
FORM for Pedestrians

André Heck

Draft: Amsterdam, October 2000

c©2000, A.J.P. Heck and J.A.M. Vermaseren

.

Contents

1 Introduction 1
1.1 Getting Started . 1

1.1.1 Characteristics of FORM . 1
1.1.2 Our First Example . 2
1.1.3 Exercises . 3

1.2 Types of Variables . 4
1.2.1 Functions . 4
1.2.2 Vectors and Indices . 9
1.2.3 Tensors . 11
1.2.4 Exercises . 12

1.3 Inner Workings of FORM . 12
1.4 Some FORM Examples . 13

1.4.1 Summation . 13
1.4.2 Levi-Civita Tensor . 13
1.4.3 Vector Calculus: Outer Product . 15
1.4.4 Linear Algebra: Determinant . 16
1.4.5 Linear Algebra: Gram Determinant . 17
1.4.6 Graph Theory: Realizability of Graphs with Prescribed Degrees 19
1.4.7 Exercises . 21

2 Pattern Matching 24
2.1 Substitution . 24

2.1.1 Exercises . 27
2.2 Pattern Objects . 28

2.2.1 Exercises . 29
2.3 Patterns in Replacement Rules . 29

2.3.1 Polynomial Substitutions . 29
2.3.2 Fibonacci Numbers . 30
2.3.3 Differentiation of Polynomials . 31
2.3.4 Vector Calculus: Coordinate Transformations . 31
2.3.5 Levi-Civita Tensor . 32
2.3.6 Exercises . 33

2.4 Patterns and Functions . 34
2.4.1 Wildcard Parameters . 34
2.4.2 Wildcards for Functions . 36
2.4.3 Wildcarding for Groups of Parameters . 36
2.4.4 Exercises . 39

2.5 Conditions on Wildcards and Replacements . 40
2.5.1 Sets and Wildcarding . 40
2.5.2 Restrictions on Replacements . 42
2.5.3 A Realistic Differentiation Example . 46
2.5.4 Contravariant and Covariant Indices . 46
2.5.5 Dirac Algebra . 47

i

2.5.6 Exercises . 58
2.6 Limitations in Wildcarding . 59

2.6.1 Coefficients and Wildcards . 59
2.6.2 Sums of Wildcards . 61
2.6.3 Exercises . 61

3 Procedural Programming 63
3.1 Superstructure of the Preprocessor . 63

3.1.1 Choice . 63
3.1.2 Repetition . 68
3.1.3 Preprocessor Variables . 74
3.1.4 Procedure . 76
3.1.5 Processing Word Problems in Coxeter Groups . 82
3.1.6 Exercises . 87

3.2 Control Structures at Compiler Level . 88
3.2.1 Choice . 88
3.2.2 Repetition . 93
3.2.3 GO TO . 94
3.2.4 Exercises . 94

4 Answers to Problems of Chapter 1 96
4.1 Getting Started . 96
4.2 Types of Variables . 98
4.3 Some FORM Examples . 100

5 Answers to Problems of Chapter 2 109
5.1 Substitution . 109
5.2 Pattern Objects . 114
5.3 Patterns in Replacement Rules . 115
5.4 Patterns and Functions . 122
5.5 Conditions on Wildcards and Replacements . 127
5.6 Limitations in Wildcarding . 132

6 Answers to Problem of Chapter 3 134
6.1 Introduction . 134
6.2 Control Structures . 145

Bibliography 148

ii

Chapter 1

Introduction

1.1 Getting Started

1.1.1 Characteristics of FORM

The origin of computer algebra is high energy physics, where the need for algebra engines to handle big
computations was felt earliest. The programs REDUCE and SCHOONSCHIP were born in the sixties. RE-
DUCE transformed gradually into a general purpose system and can be considered as one of the predecessors
of the modern general purpose systems such as Maple and Mathematica. The design of such general purpose
systems make them useful for various areas, but when it comes to really large computations they are too
slow, use too big memory, and so on. SCHOONSCHIP was a program completely dedicated towards and
optimized for large computations in high energy physics: it was written in assembler language and operated
fast. SCHOONSCHIP can be considered as the predecessor of the FORM program.

FORM has been designed along the same philosophy: make a symbolic manipulation program that is
useful for “real computations” on “real computers”. FORM has been developed over the last fifteen years
by Jos Vermaseren at NIKHEF. The first version was released in 1989 and made available by anonymous
ftp from ftp.nikhef.nl. The second enhanced version, FORM 2, was commercially released in 1991. The
present release FORM 3 is the next major improvement of the software. FORM3 is not only useful
for computations in high energy physics (the original application area), but it is also well-suited for large
symbolic manipulations of general nature, in cases where other systems give up. Pattern matching in formula
manipulation and computing in noncommutative algebras are two other examples of application areas outside
the field of high energy physics where FORM has proved to be champion in symbol crunching.

Before starting to learn FORM, let us compare the program with other general purpose systems such
as Maple and Mathematica so that it is clear where and why FORM is different. The following comparison
originates from a short course on FORM [Oldenborgh 95].

1

Maple, Mathematica, etc. FORM

Swiss army knife Chef knife

• Much built-in knowledge (integration, solving
equations, special functions, etc.)

• Limited mathematical knowledge (calculus with
tensors and gamma matrices, ...)

