 I143 4,1 | | | | | |4 4,1 | | | | | |5 2,1 -4,1 | | | | |6 2,1 -4,1 | | | | |7 2,2 2,{1 1,1 | | | |8 2,2 2,{1 1,1 | | | |9 2,4 1,{1 1,2 2,{17 | | |10 2,4 1,{1 1,2 2,{17 | | |11 2,8 1,{2 1,4 1,{17 1,124 | |12 2,8 1,{2 1,4 1,{17 1,124 | |13 2,16 1,{2 1,8 1,{34 1,248 1,{2764 |14 2,16 1,{4 1,8 1,{34 1,248 1,{2764 |15 2,32 1,{4 1,16 1,{68 1,496 1,{5528 1,8737616 2,32 1,{8 1,16 1,{68 1,496 1,{5528 1,87376Table 4: Indi
es for the SO(N) ve
tor and spinor representations. The 
hiral index ~Ir is notlisted here; we 
hoose it equal to +1 for the fundamental spinor (0; : : : ; 1; 0) and equal to �1 for(0; : : : ; 0; 1).For the ex
eptional algebras the two highest indi
es of E7 and the three highest ones of E8
ome out fra
tional unless we 
hoose a di�erent normalization for the referen
e representation.Our preferred index normalization for the referen
e representations is summarized in the last
olumn of table 3. For SO(2N) the last entry indi
ates the index ~IN of the spinor representation23



(0; : : : ; 1; 0). Only the se
ond index is a�e
ted by the 
hoi
e of �. For all higher order tra
es we�x the normalization of the index, and then the �-dependen
e goes into the normalization of thesymmetri
 tensor.This also �xes the normalization of all symmetri
 tensors asStr T a1r : : : T anr = In(r)da1:::an : (95)This de�nes the tensors given a 
hoi
e of generators in the referen
e representation.In Appendix D we present some results for 
ontra
tions of these tensors.6 Redu
tion identitiesAt this stage we have terms that 
ontain 
ombinations of the invariants dr and the stru
ture
onstant f . Our task is now to eliminate f from the terms as mu
h as possible, and redu
e thetotal number of invariants in the �nal answer.Unlike the results obtained so far, for these redu
tions we 
annot give a general algorithm. Infa
t, we do not even know what the desirable out
ome is, sin
e we are not aware of a mathemati
altheorem that gives us a basi
 set of invariants in terms of whi
h all others 
an be expressed. Atany given order we 
an derive large numbers of identities among the various invariants, but therewill be new relations at every order. In pra
ti
e this is not a major problem. First of all we haveobtained results relevant for va
uum bubble Feynman diagrams of up to nine loops, and se
ondlythe number of invariants we are left with is small, although possibly not minimal.The most useful identities for doing this are the Ja
obi identities. Thus far we have seen twoof them in equation (43). The se
ond equation there 
an be generalized into0 = X
y
li
 permutations of i1���in di1���in�1aR f inba (96)for all representations R, in
luding the adjoint representation. In fa
t, there is an advantageto postponing the repla
ement of the adjoint symmetri
 tensors by referen
e tensors, sin
e theysatisfy additional identities. Furthermore some identities produ
e new tensors dA. For this reasonwe present the results in terms of dR and dA rather than dr.The �rst identity that 
an be derived from this is one for invariants with three indi
es:dabiR faj
f bl
 = 12CA dijkR (97)It is a
tually the simplest identity in a 
lass of triangle redu
tions that involve one or two invarianttensors dR. We have alsodi1j1���jnk1R1 di2j1���jnk2R2 fk1k2i3 = 1NA 1n+ 1dj1���jn+2R1 dj1���jn+2R2 f i1i2i3 (98)di1j1���jnk1R1 di3���imj1���jnk2R2 fk1k2i2 = �1n+ 1dj1���jn+1kR1 di3���imj1���jn+1R2 fki1i2 (99)These identities are very powerful when a large number of invariants is involved.For showing further redu
tion identities we will use a spe
ial notation whi
h 
orresponds 
loselyto a notation that 
an be used inside a 
omputer program. We will represent a (symmetri
) invariantby a produ
t of ve
tors: di1���inR1 = pi11 � � � pin1 (100)24



The lower index on the ve
tor refers to the parti
ular invariant. In this notation we have noproblems with the symmetri
 property of the invariants. Of 
ourse we are not implying that ea
hinvariant 
an be mathemati
ally written this way. It is just notation.Additionally we will use S
hoons
hip notation on 
ontra
ted indi
es. That is: if the index of ave
tor is 
ontra
ted with an index of a tensor we put the ve
tor in the pla
e of this index. Hen
efp1p2ifp1p2i(p1 � p2)n = di1���inj1j2R1 di1���ink1k2R2 f j1k1if j2k2i (101)Furthermore we 
an add a weight to ea
h formula. This weight is basi
ally the number of verti
es(assuming that all verti
es are three-point verti
es) in the diagram before we started the eliminationpro
edures. For our 
urrent algorithms the weight is the total number of ve
tors pi plus the numberof stru
ture 
onstants f . Hen
e the weight of the above formula is 2n + 6. We will present allredu
tion identities that are relevant for weights up to 12. This 
orresponds to 7-loop va
uumbubbles or 6-loop propagator diagrams. The derivation of all these identities involves the use ofthe generalized identity of equation (96).fp1p2ifp1p2i(p1 �p2)n = 1n+ 1 CA (p1 �p2)n+2 (102)fp1p2i1fp1p2i2fp1i1i3fp1i2i3(p1 �p2)n = 1n+ 1 dp1p1p1p2A (p1 �p2)n+1 (103)fp1p2i1fp1i1i2fp2i2i3fp1p2i3(p1 �p2)n = 56(n+ 1)(n+ 2) C2A (p1 �p2)n+3� 1n+ 1 dp1p1p2p2A (p1 �p2)n+1 (104)fp1p2i1fp1p2i2fp1p2i3f i1i2i3(p1 �p2)n = 0 (105)fp1p2i1fp1p2i1fp1p2i2fp1p2i2(p1 �p2)n = 2 n!(n+ 2)! dp1p1p2p2A (p1 �p2)n+2+(3n+ 1) n!3 (n+ 3)! C2A (p1 �p2)n+4 (106)fp1p2ifp1p2i(p1 �p3)(p2 �p3)n = 12 CA (p1 �p2)2(p1 �p3)(p2 �p3)n (107)fp1p2ifp1p3i(p1 �p2)(p2 �p3)n = 12 CA (p1 �p2)2(p1 �p3)(p2 �p3)n (108)fp1p2ifp1p3i(p1 �p2)(p2 �p3)(p1 �p3)n = CA2(n+ 1) (p1 �p2)2(p2 �p3)(p1 �p3)n+1 (109)fp1p2p3fp1p2p3(p1 �p2)(p1 �p3) = 14 CA (p1 �p2)2(p1 �p3)2(p2 �p3) (110)The equations with an odd number of f 's that are relevant are all zero. This has been expli
itlyshown, but for many of them one 
an see this already on the basis of symmetry prin
iples.We are not going to present the identities that would be needed for diagrams of weight 14 or16. There would be too many of them and moreover, this is not how we have 
onstru
ted the
omputer program. In the program we have found a way to apply equation (96) re
ursively in su
ha way that it redu
es all 
ombinations with the ex
eption of one (at weight 14). The program hasto guess at what 
ombination of invariants and f 's to take for the appli
ation of the formula andwe let it guess several times. In the end this 
overs all 
ases ex
ept for the one that we 
annot doby these methods anyway.The �rst obje
t that 
auses some real problems be
ause the above algorithms are not suÆ
ientto handle them, o