• Designed for an infinitely large computer • Designed for real computers

• Big and slow (especially on large problems) • Small and fast (also on large problems)

• Very general • Optimized for certain classes of problems

• Fancy user interface (typesetting, graphics, sound,
drag-and-drop, etc.)

• Batch program (edit-run cycle)

• Tries to do everything • Does only what you ask for

1.1.2 Our First Example

In order to do a calculation in FORM, you have to write a program, store it in a file, and call FORM with
this file as an argument. Let us look at a simple example.

Suppose you have a file sample1.frm with the following contents.

Symbols a,b;

Local [(a+b)^2] = (a+b)^2;

Print;

.end

When you call FORM by form sample1, the following will appear on your terminal screen.

FORM version 3.-(Nov 29 1997). Run at: Tue Jan 6 19:15:59 1998

Symbols a,b;

Local [(a+b)^2] = (a+b)^2;

Print;

.end

Time = 0.10 sec Generated terms = 3

[(a+b)^2] Terms in output = 3

Bytes used = 52

[(a+b)^2] =

2*a*b + a^2 + b^2;

Let us have a closer look at the above session. The basic object in FORM is a term. Formulae consist
of terms, and terms are separated by addition and subtraction. If a formula contains parentheses these are
immediately removed as in our example: the formula [(a+b)^2] contains three terms. Note that objects
have to be declared in FORM before they can be used. The first line informs the system that a and b are
algebraic symbols. The second line defines [(a+b)^2] as a local expression that has to be manipulated.

2

The Print statement is necessary to see the result. The word .end marks the end of the program: it is for
FORM the signal to execute the last program block and to finish afterwards. FORM shows the original
program and the runtime statistics on the screen.

Some general remarks about a regular FORM program:

• Every FORM program must be stored in a file with extension frm.

• Every FORM statement consists of a keyword such as Symbols, Local, Print, and .end, and some
continuation. FORM statements can be continued over several lines, but they must end with a
semicolon. You can also have more than one statement in a program line.

• FORM does not distinguish between plural and singular declarations: Symbols and Symbol are equally
valid, and for FORM Indices and Index are the same.

• Abbreviations for keywords exist: instead of Symbols you can just use S, and Local can be abbreviated
as L. For clarity of the examples, we have not used the abbreviation possibilities of FORM in this
tutorial.

• Items in a FORM statement are separated by commas or spaces. FORM considers these characters
most of the time as equivalents.

• FORM is case insensitive with respect to keywords and built-in objects. It is however case sensitive
with user defined objects, allowing in this way maximum flexibility.

• In FORM, the simplest kind of names of variables and expressions are sequences of letters and digits,
the first of which must be a letter. For example, alpha, a1, H2O, and firstExercise are valid names.
If you want to use spaces in a name for reasons of readability, or if you want to use special characters
such as dots, colons, or slashes, then you must surround the name with square brackets []. Names
that contain an underscore are reserved by the FORM system. Good advice: Avoid using names that
contain an underscore if they are not absolutely necessary.

• You can log a FORM session by adding the flag -l in the starting command: if in our example we
had said form -l sample1, the effect would have been the creation of the file sample1.log with the
contents that normally appears on the screen.

• You can interrupt a FORM computation by entering CTRL C, i.e., by pressing the C key while
holding down the Control key.

1.1.3 Exercises

1. Does anything happen when you change the Local [(a+b)^2] = (a+b)^2 statement in the first ex-
ample by Local [(a+b)^2] = (a+b)*(a+b) ?

2. Does anything happen when you change the Symbols a,b declaration in the first example by
Functions a,b ?

3. Consider the following FORM program.

Symbol a;

Functions B, C;

Local F1 = (a+B+C)^2;

Local F2 = (a+(B+C))^2;

Print;

.end;

What is the difference in working out expression F1 and expression F2?

4. Check whether the following is a valid FORM program.

3

s,t,u; L,F=

(t+u)

^2;

Print;

.end

1.2 Types of Variables

In the second exercise of the last section you have seen that FORM has an easy way to deal with non-
commuting objects, viz., through the variable type Function. There are more types in FORM: commuting
functions, vectors, and tensors, to name a few. In this section we shall discuss some of them.

1.2.1 Functions

Commuting vs. Noncommuting Functions

FORM distinguishes between noncommuting functions, declared by the keyword Functions, and commuting
functions, declared by the keyword CFunctions or Commuting. The next example clearly demonstrates the
difference.

*

* Declarations

*

Functions f,g;

CFunctions F,G;

Symbol x;

*

* Specifications, e.g. no runtime statistics

*

Off statistics;

*

* Definitions

*

* local expression with only noncommuting functions

*

Local F1 = f(x)*g(x) + g(x)*f(x);

*

* Output

*

Print;

*

* end of module

*

.sort

F1 =

f(x)*g(x) + g(x)*f(x);

*

* local expression with only commuting functions

*

Local F2 = F(x)*G(x) + G(x)*F(x);

Print F2;

*

* terminate the program

4

*

.end

F2 =

2*F(x)*G(x);

We deliberately made the above example more complicated than necessary in order to explain some more
FORM features.

• You can write comments by starting these lines with an asterisk ∗.

• The printing of runtime messages can be suppressed by the statement Off statistics.

Henceforth, it is assumed in all FORM examples that the initialization file form.set con-

tains the line nwritestatistics on. This will automatically turn off the printing of runtime

messages unless the statement On statistics is present in a FORM program.

• There is a fixed order of types of statements in a program block:

1. Declarations: starting with keywords Symbol, Function, . . .

2. Specifications: starting with keywords statistics, skip, drop, hide, . . .

3. Definitions: starting with keywords Local or Global.

4. Executable statements: starting with keywords id, trace, contract, . . .

5. Output control: such as Print and Bracket.

• The .sort statement is a directive to FORM to execute a program block, sort the result (i.e., bring
them in standard ordering), and prepare for further processing.

This brings us to the very short description of how FORM operates; we will come back to this issue
in section 1.3. FORM consists of a preprocessor and a compiler . The preprocessor reads from the input
stream and prepares input for the compiler. The preprocessor prepares program blocks, also called modules ,
which are translated by the compiler, and immediately executed. A command for the preprocessor is called
a preprocessor instruction. It always starts with the sharp symbol (#), it does not have to end with a
semicolon, and it is executed when it is encountered in the input stream. A module is terminated by a
statement that starts with a period. Such a statement is called a module instruction. It marks the end of a
module, it halts the compiler, and it initiates the execution of the module. Like a preprocessor instruction,
a module instructions does not have to end with a semicolon, although it does no harm. The module
instructions and their meanings are listed below.

Instruction Meaning

execute, sort, print, +
.sort continue
.end terminate
.clear restart softly
.store store globals, remove locals, continue

There is one other module instruction, viz., .global. It makes the definitions and declarations in the
module global so that they cannot be so easily removed again. Most of these directives will be discussed in
later chapters.

Finally, in our example we have used an option of Print, viz., to print only one expression instead of all
expressions known in the module.

5

Symmetry Properties of Functions

Besides distinguishing commutating and noncommuting functions, FORM can also deal with the following
four symmetry properties of functions.

Symmetry Property Meaning

symmetric F (x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n)) for every permutation σ.
antisymmetric F (x1, x2, . . . , xn) = sgn(σ)F (xσ(1), xσ(2), . . . , xσ(n)) for every permutation σ,

where sgn(σ) denotes the signature of σ.
cyclic F (x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n)) for every permutation σ

in the group generated by the cycle (1 2 3 . . . n).
rcyclic F (x1, x2, . . . , xn) = F (xσ(1), xσ(2), . . . , xσ(n)) for every permutation σ

in the group generated by the cycle (1 2 3 . . . n) and
the cycle (1 n) (2 n− 1) (3 n− 2) · · · (⌊n

2 ⌋ ⌊n
2 ⌋ + 1).

An example:

Symbols x1,x2,x3,x4,x5;

Functions S(symmetric), A(antisymmetric), C(cyclic), R(rcyclic);

Local [S(x2,x3,x4,x1,x5)] = S(x2,x3,x4,x1,x5);

Local [A(x2,x3,x4,x1,x5)] = A(x2,x3,x4,x1,x5);

Local [C(x2,x3,x4,x1,x5)] = C(x2,x3,x4,x1,x5);

Local [R(x2,x3,x4,x1,x5)] = R(x2,x3,x4,x1,x5);

Print;

.end

[S(x2,x3,x4,x1,x5)] =

S(x1,x2,x3,x4,x5);

[A(x2,x3,x4,x1,x5)] =

- A(x1,x2,x3,x4,x5);

[C(x2,x3,x4,x1,x5)] =

C(x1,x5,x2,x3,x4);

[R(x2,x3,x4,x1,x5)] =

R(x1,x4,x3,x2,x5);

You see that FORM automatically uses the symmetry properties of the functions to bring the arguments
into standard order (determined by the order in which objects have been declared). Three remarks:

• Symmetry properties can only be defined for the entire argument field. If you want to have more
complicated constructions you should split up the function into more than one function.

• The words describing the symmetry can be abbreviated: the first character already suffices. FORM is
also case insensitive with respect to these keywords. So, the above example would have worked equally
well (but less readable) when you change S(symmetric) into S(S).

• The symmetry properties can also be defined for tensors.

Function Calls

Consider the following FORM session.

Symbols x,y;

Commuting f;

6

Local F = f(x)+f(x,y)+f(x,,y);

Print;

.end

F =

f(x) + f(x,y) + f(x,0,y);

Notice that calls of the commuting function f have different number of arguments. This is a general feature:
there is no check on the type of a function and on the number of arguments in a function call until something
has to be done with the function. The empty argument in the third call of f is replaced by zero. In FORM,
empty arguments and arguments that are zero are the same.

Built-in Mathematical Functions

We list the mathematical functions that FORM knows. Like any other built-in object you recognize such a
function by its name: it always ends with an underscore. We distinguish between functions that have really
been implemented and those whose names have been reserved only. For the latter functions, some safe fixed
values and relations may be implemented in future versions of FORM, but do not expect too much of it.
Because of potential problems with multivalued functions and with analytic continuations of functions, the
number of relations will be limited.