urs at weight 14. This obje
t 
an either be written asfp1p2p3fp1p2p3(p1 �p2)(p1 �p3)(p2 �p3) (111)25



or with some rewriting (and omitting trivial terms that are a byprodu
t of the rewriting):fp1p2ifp1p2i(p1 �p3)2(p2 �p3)2 (112)If at least two of the three invariants are in the adjoint representation this obje
t 
an be redu
edwith the same te
hnique that we use below to simplify some 
ombinations of invariants only (seeequation (119)).6.1 Combinations of invariantsHere we will 
onsider 
ombinations of invariants only. The easiest 
ombinations are full 
ontra
tionsbetween two invariants as in di1���inR1 di1���inR2 (113)Unfortunately, when the weight of the diagrams in
reases, the 
omplexity of the 
ombinationsin
reases 
orrespondingly. In some 
ases one 
an make redu
tions. For instan
e:dj i1���inR1 dk i1���inR2 = 1NA Æjkdi0i1���inR1 di0i1���inR2 (114)and hen
e da i1���inR1 db i1���inR2 da j1���jmR3 db j1���jmR4 = 1NA di0i1���inR1 di0i1���inR2 dj0j1���jmR3 dj0j1���jmR4 (115)but for obje
ts of the type di1i2i3i4R1 di1i2i5R2 di3i4i5R3 (116)or di1i2i3i4i5R1 di1i2i3i6R2 di4i5i6R3 (117)there does not seem to be a general simpli�
ation of this type. In the 
ase of all invariants belongingto the adjoint representation we 
an still do things as we see in the next formula:dab
defA dab
defA � 58dab
dA d
defA defabA + 7240C2Adab
dA dab
dA + 1864C6ANA = 0 (118)The derivation of this formula is a matter of evaluating a 
ir
ular ladder with 6 rungs in twodi�erent ways. In the �rst way one sees it as two loops with 6 verti
es, and in the se
ond way asthree loops with 4 verti
es. The algorithms of the previous se
tions are then suÆ
ient to obtainthis formula. Note however that su
h derivations usually need the use of a 
omputer program: theintermediate stages 
an 
ontain large numbers of terms. A similar te
hnique 
an be used for theobje
t in equation (112). We look at a 
ir
ular ladder with 7 rungs. If we see this as three loopswith 4 verti
es (and two f 's left) we get the form of the equation, and if we see it as two loopswith 7 verti
es, we get a representation involving two dA invariants with 6 indi
es (the ones with7 indi
es are zero for the adjoint representation). The result is (after a rather lengthy 
al
ulation,applying equation (118) and normalizing):dab
dR d
defA defghA fagif bhi + 227C3Adab
dR dab
dA�1915CAdab
dR d
defA defabA + 89dab
defA dab
gR ddefgA = 0 (119)with R repla
ed by A. Be
ause a similar ex
hange of the order of evaluation in one of the examplesbelow gives the same equation with a slightly extended generality we have already presented this26



more general form with the representation R. One 
an also derive this equation from equation(148), but the derivation of that formula uses basi
ally the same te
hnique.Considering that the algorithms we have presented 
an redu
e all 
ombinations of invariantsand f 's, with the ex
eption of the above 
ombination with at least two invariants not in the adjointrepresentation, up to weight 14 we have only a limited number of topologies (
ontra
tions betweeninvariants) left. We will show them graphi
ally, omitting the very trivial ones that 
an be redu
edwith equation 114 and obje
ts of the type daai1���inR . The elements of this pi
torial language are= di1i2i3R= di1i2i3i4R= di1i2i3i4A= di1i2i3i4?= f i1i2i3= f i3i2i1 (120)in whi
h we assume the indi
es of f to run 
ounter
lo
kwise in the diagram. For weight 6 we haved33(p1; p2) = dijkR1 dijkR2= 31 2 (121)For weight 8 there is also only one topology:d44(p1; p2) = 41 2 (122)For weight 10 there are two topologies:d55(p1; p2) = 51 2 (123)d433(p1; p2; p3) = 12 3 (124)For weight 12 we have 5 topologies: d66(p1; p2) = 61 2 (125)d633(p1; p2; p3) = 2 1 3 (126)d543(p1; p2; p3) = 12 3 (127)d444(p1; p2; p3) = 12 3 (128)d3333(p1; p2; p3; p4) = 12 34 (129)27



Finally for weight 14 we have 9 topologies:d77(p1; p2) = 71 2 (130)d743(p1; p2; p3) = 42 1 3 (131)d653(p1; p2; p3) = 31 24 (132)d644(p1; p2; p3) = 12 3 (133)d554(p1; p2; p3) = 31 2 (134)d5333(p1; p2; p3; p4) = 12 34 (135)d4433a(p1; p2; p3; p4) = 13 42 (136)d4433b(p1; p2; p3; p4) = 13 42 (137)d4433
(p1; p2; p3; p4) = 13 42 (138)For weight 16 there are more than 20 non-trivial topologies. We will not show them here.In terms of these diagrams of invariants we 
an 
ompose a few extra equations that 
an be veryuseful: = 16C2A (139)i1i2 = (CR � 16CA) I2(R) Æi1i2 (140)= (CR � 14CA) (141)= (CR � 13CA) + 130I2(R) (142)= (CR � 512CA) + 112 (143)2 1 = �38CA 2 1 � 140I2(R1)C2A 2 + 1NR1 2 1 1 (144)2 1 = �12CA 2 1 + 1NR1 2 1 1 � 43120 1NA 2 1� 231440C2A 2 1 + 4960 1 2 (145)We assume symmetrization over the external legs in the terms of the right hand sides.28