Implemented Function Meaning

abs_ absolute value
bernoulli_ Bernoulli number
binom_ binomial coefficient
delta_ delta function
deltap_ delta prime function
fac_ factorial
invfac_ inverse factorial
max_, min_ maximum and minimum value
mod_ modulo arithmetic of integers
root_ root function
sig_ sign function
sign_ signature for integers
theta_ theta function
thetap_ theta prime function
Reserved Function Meaning

acos_, asin_, atan_, atan2_ inverse trigonometric functions
acosh_, asinh_, atanh_ inverse hyperbolic functions
cos_, sin_, tan_ trigonometric functions
cosh_, sinh_, tanh_ hyperbolic functions
li2_ dilogarithm
lin_ polylogarithm
ln_ natural logarithm
sqrt_ square root function

Precise definitions of implemented functions are:

• abs (x) =

{

|x| if x is numerical
abs (x) otherwise

• bernoulli (n), for some integer n, is defined as the coefficient of tn in the series expansion of

t

1 − exp(−t) about zero, i.e.,
t

1 − exp(−t) =

∞
∑

n=0

bernoulli (n) tn.

7

• binom (n, k) =
n!

k! (n− k)!
.

• delta (x) =







1 if x = 0
0 if x is numerical and x 6= 0
delta (x) otherwise

and

delta (x, y) =







1 if x = y
0 if x and y are numerical and x 6= y
delta (x, y) otherwise

So, basically, delta (x, y) = delta (x − y)

• deltap (x) =







0 if x = 0
1 if x 6= 0
deltap (x) otherwise

and

deltap (x, y) =







0 if x = y
1 if x and y are numerical and x 6= y
deltap (x, y) otherwise

So, basically, deltap (x) = 1 − delta (x) and deltap (x, y) = 1 − delta (x, y)

• fac (n) = n! = n× (n− 1) × · · · × 3 × 2 × 1.

invfac (n) =
1

n!
.

• If all xi’s in max (x1, x2, . . . , xn) are numerical, it evaluates to the maximum value of them. If not, the
formula is returned.

If all xi’s in min (x1, x2, . . . , xn) are numerical, it evaluates to the minimum value of them. If not, the
formula is returned.

• mod (n, k) = n mod k for integers n and k.

• If n is a positive integer, if x is a rational number, and if the nth root of x is also a rational number,
say y, then root (n, x) is replaced by y. Otherwise, the expression is left untouched. For example,
root (2, 9) = 3. This function is mainly intended for internal use. It does not try partial roots such as
root (2, 8) = 2 root (2, 2).

• sig (x) =







1 if x ≥ 0
−1 if x < 0
sig (x) otherwise

• sign (n) = (−1)n for integer n. The function exists for efficiency reasons: evaluation is much faster
than working out the power which it would normally do.

• theta (x) =







1 if x ≥ 0
0 if x < 0
theta (x) otherwise

and

theta (x, y) =

{

1 if x = y or if x and y in natural order
0 if x and y not in natural order

• thetap (x) =







1 if x > 0
0 if x ≤ 0
theta (x) otherwise

and

8

thetap (x, y) =

{

1 if x and y in natural order and x 6= y
0 if x = y or if x and y not in natural order

So, basically, thetap (x) = 1 − theta (−x) and thetap (x, y) = 1 − theta (−x,−y)

The following FORM session illustrates how some of the built-in functions work.

Symbol x;

Local F1 = invfac_(3) + x*fac_(3);

Local F2 = cos_(0) + cos_(x)^2 + sin_(x)^2;

Local F3 = x^3*sign_(3) + x*abs_(-1/2) + sig_(-3) + sig_(x);

Local F4 = binom_(5,2) + sqrt_(4) + x*root_(2,4);

Local F5 = bernoulli_(0) + bernoulli_(1)*x + bernoulli_(2)*x^2;

Local F6 = max_(1/2,2) + min_(1,x);

Local F7 = mod_(7,2);

Print;

.end;

F1 =

1/6 + 6*x;

F2 =

sin_(x)^2 + cos_(x)^2 + cos_(0);

F3 =

- 1 + 1/2*x - x^3 + sig_(x);

F4 =

10 + 2*x + sqrt_(4);

F5 =

1 + 1/2*x + 1/12*x^2;

F6 =

2 + min_(1,x);

F7 =

1;

1.2.2 Vectors and Indices

Vectors are one of the favorite data types of FORM. They can appear in two ways: with symbolic indices,
like in v(i), and with specific integer indices such as v(1) and v(2). In the former case, the indices must
be declared. The default dimension of the underlying vector space is four, but it can be changed by the
Dimension statement. An example of the use of vectors and indices:

Vectors u,v;

Indices i,j;

Function f;

Local w1 = u(1) + v(i);

Local w2 = u(i) * v(j);

Local w3 = u(i) * u(i);

Local w4 = v(i) * u(i);

Local w5 = f(i,j) * u(i) * v(j);

Print;

.end

9

w1 =

u(1) + v(i);

w2 =

u(i)*v(j);

w3 =

u.u;

w4 =

u.v;

w5 =

f(u,v);

The formulas w3 and w4 show that FORM uses the so-called Einstein summation convention: indices that
occur twice inside the same term are considered to be summed over. So, v(i)*u(i) becomes the inner
product or dot product of u and v, which is

∑

i uivi. Because (components of) vectors are assumed to be
commuting, the order in the dot product is unimportant: FORM will choose one depending on the order of
declaration.

Formula w5 illustrates another convention, called the SCHOONSCHIP notation, that FORM uses: when
an index is summed over and in one of its occurrences it is the argument of a vector, then this vector is put
at the place of the other occurrence. In this notation,

∑

i fivi, where v is a vector and f some function, is
abbreviated as fv.

The automatic summation of indices is also called contraction of indices . You can overrule the contraction
of indices in FORM by specifying a zeroth dimension for the index in the declaration. In this case, explicit
summation is still possible by the sum statement. This statement is also applicable if indices are arguments
of functions or tensors.

Vector u;

Index i=0;

* no contraction over index i

Local P = u(i) * u(i);

Print;

.sort

P =

u(i)*u(i);

sum i;

Print;

.sort

P =

u.u;

Function f;

Local F = f(i);

sum i,1,3,5;

Print F;

.end

F =

f(1) + f(3) + f(5);

10

Keep in mind that FORM does not distinguish between upper (contravariant) and lower (covariant) indices.
We shall see in the next chapter how this concept from tensor calculus can be implemented in FORM.

1.2.3 Tensors

The keyword to declare a tensor in FORM is Tensor or CTensor. The latter declaration makes clear that
FORM assumes (components of) tensors to be commuting. To declare a noncommuting version you must
use NTensor. Tensors are in FORM special kinds of functions: their arguments can only be indices and
vectors of which it is assumed that they have been contracted with an index. The advantage is that the
system can manipulate them more efficiently than the general functions.

In the example below, we consider a sum of two products of tensors and explicitly tell FORM that
common indices are summed over. In this way, the system will recognize the equal terms in the expression.

Tensors S,T;

Indices i,j,k,l;

Local F = S(i,k)*T(k,j) + S(i,l)*T(l,j);

Print;

.sort

F =

S(i,k)*T(k,j) + S(i,l)*T(l,j);

sum k,l;

Print;

F =

2*S(i,N1_?)*T(N1_?,j);

The dummy index generated by FORM is denoted by a name that ends with an underscore and a question
mark.

FORM has convenience methods to replace tensors by a product of vector components and vice versa.
They are called ToVector and ToTensor, respectively. The commands have two arguments, a tensor and a
vector. The order in which these arguments occur is irrelevant. Replacements from vector to tensor occur
not only when components of the vector are used, but also when the vector is contracted with other vectors
or tensors. An example that shows it all.

Tensor t;

Vector u,v;

Indices i,j,k;

Local F1 = v(i)*v(j)*v(k)*v(1);

Local F2 = v;

Local F3 = (u.v)^2 * v.v;

ToTensor v,t;

Print;

.sort

F1 =

t(1,i,j,k);

F2 =

v;

F3 =

t(u,u,N1_?,N1_?);

11

Local F4 = t;

ToVector t,v;

Print;

.end

F1 =

v(1)*v(i)*v(j)*v(k);

F2 =

v;

F3 =

u.v^2*v.v;

F4 =

1;

1.2.4 Exercises

1. Check how FORM handles the summation convention for the following expressions.

(i) aijxj

(ii) aiixj

(iii) aijxiyj

(iv) δijxixj

2. Demonstrate with FORM the following equalities.

(i) aijxiyj = ajixjyi

(ii) (aij + aji)xixj = 2aijxixj

3. Let a be an antisymmetric tensor of rank two. Demonstrate with FORM the following properties.

(i) aijxixj = 0 for any vector x.

(ii) the tensor b of rank two defined by the contraction bij = aikakj is symmetric.

4. There are three ways to control the printing of powers of functions:

FunPowers nofunpowers;

FunPowers commutingonly;

FunPowers allfunpowers;

Find out by experimentation what the statements actually do and check also how they affect the
printing of powers of tensors.

1.3 Inner Workings of FORM

When writing or studying FORM programs, it is useful to have at least some idea of what FORM internally
does. First, you need to know what objects it actually manipulates. The answer is that FORM works with
expressions that are sums of terms; each term consisting of a rational coefficient times a product of factors,
possibly to some power. The factors can be symbols or more complicated structures such as functions or
tensors. The expressions that can be manipulated are called active expressions . There can be many active
expressions at the same time.

12

The method of operation of FORM is as follows.

1. The preprocessor reads from the input stream and changes the input on a purely textual level into code
that can be interpreted by the compiler. The preprocessor has variables, loops, conditional statements,
and offers the possibility to include other files or define procedures. Preprocessor instructions always
start with the sharp symbol (#).

2. The compiler interprets the prepared code and translates it into machine code.

3. The compiler is halted when the preprocessor reads a module instruction, which starts with a period
and marks the end of a module.

4. FORM runs the machine code: it applies the operations specified in the module to the active ex-
pressions, one by one, and works out brackets. For each expression, FORM applies the requested
operations in the order as specified in the module to the first term of the expression (possibly gener-
ating new terms) and brings the resulting terms into a standard form. It does the same thing to the
second term, and so on until all terms have been processed.

5. FORM sorts the results and calls this the input for the next module.

So, you see that FORM sequentially processes expressions term by term. This mode of operation means
that FORM has no operations that use more than one term at the same time. For example, a substitution
rule like a + b → c cannot be expressed as such. You will have to use tricks such as the replacement rule
a→ c− b. It also means that there is no factorization built into FORM because the whole expression must
be taken into account for this mathematical operation. To summarize in one sentence:

All operations in FORM are local to one term of an active expression.

1.4 Some FORM Examples

The examples in this section are to acquaint you with FORM and to show some of its built-in facilities.