One of the spin-o�s of equation (144) is2 1 3 = �38CA 12 3� 140I2(R1)C2A 2 3 + 1NR1 2 1 1 3 (146)This allows us to eliminate the topology d633 
ompletely. For groups for whi
h dijk exists and I4(A)is not zero we 
an use the te
hniques of the next se
tion to also eliminate the topologies d433, d4433aand d4433
. Similarly equation (145) gives43 1 2 = �12CA 13 2+ 1NR1 2 1 41 3 � 43120 1NA 2 1 4 3� 231440C2A 31 2+ 4960 1 23 (147)and therefore also the topology d743 
an be eliminated.An equation that is also rather interesting is1 = �191864C3A 1 + 95CA 1 � 119288C2A 1+32 1 + 34 1 (148)It 
an be used to derive equation (119), but it 
an also be useful for bigger diagrams. It is derivedby writing a diagram with 10 f 's into loops in two di�erent ways. After that the appli
ation of theredu
tion algorithms and some rewriting leads to this formula.7 Representation independent invariantsThe invariants that we have used thus far were only symmetrized tra
es. It is possible to de�ne anew set of invariants that is not only symmetri
, but also orthogonal (see equation (21)). Be
ausethe invariant with two indi
es is proportional to the Krone
ker delta in the adjoint spa
e, thismeans for instan
e that these invariants have a zero tra
e (a 
ontra
tion of any two indi
es giveszero). But also 
ontra
tions with all the indi
es of invariants with fewer indi
es than the invariantunder study should give zero. For most algebras we 
an de�ne (the ex
eptions are 
ertain SO(4N)algebras with two independent tensors of order 2N):di1i2i3R = I3(R) di1i2i3? (149)di1i2i3i4R = I4(R) di1i2i3i4? + I2;2(R) (Æi1i2Æi3i4 + Æi1i3Æi2i4 + Æi1i4Æi2i3)=3 (150)di1i2i3i4i5R = I5(R) di1i2i3i4i5? + I3;2(R) (di1i2i3? Æi4i5 + � � �)=10 (151)di1i2i3i4i5i6R = I6(R) di1i2i3i4i5i6? + I4;2(R) (di1i2i3i4? Æi5i6 + � � �)=15+I3;3(R) (di1i2i3? di4i5i6? + � � �)=10 + I2;2;2(R) (Æi1i2Æi3i4Æi5i6 + � � �)=15 (152)di1i2i3i4i5i6i7R = I7(R) di1i2i3i4i5i6i7? + I5;2(R) (di1i2i3i4i5? Æi6i7 + � � �)=21+I4;3(R) (di1i2i3i4? di5i6i7? + � � �)=35 + I3;2;2(R) (di1i2i3? Æi4i5Æi6i7 + � � �)=105(153)and higher ones are de�ned analogously. The 
omposite 
onstants like I2;2(R) 
an now be derivedby the orthogonality 
onditions. When we multiply equation (150) by Æi3i4 we obtainNA + 23 I2;2(R)Æi1i2 = di1i2i3i3R29



= (CR � CA=6)di1i2R= (CR � CA=6)I2(R)Æi1i2NA + 23 I2;2(R) = (I2(R)NANR � 16I2(A))I2(R) (154)Similarly we 
an derive I3;2(R) = 10NA + 6(CR � 14CA)I3(R) (155)For the next level of 
onstants we get 
oupled equations. The easiest way to derive them is withthe use of the equations (142) and (146). If we 
ontra
t the �rst equation on
e with di1i2i3i4? andon
e with Æi1i2Æi3i4 and substitute equation (152) in all three of the equations that we obtain thisway we have enough to 
ome to a solution. Unfortunately this solution is not very elegant. Inmany 
ases one 
an make simpli�
ations. For instan
e one 
an write (using equation (139))= 16C2A= I4(A) + 23I2;2(A) (156)whi
h then redu
es to I4(A) = 16C2ANA � 8NA + 2 (157)We noti
e that whenever I4(A) = 0 or di1i2i3i4? = 0 we must have that either = 0 orNA = 8 (assuming that CA is never zero). The last is indeed the 
ase for SU(3). Hen
e a generalappli
ation of this relation is rather dangerous.The equations for I4;2(R), I3;3(R) and I2;2;2(R) 
an be derived by taking the de�nition ofthe de
omposition in equation (152) and multiplying either by Æi1i2Æi3i4Æi5i6 or di1i2i3i4? Æi5i6 ordi1i2i3? di4i5i6? . With the use of the equations (142) and (144) we obtain:0 = (25I3;3(R))+NA(NA + 2)(NA + 415 I2;2;2(R)� 13(CR � 13CA)I2;2(R)� 190I2;2(A)I2(R)) (158)0 = (35I3;3(R))+ (NA + 815 I4;2(R)� (CR � 13CA)I4(R)� 130I4(A)I2(R)) (159)0 = (35I4;2(R) + 38CAI4(R))+( )2(NA + 910NA I3;3(R)� 1NR (I3(R))2)+ (25I2;2;2(R) + 14CAI2;2(R) + 14C2AI2(R)) (160)Be
ause for ea
h group either some of the obje
ts in these equations are zero, or there are simpli�-
ations, it does not seem wise to solve this system in this form. For all groups with the ex
eption30



of SU(N) we have that di1i2i3? = 0, and hen
e the system redu
es to two equations in I4;2(R) andI2;2;2(R). For SU(3) we have that di1i2i3i4? = 0 and again we have a simpler system. For the otherSU(N) groups we 
an apply equation (157) improving the solutions somewhat. Be
ause of thesingularity (zero divided by zero) of the solutions for all groups but SU(N); N > 3, we do notpresent the general solution here. It serves no purpose be
ause we will not use them. Along thesame lines one 
an derive the equations for I5;2(R), I4;3(R) and I3;2;2(R).The expressions at rank 6 and 7 be
ome rather 
ompli
ated due to the fa
t that the tensors in theright hand side of the equations (152) and (153) are not orthogonal. Hen
e the various orthogonalityrelations mix and this gives the 
ompli
ated result. It should be 
lear that invariants with a higherrank will give even more 
ompli
ated relations. The ex
eption is the adjoint representation. Forthis representation all invariants with an odd number of indi
es are zero. Hen
e I3(A) = I5(A) =I3;2(A) = � � � = 0.We 
an use the above relations for the redu
tion of some 
ontra
tions of invariants. We haveseen in the previous se
tion that for the adjoint representation more things are possible than forthe other representations. However we 
an rewrite the invariants only to invariants of the adjointrepresentation when the 
orresponding d's 
an indeed be expressed as su
h. This means thatthe 
orresponding I(A) should never be zero. Unfortunately this ex
ludes many 
ontra
tions ofinvariants. Hen
e we do not see many bene�ts here.7.1 Orthogonal versus Referen
e tensorsHere we will 
ompare the 
omputation of a symmetrized tra
e in two ways, using the orthogonalbasis (satisfying (21)) and using 
hara
ters, with tensors de�ned for a referen
e representation. Thelatter will be referred to as \referen
e tensors". We 
onsider fourth order tra
es in SU(N). In this
ase an expli
it expression exists for any representationStr T aRT bRT 
RT dR = I4(R)dab
d? + 3NA + 2I2(R)2 �NANR � 16 I2(A)I2(R)� dab
d2;2 ; (161)where dab
d2;2 � 13(ÆabÆ
d + Æa
Æbd + ÆadÆb
) : (162)Here \d" without subs
ript denotes the orthogonal tensor. The referen
e representation is theve
tor, and the referen
e fourth rank tensor is by de�nition equal to (161) with \R" equal to thereferen
e representation: dab
dr = dab
d? + 3NA + 2  23N2 � 1N ! dab
d2;2 (163)(Note that d2;2 is the same in both bases). This allows us to express (161) in terms of referen
erather than orthogonal tensors:Str T aRT bRT 
RT dR = I4(R)dab
dr+ 3NA + 2  I2(R)2 �NANR � 16 I2(A)I2(R)�� 23N2 � 1N !dab
d2;2 (164)Consider now for example the anti-symmetri
 tensor representation. Its 
hara
ter, expanded tofourth order is Ch[2℄(F ) = 12N(N � 1) + 12(N � 2)Tr F 2 + 16(N � 4)Tr F 3+ 124(N � 8)Tr F 4 + 18Tr F 2Tr F 2 + : : : ; (165)31