1.4.1 Summation

FORM provides you of course with tools to compose an expression. For example, to obtain

5
∑

i=0

xi

i!
you can

enter the following:

Symbols x,i;

Local expr = sum_(i, 0, 5, x^i/fac_(i));

Print;

.end

expr =

1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5;

1.4.2 Levi-Civita Tensor

The Levi-Civita tensor or permutation tensor ǫi1i2...in
plays an important role in tensor calculus. When the

indices range from 1 to n, it is defined as

ǫi1i2...in
=







0 if two indices are the same
1 if (i1, i2, . . . , in) is a even permutation of (1, 2, . . . , n)

−1 if (i1, i2, . . . , in) is an odd permutation of (1, 2, . . . , n)

13

The Levi-Civita tensor is denoted in FORM by e_. The product of a pair of Levi-Civita tensors can be
rewritten in terms of Kronecker deltas:

ǫi1i2...in
ǫj1j2...jn

= det











δi1j1 δi1j2 · · · δi1jn

δi2j1 δi2j2 · · · δi2jn

...
...

. . .
...

δinj1 δinj2 · · · δinjn











The Kronecker delta δij , denoted in FORM by d_(i,j), is defined as

δij =

{

1 if i = j
0 otherwise

The Kronecker delta function d_ differs from the delta function delta_. The Kronecker delta has two indices
as arguments and serves as a metric tensor (this implies that it is symmetric). The second delta function,
delta_ has either one or two arguments, which need not be indices, but can be general expressions. FORM

does not symmetrize the delta function delta_.

The contract statement will do the work of writing a product of Levi-Civita tensors in terms of Kronecker
deltas. In the example below, the vector space is declared three-dimensional by the Dimension statement
(recall that the default dimension in FORM is four).

Dimension 3;

Indices i,j,k,p,q,r;

Local f0 = e_(i,j,k) * e_(p,q,r);

Local f1 = e_(i,j,k) * e_(p,q,k);

Local f2 = e_(i,j,k) * e_(p,j,k);

Local f3 = e_(i,j,k) * e_(i,j,k);

contract;

Print +s;

.end

f0 =

+ d_(i,p)*d_(j,q)*d_(k,r)

- d_(i,p)*d_(j,r)*d_(k,q)

- d_(i,q)*d_(j,p)*d_(k,r)

+ d_(i,q)*d_(j,r)*d_(k,p)

+ d_(i,r)*d_(j,p)*d_(k,q)

- d_(i,r)*d_(j,q)*d_(k,p)

;

f1 =

+ d_(i,p)*d_(j,q)

- d_(i,q)*d_(j,p)

;

f2 =

+ 2*d_(i,p)

;

f3 =

+ 6

;

The flag +s in the second last command causes FORM to print each term of an expression on a separate
line.

14

1.4.3 Vector Calculus: Outer Product

Now that the Levi-Civita tensor has been introduced, we can also look at the way how to represent or
compute outer products (cross products) of 3-dimensional vectors in FORM. We shall concentrate on three
well-known formulae:

(u× v)k = ǫijkuivj

u× v ·w = ǫijkuivjwk

u× (v × w) = v(u · w) − w(u · v)

The transcription into FORM is as follows:

Dimension 3;

Vectors u,v,w;

Indices i,j,k,l,m,n;

Local [uxv] = e_(i,j,k) * u(i) * v(j);

Local [uxv.w] = e_(i,j,k) * u(i) * v(j) * w(k);

Local [ux(vxw)] = e_(i,j,k) * u(i) * (e_(m,n,j) * v(m) * w(n));

contract;

Print;

[uxv] =

e_(u,v,k);

[uxv.w] =

e_(u,v,w);

[ux(vxw)] =

v(k)*u.w - w(k)*u.v;

This “coordinate free” FORM description can be made more explicit.

Dimension 3;

Vectors u,v,w;

Indices i,j,k,l,m,n;

Local [uxv](k) = e_(1,2,3) * e_(i,j,k) * u(i) * v(j);

Local [uxv.w] = e_(1,2,3) * e_(i,j,k) * u(i) * v(j) * w(k);

Global [ux(vxw)](k) = e_(i,j,k) * u(i) * (e_(m,n,j) * v(m) * w(n));

contract;

Bracket w;

Print [uxv.w];

.sort

[uxv.w] =

+ w(1) * (u(2)*v(3) - u(3)*v(2))

+ w(2) * (- u(1)*v(3) + u(3)*v(1))

+ w(3) * (u(1)*v(2) - u(2)*v(1));

AntiBracket u,v;

Print [uxv];

.store

[uxv](k) =

+ d_(1,k) * (u(2)*v(3) - u(3)*v(2))

15

+ d_(2,k) * (- u(1)*v(3) + u(3)*v(1))

+ d_(3,k) * (u(1)*v(2) - u(2)*v(1));

Local [(ux(vxw)(1)] = [ux(vxw)](1);

Local [(ux(vxw)(2)] = [ux(vxw)](2);

Local [(ux(vxw)(3)] = [ux(vxw)](3);

Print;

[(ux(vxw)(1)] =

v(1)*u.w - w(1)*u.v;

[(ux(vxw)(2)] =

v(2)*u.w - w(2)*u.v;

[(ux(vxw)(3)] =

v(3)*u.w - w(3)*u.v;

A few remarks about new concepts used in the above program.

• The expression [ux(vxw)](k) is made global so that it survives the .store command at the end of
the second module and can be used in the last part of the program.

• The Bracket w instruction forces the expression [uxv.w] to be printed as a polynomial in the com-
ponents of the vector w.

• The AntiBracket u,v instruction forces the expression [uxv] to be printed in such way that u and v

are put inside the brackets, and that the rest is taken out of the brackets. Thus — nome est omen —
the AntiBracket statement does just the opposite of the Bracket statement.

1.4.4 Linear Algebra: Determinant

The determinant of a square matrix M = (Mij) of dimension n is given by

det(M) = ǫi1i2···in
M1i1M2i2 · · ·Mnin

.

This allows us to compute determinants in FORM in a straightforward way. Below we compute the deter-

minant of the general 2 × 2 matrix

(

a b
c d

)

:

Symbols a,b,c,d;

CFunction M;

Indices i,j;

Local det = e_(1,2) * e_(i,j) * M(1,i) * M(2,j);

contract;

id M(1,1) = a;

id M(1,2) = b;

id M(2,1) = c;

id M(2,2) = d;

Print;

.end

det =

a*d - b*c;

At first sight, it may look superfluous to put in the local expression to the front e_(1,2), which is by
definition equal to 1. However, FORM first uses it in the contraction of Levi-Civita tensors, and in this
way, the determinant comes out in explicit form.

16

In the above example we use the most important command in FORM, viz., the identify statement id.
An identification is a substitution or replacement. Here we do a straightforward replacement of matrix
elements by their (symbolic) values. As we shall see in the next chapter, more general patterns are possible
in FORM.

1.4.5 Linear Algebra: Gram Determinant

For vectors v1, v2, . . . , vn, the Gram determinant is defined as the determinant of the matrix G with matrix
coefficients Gij equal to vi · vj (the inner product of vectors vi and vj). FORM is the ultimate program for
computing such determinants. First we show how to compute them for n = 2 and n = 3 with the help of
the Levi-Civita tensor.

Vectors v1,v2,v3;

Local G2 = e_(v1,v2)^2;

Local G3 = e_(v1,v2,v3)^2;

contract;

Print;

.end

G2 =

v1.v1*v2.v2 - v1.v2^2;

G3 =

v1.v1*v2.v2*v3.v3 - v1.v1*v2.v3^2 + 2*v1.v2*v1.v3*v2.v3 - v1.v2^2*v3.v3

- v1.v3^2*v2.v2;

To understand the above example, it suffices to recall the definition of Levi-Civita tensors, the Einstein
summation convention, and the SCHOONSCHIP notation. Let us show this for n = 3:
∣

∣

∣

∣

∣

∣

v1 · v1 v1 · v2 v1 · v3
v2 · v1 v2 · v2 v2 · v3
v3 · v1 v2 · v2 v3 · v3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

δipv1(i)v1(p) δiqv1(i)v2(q) δirv1(i)v3(r)
δjpv2(j)v1(p) δjqv2(j)v2(q) δjrv2(j)v3(r)
δkpv3(k)v1(p) δkqv3(k)v2(q) δkrv3(k)v3(r)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

δip δiq δir
δjp δjq δjr

δkp δkq δkr

∣

∣

∣

∣

∣

∣

v1(i)v2(j)v3(k)v1(p)v2(q)v3(r)

= ǫijkǫpqrv1(i)v2(j)v3(k)v1(p)v2(q)v3(r) = ǫv1v2v3
ǫv1v2v3

.

To illustrate that FORM is indeed a very powerful symbol cruncher, let us compute a large Gram
determinant of 10 vectors. Actually we only compute the number of terms in the output, because we throw
the output away after the program has finished. The computation has been done on a Pentium 166Mhz
PC with 16 MB RAM. As you can see, the computation takes less than 9 minutes. If you do the same
computation with a general purpose system like Maple or Mathematica on this type of computer, your
machine is going to crash or the computation takes basically forever. During the FORM computation many
runtime statistics appear, but we have omitted most of them in the printout below.

AutoDeclare Vector v;

On statistics;

Local G10 = e_(v1,...,v10)^2;

contract;

.end

Time = 0.60 sec Generated terms = 6572

G10 1 Terms left = 3550

Bytes used = 144066

Time = 0.93 sec Generated terms = 13043

17

G10 1 Terms left = 8611

Bytes used = 340904

Time = 1.48 sec Generated terms = 19562

G10 1 Terms left = 13910

Bytes used = 538524

:

:

:

Time = 283.00 sec Generated terms = 3628800

G10 1 Terms left = 3075840

Bytes used = 107001398

Time = 283.60 sec

G10 Terms active = 3070880

Bytes used = 106917432

Time = 521.78 sec Generated terms = 3628800

G10 Terms in output = 1436714

Bytes used = 50113622

Brute force calculation of a 10 by 10 determinant generates 10! = 3, 628, 800 terms. In the last message you
can read that all 3,628,800 terms have been processed and that FORM has computed the Gram determinant
as a sum of 1,436,714 terms.

For us, the declaration and the definition in the above FORM program are interesting, too. The state-
ment

AutoDeclare Vector v;

has the effect that all undeclared variables starting with the character v will be automatically declared as
vectors. In other words, AutoDeclare makes generic declarations and makes lengthy declarations in many
cases unnecessary. In the AutoDeclare statement, like in any declaration, you can limit the maximum power
of symbols. For example,

AutoDeclare Symbol x(:3);

makes all undeclared variables starting with the character x symbols with maximum power of 3.