where all tra
es are over the ve
tor representation. From the fourth order terms we dedu
e, bydi�erentiating with respe
t to F a; : : : ; F b:Tr T a[2℄T b[2℄T 
[2℄T d[2℄ = (N � 8)dab
dr + 3dab
d2;2 (166)We may now verify this using (164). Although the 
oeÆ
ient of the se
ond term does not lookvery en
ouraging, substituting I2(R) = N � 2, NA = N2 � 1 and NR = 12N(N � 1), it does indeedprodu
e the 
oeÆ
ient 3 in (166).This illustrates several points. Tra
e formulas in terms of orthogonal tensors su
h as (161) havea simpler form than those in terms of referen
e tensors, if one tries to write down expressions forarbitrary representations R. However, expressions su
h as (166) 
an be written down fairly easilyfor any representation although not (easily) in 
losed form. Furthermore they 
an be extended toarbitrary order in a straightforward way while this rapidly be
omes extremely diÆ
ult for (161) or(164).Note that the indi
es (the 
oeÆ
ients of fundamental tensors) are basis independent (apart fromnormalizations), whereas the sub-indi
es (
oeÆ
ients of 
ombinations of fundamental tensors) arenot. In the orthogonal basis it is not hard to see that all sub-indi
es 
an in fa
t be expressed interms of indi
es, so that they do not 
onstitute an additional set of variables. In any referen
ebasis the same is then true, sin
e it 
an be related to an orthogonal basis, but the expression are(even) more 
ompli
ated, as in (164). For orders larger than six, expression of sub-indi
es in termsof indi
es are not available and hard to obtain.In our method the sub-indi
es are essentially treated as additional variables, whi
h 
an be
omputed for any representation as easily as the indi
es themselves. This allows the 
omputationof a tra
e for any representation, whi
h was our goal. The result is a 
ombination of symmetri
fundamental tensors with expli
it numeri
al 
oeÆ
ients, as in (166), or an expression involvingboth indi
es and sub-indi
es. Unfortunately it is mu
h harder to present the result in minimalform, with all representation dependen
e en
apsulated in the indi
es.A Indi
es and Tra
e identities for Ex
eptional AlgebrasIn this appendix we summarize our results on tra
es for ex
eptional algebras. All the indi
es for thelowest dimensional representations are given, in
luding all basi
 representations. Tra
e identitiesare given for all tra
es of order less than the dual Coxeter number g.For the 
lassi
al algebras A : : : D the tra
e identities were already given in 
hapter 6, and indexformulas for some representations are given in [6℄.The indi
es provide only a small part of the information 
ontained in the full 
hara
ters,but it is impra
ti
al to present the latter in printed form. We do have an eÆ
ient pro
edureto generate the 
hara
ters of any representation of any simple Lie-algebra to any desired order.This pro
edure uses a 
ombination of Ka
 [31℄ (to 
ompute tensor produ
ts) and FORM [32℄ (tomultiply, add and subtra
t 
hara
ters a

ording to these tensor produ
ts), and is available viahttp://norma.nikhef.nl/pub/�t58. Obviously this then also provides all indi
es for algebras andrepresentations not listed in this appendix.A.1 Indi
es and tra
e identities for G2Tra
e identity in the representation (7):Tr F 4 = 14(Tr F 2)2 (167)The indi
es of the lowest-dimensional representations are shown in table 5.32



Rep. Dimension I22 I6(0,1) 7 1 1(1,0) 14 4 �26(0,2) 27 9 39(1,1) 64 32 �208(0,3) 77 44 494(2,0) 77 55 �1235(0,4) 182 156 3666(1,2) 189 144 �456(3,0) 273 351 �20709(2,1) 286 286 �7904(0,5) 378 450 19500(1,3) 448 480 2640(0,6) 714 1122 82212(2,2) 729 972 �27378(4,0) 748 1496 �193324(3,1) 896 1472 �109408Table 5: Indi
es for G2.A.2 Indi
es and tra
e identities for F4Tra
e identities in the representation (26):Tr F 4 = 3(16Tr F 2)2 (168)Tr F 10 = 94(16Tr F 2)(Tr F 8)� 74(16Tr F 2)2(Tr F 6) + 2116(16Tr F 2)5 (169)The indi
es are listed in table 6.Rep. Dimension I26 I6 I8 I12(0,0,0,1) 26 1 1 1 1(1,0,0,0) 52 3 �7 17 �63(0,0,1,0) 273 21 1 �119 �1959(0,0,0,2) 324 27 57 153 2073(1,0,0,1) 1053 108 �132 612 372(2,0,0,0) 1053 135 �645 2907 �134373(0,1,0,0) 1274 147 �133 �1309 125811Table 6: Indi
es for F4.A.3 Indi
es and tra
e identities for E6Tra
e identities in the representation (56):Tr F 4 = 12( 112Tr F 2)2 (170)Tr F 7 = 72(Tr F 5)( 112Tr F 2) (171)33



Tr F 10 = 92(Tr F 8)( 112Tr F 2)� 7(Tr F 6)( 112Tr F 2)2 + 740(Tr F 5)2 + 42( 112Tr F 2)5 (172)Tr F 11 = 1136(Tr F 6)(Tr F 5) + 605126(Tr F 9)( 112Tr F 2)� 552 (Tr F 5)( 112Tr F 2)3 (173)The indi
es are in table 7.Rep. Dimension I26 I5 I6 I8 I9 I12(1,0,0,0,0,0) 27 1 1 1 1 1 1(0,0,0,0,1,0) 27 1 �1 1 1 �1 1(0,0,0,0,0,1) 78 4 0 �6 18 0 �62(0,1,0,0,0,0) 351 25 11 �5 �101 �229 �2021(0,0,0,1,0,0) 351 25 �11 �5 �101 229 �2021(0,0,0,0,2,0) 351 28 �44 58 154 �284 2074(2,0,0,0,0,0) 351 28 44 58 154 284 2074(1,0,0,0,1,0) 650 50 0 60 36 0 116(0,0,0,0,1,1) 1728 160 �88 �80 664 152 424(1,0,0,0,0,1) 1728 160 88 �80 664 �152 424(0,0,0,0,0,2) 2430 270 0 �720 3672 0 �131928(0,0,1,0,0,0) 2925 300 0 �270 �918 0 122202Table 7: Indi
es for E6.A.4 Indi
es and tra
e identities for E7Tra
e identities in the representation (56):Tr F 4 = 24( 124Tr F 2)2 (174)Tr F 16 = �85675220( 124Tr F 2)(Tr F 6)(Tr F 8)+2360319 ( 124Tr F 2)(Tr F 14)+6160723490( 124Tr F 2)2(Tr F 6)2�637002871 ( 124Tr F 2)2(Tr F 12)+21164783 ( 124Tr F 2)3(Tr F 10)+7397522 ( 124Tr F 2)4(Tr F 8)�72254783 ( 124Tr F 2)5(Tr F 6)+222898261 ( 124Tr F 2)8+1354(Tr F 6)(Tr F 10)+ 13160(Tr F 8)2 (175)The indi
es are in table 8. 34



Rep. Dim. I212 I6 I8 I10 I12 I14 I18(0,0,0,0,0,1,0) 56 1 1 1 1 1 29 1229(1,0,0,0,0,0,0) 133 3 �2 10 �2 �30 542 �111658(0,0,0,0,0,0,1) 912 30 �10 �82 230 �2082 �39170 96018190(0,0,0,0,0,2,0) 1463 55 90 174 570 2134 238650 161267970(0,0,0,0,1,0,0) 1539 54 24 �72 �456 �1992 �235944 �161018664(1,0,0,0,0,1,0) 6480 270 30 774 �210 534 73350 �102108810(2,0,0,0,0,0,0) 7371 351 �354 2682 �834 �63438 4748094 �14489069226(0,1,0,0,0,0,0) 8645 390 �200 40 760 57480 �4368520 14620498520(0,0,0,0,0,3,0) 24320 1440 3600 10176 50160 292896 59512080 167838228720(0,0,0,1,0,0,0) 27664 1430 �10 �3442 �7450 63998 32976190 149694252430(0,0,0,0,0,1,1) 40755 2145 530 �3658 13490 �171138 2436850 �9081228710(0,0,0,0,1,1,0) 51072 2832 2872 256 �16568 �172464 �46178632 �158703316792(1,0,0,0,0,0,1) 86184 4995 �3165 963 36195 �366717 �37725705 �137019575865(1,0,0,0,0,2,0) 150822 9450 8400 41328 59280 410928 30093840 30366263760(1,0,0,0,1,0,0) 152152 9152 �328 9320 �78088 �197560 �28617992 �27126731432(3,0,0,0,0,0,0) 238602 17940 �26380 271676 �116620 �13615284 1492228660 �16354668799100(0,0,0,0,0,0,2) 253935 17820 �9000 �94824 404280 �6024744 �323856360 12685209865560(0,0,0,0,0,4,0) 293930 24310 88400 329888 2153840 17066368 4880546320 30243257914480(2,0,0,0,0,1,0) 320112 21762 �9318 155826 �75318 �3178974 303759378 �674257133022(0,1,0,0,0,1,0) 362880 23760 600 12672 22440 3531792 �239671080 806089955880(0,0,1,0,0,0,0) 365750 24750 �9000 �63240 79800 2601720 278208600 �12473996293800Table 8: Indi
es for E7.A.5 Indi
es and tra
e identities for E8Tra
e identities in the representation (248):Tr F 4 = 36( 160Tr F 2)2 (176)Tr F 6 = 30( 160Tr F 2)3 (177)Tr F 10 = 154 (Tr F 8)( 160Tr F 2)� 3154 ( 160Tr F 2)5 (178)Tr F 16 = 300364 (Tr F 8)( 160Tr F 2)4+ 1431920(Tr F 8)2�27320 (Tr F 12)( 160Tr F 2)2+295 (Tr F 14)( 160Tr F 2)�147147128 ( 160Tr F 2)8 (179)Tr F 22 = �2939339360 (Tr F 8)(Tr F 12)( 160Tr F 2)+ 3231920(Tr F 8)(Tr F 14)35



+31934612711679360 (Tr F 8)( 160Tr F 2)7+36115179150380800 (Tr F 8)2( 160Tr F 2)3�298544701524800 (Tr F 12)( 160Tr F 2)5+343898116400 (Tr F 14)( 160Tr F 2)4�1634576560 (Tr F 18)( 160Tr F 2)2+62382 (Tr F 20)( 160Tr F 2)�1644750861393358720 ( 160Tr F 2)11 (180)Tr F 26 = 188850956360344213686272 (Tr F 8)(Tr F 12)( 160Tr F 2)3�132991451691347978240 (Tr F 8)(Tr F 14)( 160Tr F 2)2+ 22517145152 (Tr F 8)(Tr F 18)�4000779140581027097074189803520 (Tr F 8)( 160Tr F 2)9�1041598407385864935370949017600 (Tr F 8)2( 160Tr F 2)5� 15835512121221838704640 (Tr F 8)3( 160Tr F 2)+ 508342336(Tr F 12)(Tr F 14)+969600581890335554483200 (Tr F 12)( 160Tr F 2)7�34818556318648 (Tr F 12)2( 160Tr F 2)�283735920466074386278400 (Tr F 14)( 160Tr F 2)6+14467214654171973825280 (Tr F 18)( 160Tr F 2)4�13545773417441008 (Tr F 20)( 160Tr F 2)3+929825105868 (Tr F 24)( 160Tr F 2)+506251846536678653336866181120 ( 160Tr F 2)13 (181)Tr F 28 = 6662452927065912412453120000 (Tr F 8)(Tr F 12)( 160Tr F 2)4�5754884582308099649812480000 (Tr F 8)(Tr F 14)( 160Tr F 2)3+ 5727698511766476800 (Tr F 8)(Tr F 18)( 160Tr F 2)36



+10904536133600 (Tr F 8)(Tr F 20)�2028144607034777518356144363520000 (Tr F 8)( 160Tr F 2)10� 191279272770944000 (Tr F 8)2(Tr F 12)�1076029152338172071561443635200000 (Tr F 8)2( 160Tr F 2)6�1388664477588736092805120000 (Tr F 8)3( 160Tr F 2)2+34322218131200 (Tr F 12)(Tr F 14)( 160Tr F 2)+108447101840059177969830400000 (Tr F 12)( 160Tr F 2)8�70795943271941730560 (Tr F 12)2( 160Tr F 2)2�23843919029848581574393600000 (Tr F 14)( 160Tr F 2)7+ 1577571936000 (Tr F 14)2+1607603265138373344636160000 (Tr F 18)( 160Tr F 2)5�6178872753444354567392000 (Tr F 20)( 160Tr F 2)4+2866807716654560 (Tr F 24)( 160Tr F 2)2+56572065918676414420758817904640000 ( 160Tr F 2)14 (182).B The 
omputer program for the redu
tion into invariantsWe have implemented the redu
tion algorithms into a 
omputer program6 in the language ofFORM [32℄. This language is parti
ularly suited for these types of problems. Be
ause of all theproblems with redu
tion identities when the number of verti
es be
omes large, we have restri
tedthe program to the 
ase of no more than 16 verti
es. If the user needs to run the program withmore verti
es, it 
an be extended by analogy, but many new redu
tion identities would have to bederived. Alternatively one 
ould de
ide to not redu
e a number of 
ontra
tions with f 's in themand leave them for later evaluation. The user should be warned however that some diagrams with16 verti
es may need quite some 
omputer time and resour
es for their evaluation.The program 
onsists of three parts. The �rst part redu
es all tra
es of matri
es whi
h do notbelong to the adjoint representation. Mu
h attention is given to a potential 
ontra
tion of indi
es.The spe
ial 
ases have been written out in one highly nested loop to take the maximum bene�t ofthese 
ontra
tions. This saves mu
h work when we have to use the algorithm of equation (30) forthe remaining tra
e. It is quite useful to rewrite ea
h invariant immediately with the notation ofequation (100). This removes invariants whi
h have more than one line 
ontra
ted with the same6This program 
an be obtained from "http://norma.nikhef.nl/�t68/FORMappli
ations/Color"37



Rep. Dimension I230 I8 I12 I14(1,0,0,0,0,0,0,0) 248 1 1 1 1(0,0,0,0,0,0,1,0) 3875 25 �17 223 �521(2,0,0,0,0,0,0,0) 27000 225 393 2073 8961(0,1,0,0,0,0,0,0) 30380 245 119 �1801 �7945(0,0,0,0,0,0,0,1) 147250 1425 �801 �3921 90423(1,0,0,0,0,0,1,0) 779247 8379 357 64677 �207291(3,0,0,0,0,0,0,0) 1763125 22750 64330 653050 3872050(0,0,1,0,0,0,0,0) 2450240 29640 576 �300624 �407160(1,1,0,0,0,0,0,0) 4096000 51200 59264 �176896 �1416448(0,0,0,0,0,0,2,0) 4881384 65610 �68202 1623078 �5978610(0,0,0,0,0,1,0,0) 6696000 88200 �64176 344544 2464392(1,0,0,0,0,0,0,1) 26411008 372736 12544 �928256 20640256(2,0,0,0,0,0,1,0) 70680000 1083000 991440 15398400 1956600(0,1,0,0,0,0,1,0) 76271625 1148175 �64071 732969 �67564287(4,0,0,0,0,0,0,0) 79143000 1404150 6100842 97389402 723747954(0,0,0,1,0,0,0,0) 146325270 2360085 �942669 �20062029 81822195(0,2,0,0,0,0,0,0) 203205000 3441375 3576615 �53721225 �402564225(2,1,0,0,0,0,0,0) 281545875 4843800 10500696 50453496 233862408(0,0,0,0,0,0,1,1) 301694976 5068800 �4540800 36284160 244435200(1,0,1,0,0,0,0,0) 344452500 5740875 3591945 �51773175 �133939575(1,0,0,0,0,0,2,0) 820260000 14773500 �7295820 368355300 �1650963300(1,0,0,0,0,1,0,0) 1094951000 19426550 �3552406 74388314 342570098(2,0,0,0,0,0,0,1) 2172667860 40883535 36197469 182867949 3494811285(0,1,0,0,0,0,0,1) 2275896000 42214200 �2179296 �439704336 1139298552(0,0,0,0,0,0,3,0) 2903770000 60885500 �95237740 3610174100 �17484769900(3,0,0,0,0,0,1,0) 3929713760 79228100 167887580 2727186380 10466026340(0,0,0,0,0,0,0,2) 4076399250 83281275 �77203203 �459950403 17875089309(0,0,1,0,0,0,1,0) 4825673125 93400125 �36251565 �180072525 �4026565725(0,0,0,0,1,0,0,0) 6899079264 139094340 �107301348 �484327668 13082745060Table 9: Indi
es for E8, part one.f in a very natural way without any extra pattern mat
hing. For this type of rewriting FORM evenhas a spe
ial statement (ToVe
tor).The se
ond part eliminates the loops of f 's. Here we do not have to worry about 
ontra
tedindi
es inside the tra
e, be
ause FORM looks ea
h time for the smallest loop to make its nextredu
tion. Hen
e this part of the program is mu
h simpler. Be
ause this redu
tion is mu
h fasterthan the general redu
tion the �rst routine 
alls this redu
tion routine ea
h time after it hasremoved 
ontra
ted indi
es and generated more f 's. Very often su
h a removal generates a loopof f 's and if this is removed it may introdu
e new 
ontra
ted indi
es. The net result 
an be asigni�
ant in
rease in speed. In some 
ases this is not faster however. Hen
e there is the optionnot to hunt for f -loops until all other representations have been rewritten.The third part of the program 
ontains the redu
tion identities. Here the program tries toeliminate 
ontra
tions with f 's that are obviously zero and to rewrite the 
ontra
tions for whi
h it
an 
onstru
t meaningful identities. This is a rather pe
uliar pie
e of programming. The derivationof the redu
tion identities is by no means a �xed algorithm. The equation (96) 
an be applied toone of the dR and one of the f 's, but it is not always 
lear whi
h pair will give good results andwhi
h will make things worse. In general it seems to be a good strategy to try to in
rease thenumber of 
ontra
tions between the invariants (number of 
ommon indi
es). In that 
ase therewill be more 
ontra
tions between the f 's and hen
e more 
han
e of loops that 
ontain only f 's.38
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es for E8, part two.This is not always possible in a dire
t way, and sometimes we have to just try equation (96) in thehope that in the next pass the improvement will follow. The sele
tion of the invariant and the fthat take part in this game has to be done 
arefully and the 
ode 
onsists of two pie
es that makea slightly di�erent 
hoi
e. By running a loop that 
ontains the �rst 
hoi
e twi
e and the se
ond
hoi
e on
e, we 
ould redu
e nearly everything up to 16 verti
es. Of 
ourse we had to de�ne theobje
t of formula (112) as a separate entity. Similarly we had to de�ne three su
h obje
ts at level16. The program also de�nes the topologies at level 16 that we did not present in the text.C Some examplesWe have run a number of 
olor tra
es with the program. Here we present the results with sometiming information. All runs were done on a PentiumPro 200 pro
essor running NextStep. Firstwe look at tra
es of the type Tr[T i1R � � � T inR T i1R � � � T inR ℄as su
h tra
es represent some type of maximal 
omplexity. Here we show the results to n = 7 intable 11.A
tually the program 
an go to n = 8. For this it took about 1520 se
. We do not give the answerhere. Similarly we 
an 
al
ulate this in the adjoint representation only. This is of 
ourse mu
h39



n time result2 0.23 s NAI2(R)(CR � CA=2)3 0.23 s NAI2(R)(CR � CA)(CR � CA=2)4 0.25 s dab
dR dab
dA +NAI2(R)(C3R � 3 C2RCA + 11=4 CRC2A � 19=24 C3A)5 0.95 s dab
dR dab
dA (5CR � 6CA) + 1=3I2(R) dab
dA dab
dA+NAI2(R)(C4R � 5 C3RCA + 35=4 C2RC2A � 155=24 CRC3A + 125=72 C4A)6 2.59 s �8dab
defR dab
defA + 6dab
dR dabefA d
defA + I2(R)dabefA d
defA (2 CR � 199=60 CA)+dabefR d
defA (15 C2R � 87=2 CRCA + 179=6 C2A) +NAI2(R)(C5R�15=2 C4RCA+85=4 C3RC2A�115=4 C2RC3A+905=48 CRC4A �1405=288 C5A)7 34.9 s +112=3 dab
defR dab
gA ddefgA � 328=9 dab
defA dab
gR ddefgA+dab
defR dab
defA (�56 CR + 296=3 CA)+dab
dR dabefA d
defA (42 CR � 749=10 CA) + 67=15 I2(R)dab
dA dabefA d
defA+dab
dR dab
dA (35 C3R � 357=2C2RCA + 868=3 CRC2A � 2695=18 C3A)+I2(R)dab
dA dab
dA (7 C2R � 1603=60CRCA + 497=20 C2A)+NAI2(R)(+C6R � 21=2 C5RCA + 175=4 C4RC2A � 280=3 C3RC3A+5215=48 C2RC4A � 19075=288 CRC5A + 43357=2592 C6A)Table 11: Results for tra
es of the type Tr[T i1R � � � T inR T i1R � � � T inR ℄.faster be
ause the program sele
ts automati
ally the smallest loops. These results 
an be foundin table 12. For n = 8 the program took 1:5 se
 We noti
e that here the 
omputer time does notn time result2 0.15 s 12NAC2A3 0.20 s 04 0.23 s dab
dA dab
dA � 124NAC4A5 0.78 s 23CAdab
dA dab
dA � 136NAC5A6 0.81 s dab
dA dabefA d
defA + 14C2Adab
dA dab
dA � 13864NAC6A7 0.89 s �89dab
defA dab
gA ddefgA + 5330CA dab
dA dabefA d
defA� 5648NAC7ATable 12: Like the previous table but now in the adjoint representation.in
rease very mu
h with the number of 
rossing lines (the number of verti
es and hen
e the weightis 2n). There is a
tually more `
ompilation time' than `exe
ution' time. The jump in time goingfrom n = 4 to n = 5 represents the use of the redu
tion algorithms to eliminate f 's. In that 
asethe program needs 
onsiderably more 
ompilation time.The fa
t that diagrams with only verti
es in the adjoint representation are easier to evaluatethan the diagrams with verti
es in the other representations is exa
tly the opposite of what happenswith the Cvitanovi
 algorithms [1℄. For them ea
h f is 
onverted to one or more terms with oneor more matri
es in the fundamental representation. This 
an lead to an avalan
he of terms at theintermediate stages, be
ause no advantage is taken from the potentially simpler stru
tures. In the
ase of the tra
es in the fundamental representation the Cvitanovi
 algorithms are mu
h faster.These algorithms do not worry about symmetrizations and are dire
tly appli
able to su
h tra
es.As an example of high 
omplexity for purely adjoint diagrams we take the one topology of girth6 with 14 verti
es. It is also 
alled the Coxeter graph. In this the smallest loop has 6 verti
es. The40



result is rather short:G6(n = 14) = 169 dab
defA dab
gA ddefgA � 815CA dab
dA dabefA d
defA + 1648NAC7A (183)This took 1.6 se
.D Expli
it expressionsHere we present some expressions for a number of invariants. These are mostly invariants forrepresentations that 
an be used as referen
e representations. The expressions are given in termsof the normalization fa
tor � de�ned in (27).In all 
ases the tensors (referred to as dn(R)) are de�ned asda1 :::anR = Str T a1R : : : T anR : (184)In parti
ular no tra
es are subtra
ted and no overall fa
tors are in
luded. For SO(N) we deviatefrom the preferred index normalization of table (4), sin
e otherwise we would have to deal with afew low-N SO(N) 
ases separately.Results for the fundamental (ve
tor) representation V of SU(N):CV = aN (N2 � 1) (185)CA = 2aN (186)d33(V V ) = a32N (N2 � 1)(N2 � 4) (187)d44(V V ) = a46N2 (N2 � 1)(N4 � 6N2 + 18) (188)d55(V V ) = a524N3 (N2 � 1)(N2 � 2)(N4 + 24) (189)d433(V V V ) = a56N2 (N2 � 1)(N2 � 4)(N2 � 6) (190)d66(V V ) = a6120N4 (N2 � 1)(N8 + 6N6 � 60N4 + 600) (191)d633(V V V ) = a6480N3 (N2 � 1)2(N2 � 4)2 (192)d543(V V V ) = a6288N3 (N2 � 1)(N2 � 4)(N4 � 6N2 + 18) (193)d444(V V V ) = a627N3 (N2 � 1)(N6 � 9N4 + 81N2 � 189) (194)d3333(V V V V ) = a68N2 (N2 � 1)(N2 � 4)(N2 � 12) (195)with a = 12� (see equation(27)). The 
hoi
e � = 1; a = 12 
orresponds to the most 
ommonly usednormalization. Then Tr T aV T bV = 12Æab. In SU(N) the ve
tor representation is always equal to thereferen
e representation.For the ve
tor representation of SO(N) we have:CV = a2(N � 1) (196)CA = a(N � 2) (197)41



NA = 12N(N � 1) (198)d44(V V ) = a424NA(N2 �N + 4) (199)= a412NA(NA + 2) (200)d66(V V ) = a61920NA(N4 � 2N3 + 33N2 � 32N + 52) (201)= a6480NA(N2A + 16NA + 13) (202)d444(V V V ) = a6432NA(2N3 � 3N2 + 33N � 16) (203)(204)with a = � (see equation(27)). In this 
ase a = � = 2 is the most frequently used 
onvention. ThenTr T aV T bV = 2Æab.Note that for SO(N), N � 6 the ve
tor representation is not the referen
e representation. Theformulas for the referen
e representation for those groups 
an be read o� from the appropriateSU(N) or Sp(N) results. The tensors used in the foregoing formulas are normalized so that I4(V ) =I6(V ) = 1 in (95). As explained above, this di�ers from the index normalization 
hosen in table(4) for SO(7) and SO(8). For these groups our 
onvention is to make I4 twi
e as large, and hen
ed4 twi
e as small.For the ve
tor representation of Sp(N) we have:CV = a2(N + 1) (205)CA = a(N + 2) (206)NA = 12N(N + 1) (207)d44(V V ) = a424NA(N2 +N + 4) (208)= a412NA(NA + 2) (209)d66(V V ) = a61920NA(N4 + 2N3 + 33N2 + 32N + 52) (210)= a6480NA(N2A + 16NA + 13) (211)d444(V V V ) = a6432NA(2N3 + 3N2 + 33N + 16) (212)(213)with a = 12� (see equation(27)). In this 
ase the ve
tor 
oin
ides with the referen
e representation.For all groups for whi
h I4(A) = 0 we 
an derive a number of invariants with relatively sim-ple methods. This is of parti
ular interest for the ex
eptional algebras, whi
h have I4(R) = 0for any representation. We will present the following formulas for tensors de�ned in the adjointrepresentation, whi
h is not the referen
e representation (ex
ept for E8). The reason for doingthis is that it allows us to write a single set of relations for all algebras. It is straightforward tore-express these results in terms of the referen
e representation. To do so one needs the relationbetween adjoint tensors and referen
e tensors, whi
h follows dire
tly from the 
hara
ters of both42



representations; the latter 
an be 
omputed by means of the methods used in Appendix A. Theadjoint representation is unsuitable for the odd tra
es of E6, whi
h are dis
ussed separately below.To do the 
omputations, �rst we noti
e thatdi1i2i3i4A = I22(A)(Æi1i2Æi3i4 + Æi1i3Æi2i4 + Æi1i4Æi2i3)=3 (214)with I22(A) = 52C2A=(NA + 2). Using this and equation (118) we 
an determine d66(AA). Next we
an go even further by using a te
hnique similar to the one used to derive equation(118): We runthe program for the produ
t of two tra
es with 8 verti
es. First we run it for a representation Rin one tra
e and the adjoint representation in the other. After the run we put R equal to A. Thisgives an expression that in
ludes d88(AA) and d844(AAA) and obje
ts that 
ontain 
ombinationsof d4 and d6. We 
an run the same tra
es with the program, but starting with both of them in theadjoint representation. In that 
ase we obtain an expression that does not 
ontain d88(AA). Thisgives us the required equation. Now we substitute d4 and we need an equation for djji1���i68 whi
his also easy to obtain with the program:djji1���i6A = 1021di1����6A + 16(dji1i2i3A dji4i5i6A + � � �)=10 (215)in whi
h we have to take the 10 symmetri
 
ombinations over the indi
es in the last term. For d6we have a similar equation whi
h is given by equation (142). In total we obtain:d44(AA) = 25 C4A12(NA + 2) (216)d66(AA) = C6ANA(NA + 2)2 (797288 + 827NA � 1864N2A) (217)d444(AAA) = C6ANA(NA + 2)2 (12527 + 125216NA) (218)d644(AAA) = 17548 C7ANA(NA + 2)2 (219)d88(AA) = C8ANA(NA + 2)3 (34251008 + 111025145152NA + 1256804N2A + 25435456N3A) (220)d844(AAA) = C8ANA(NA + 2)3 (12524 + 625288NA) (221)d664(AAA) = C8ANA(NA + 2)3 (5455864 + 34852592NA � 52592N2A) (222)d4444a(AAAA) = C8ANA(NA + 2)3 (3125324 + 625216NA + 6251296N2A) (223)d4444b(AAAA) = C8ANA(NA + 2)3 (6875648 + 31251296NA) (224)The last two topologies are de�ned asd4444a(p1; p2; p3; p4) = 13 42 (225)d4444b(p1; p2; p3; p4) = 13 42 (226)43



group G2 F4 E6 E7 E8NA 14 52 78 133 248CA 4 � 9 � 24 � 18 � 30 �Table 13: Values of NA and CA for the ex
eptional groups.The appropriate values to be substituted for the various groups are given in table 13.For E6 we also have to 
onsider the invariants with 5 indi
es. These we 
an obtain with thereferen
e representation r. For invariants that involve this representation we have:Cr = 523 � (227)Nr = 27 (228)d44(rr) = 18720 �4 (229)d55(rr) = 291200 �5 (230)d66(rr) = 1023152 �6 (231)d444(rrr) = 536640 �6 (232)d77(rr) = 112112003 �7 (233)d644(rrr) = 206165445 �7 (234)d554(rrr) = 582400 �7 (235)d88(rr) = 46634619227 �8 (236)A number of these quantities 
an be obtained in various ways and serve as a 
he
k of our programs.E Chiral representations of SO(2m)The algebra Dm has an index of order m that vanishes for the ve
tor representation, and is non-zero only for 
hiral representations. The latter are 
hara
terized by having unequal values for thelast two Dynkin labels, am�1 6= am. The simplest representations of this type are the spinors,S = (0; : : : ; 0; 1; 0) and S0 = (0; : : : ; 0; 1). If m is odd S0 is the 
omplex 
onjugate of S. Note thatfor odd m the extra index (hen
eforth referred to as the \
hiral index") has odd order, unlike allother SO(N) indi
es, whereas for m even there are two distin
t indi
es of even order, namely the
hiral index and one of the regular indi
es.Sin
e the 
hiral index vanishes for the ve
tor representation, whereas all indi
es are non-zerofor the spinor, it might be argued that the latter is perhaps a more suitable 
hoi
e for the referen
erepresentation. However, the ve
tor representation has other advantages, perhaps most importantlythat the tra
e-identities for tra
es of order larger than 2m are simpler. The main drawba
k of this
hoi
e is that it requires a separate dis
ussion of 
hiral tra
es, whi
h we give here.Our 
onventions for SO(2m) are as follows. The generators in the ve
tor representation areM��ij = iq�=2(Æ�i Æ�j � Æ�i Æ�j ) (237)This is a 
omplete set of generators for � < �. The normalization fa
tor p�=2 is introdu
ed in(27). Clearly for SO(N) the most attra
tive 
hoi
e is � = 2.44



The generators of the (
hiral plus anti-
hiral) spinor representation are then��� = i4q�=2 [
�; 
� ℄ ; (238)with f
�; 
�g = 2g�� . The dimension of this Cli�ord algebra is 2m.For the 
hiral 
-matrix (often referred to as 
5) we 
hoose

 = (i)m
1 : : : 
2m (239)The phase is 
hosen so that 

 is hermitean (assuming the other 
-matri
es are 
hosen hermiteanas well). Hermiti
ity �xes the overall fa
tor up to an m-dependent sign, for whi
h we have made a
onventional 
hoi
e.The 
hiral spinor generators are ���� = 12���(1� 

) (240)The symmetrized tra
e of m su
h generators isStr��1�1� : : :��m�m� = 12Str��1�1 : : :��m�m � 12Str��1�1 : : :��m�m

 (241)The �rst term yields (for m even) an ordinary d-tensor, the se
ond one yields the ~d tensor. Bygeneral arguments, Str��1�1� : : :��n�n� = In(S�)d[�1�1℄;:::;[�n�n℄ + lower order�~In(S�) ~d[�1�1℄;:::;[�n�n℄ ; (242)where [�1�1℄ denotes an adjoint index. By 
onvention~In(S�) = �1 (243)then ~d[�1�1℄;:::;[�m�m℄ = 12Str��1�1 : : :��m�m

 = 12(�=2)m=2��1;:::;�m ; (244)with the de�nition �1;:::;2m = 1. Note that the interpretation requires pairs of indi
es to be identi�edwith an adjoint index, and that the � tensor is indeed fully symmetri
 under permutation of pairsof indi
es.This gives us an expli
it expression for the extra tensor, and 
omputing invariants that involvethis tensor is now straightforward. One 
an either do that by 
omputing all other tensors alsoin the spinor representation. Then 
omputing the invariants amounts to simple 
-algebra. Sin
eexpressions for the spinor 
hara
ters in terms of ve
tor tra
es are expli
itly known (see (65) and(66)), all tensors in the spinor representation 
an be re-expanded in terms of referen
e tensors.Alternatively it is also very easy to work dire
tly with the referen
e tensors, whi
h, using (237)
an be expressed 
ompletely in terms of krone
ker Æ's with ve
tor indi
es. These indi
es are to betaken in pairs and identi�ed with adjoint indi
es, and 
an then be pairwise 
ontra
ted with the �tensor.For the normalization of the tensor ~d of SO(2m) we getdmm(CC) = 142�m(2m)!45



The fa
tor 2�m 
ompensates the double 
ounting of index pairs �� as 
ompared to adjoint indi
es.The argument \CC" indi
ates that two 
hiral tensors ~d are used. Furthermore we havedmm(CV ) = dmm(CS) = 0 :Here \V" is the fundamental representation, as before, and \S" refers to the non-
hiral tensor
omputed in the spinor representation,d[�1�1℄;:::;[�m�m℄S = 12Str��1�1 : : :��m�mThis tensor is related to the one in the referen
e representation V .To order 12, the maximal order we used for the other SO(N) tensors, the only other quantityof interest is d444, whi
h has 
hiral tensor 
ontributions only for SO(8). Here is a 
omplete set ofresults for that group. d44(V V ) = 70�4 (245)d44(SS) = 2458 �4 (246)d44(CC) = 3158 �4 (247)d66(V V ) = 5818 �6 (248)d444(V V V ) = 70�6 (249)d444(SSS) = 66532 �6 (250)d444(SSC) = d444(V V C) = 0 (251)d444(SCC) = 52532 �6 (252)d444(V CC) = �1058 �6 (253)d444(CCC) = 0 (254)The fundamental quantities here are the ones involving d4(V ); d6(V ) and d4(C). The tensor d4(S)is related to d4(V ): dab
dS = �12dab
dV + 32dab
d2;2The results involving d4(S) are given here be
ause one may use them to 
he
k the triality relationsd44(V V ) = d44(SS) + 2d444(SC) + d44(CC)and d444(V V V ) = d444(SSS) + 3d444(SSC) + 3d444(SCC) + d444(CCC)whi
h are due to the fa
t that the tensors d4(V ) and the 
ombinations d4(S)� d4(C) are given bysymmetrized tra
es of the triality-related representations (8v), (8s) and (8
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