The three dots operator ... is used in the above FORM program to generate a sequence of indices:
i1,...,i10 evaluates to i1,i2,i3,i4,i5,i6,i7,i8,i9,i10. This is an example of the following more
general rule:

str#1[?] O1 . . . O2str [?]#2

where str is a string that start with an alphabetic character; both strings have to be identical. The string
can be empty to generate just a sequence of numbers. #1 and #2 are numbers marking some range of values
(so they do not have to be the same). The question marks are optional but you can only have both or none.
O1 and O2 denote two operators which are in most cases the same and currently only can be comma (,),
plus (+), minus (-), times (*), or division (/). There are two exceptions: O1O2 = −+ and O1O2 = +−. In
these cases the operators are used alternatingly: x1-...+x6 evaluates to x1-x2+x3-x4+x5-x6.

Another more general example of using the ... operator is the following: <f1(i1)>*...*<f4(i4)>

evaluates to f1(i1)*f2(i2)*f3(i3)*f4(i4). This is an example of the following more general rule:

< pattern1 > O1 . . . O2 < pattern2 >

where the brackets <> delimit the patterns. The patterns are only allowed to differ in numerical parts.
The difference in the patterns must all have the same numerical difference in absolute value. For the rest, it
works as you expect. For example, <f4(i2,i6)>*...*<f1(i5,i3)> evaluates to
f4(i2,i6)*f3(i3,i5)*f2(i4,i4)*f1(i5,i3).

18

1.4.6 Graph Theory: Realizability of Graphs with Prescribed Degrees

There exist a third delta function, denoted by ∆ and in FORM by dd_, which is totally symmetric and
formally equal to a sum of products of Kronecker deltas.

∆i1i2 = δi1i2

∆i1i2i3i4 = δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3

∆i1i2i3i4i5i6 = δi1i2δi3i4δi5i6 + δi1i2δi3i5δi4i6 + δi1i2δi3i6δi4i5 + δi1i3δi2i4δi5i6 + δi1i3δi2i5δi4i6 +

δi1i3δi2i6δi4i5 + δi1i4δi2i3δi5i6 + δi1i4δi2i5δi3i6 + δi1i4δi2i6δi3i5 + δi1i5δi2i3δi4i6 +

δi1i5δi2i4δi3i6 + δi1i5δi2i6δi3i4 + δi1i6δi2i3δi4i5 + δi1i6δi2i4δi3i5 + δi1i6δi2i5δi3i4

and so on. When the function dd_ generates its terms, it takes symmetries due to identical arguments into
account. Hence, the evaluation of dd_(v,v,v,v), where v is a vector, generates directly only one term, viz.,
v.v, with coefficient 3. This coefficient has a combinatorial meaning in graph theory: it equals the number
of ways a graph with only one vertex of degree 4 can be realized.

Let us linger upon the application of the function dd_ in graph theory. First, we associate with vertices
v1, v2, v3, . . . in a graph G(V,E) vectors v1, v2, v3, . . ., and with edges in the graph, say v1v2 and v1v1, inner
products v1 · v2 and v1 · v1. The latter inner product represents a loop at vertex v1, also called a self-loop
at vertex v1. For a vertex v in a graph the degree of v, denoted by deg(v), is the number of edges that are
incident with v. A self-loop is considered as two incident edges. In the vector notation deg(v) equals the
number of inner products that contain vector v. A well-known problem in graph theory is to decide whether
a given sequence of nonnegative integers can be realized as the degrees of the vertices of a graph, and if
so, how many graphs are possible and in how many ways each graph can be realized. The vector notation
for graphs and the FORM function dd_ are particularly convenient for studying this problem because of
automatic contraction in FORM. The following small example gives the idea: for two vectors v1 and v2,
the formula

dd_(v1,v1,v2,v2) = v1.v1*v2.v2 + 2*v1.v2^2

means that there exists one graph with two vertices v1, v2 and each vertex having one self-loop, and that
we can construct in two ways a graph with two edges going from one vertex to the other.

Similarly, the expression dd_(v1,v1,v2,v3) has to do with the graphs consisting of three nodes, labeled
v1, v2 and v3, and with prescribed degrees deg(v1)=2, deg(v1)=deg(v2)=1. The formula

dd_(v1,v1,v2,v3) = v1.v1*v2.v3 + 2*v1.v2*v1.v3

means that there exists one graph with vertex v1 having a self-loop and with an edge connecting the other
two vertices, and that there exists a graph with two edges connecting vertex v1 with the other two vertices,
which can be constructed in two ways.

In general, the expression dd_(v1, v2, v3, . . . , v2n) has to do with the graphs consisting of n edges and
with prescribed degrees of the vertices. A vertex v occurs d times as argument in the function call of dd_ if
deg(v)=d. Each term in the result of the function call corresponds with a graph with the prescribed degrees.
The coefficient of a term tells us in how many ways the graph represented by the term can be constructed.
The following FORM session shows that 18 graphs can be made with degree sequence 3,3,3,1. Three of
these graphs are loop-free, i.e., have no self-loops, and they are isomorphic. There exists no loop-free graph
without a multiple edge.

AutoDeclare Vector v;

On Statistics;

Local F = dd_(v1,v1,v1,v2,v2,v2,v3,v3,v3,v4);

Print +s F;

.sort

Time = 0.02 sec Generated terms = 18

F Terms in output = 18

19

Bytes used = 570

F =

+ 27*v1.v1*v1.v2*v2.v2*v3.v3*v3.v4

+ 54*v1.v1*v1.v2*v2.v3*v2.v4*v3.v3

+ 54*v1.v1*v1.v2*v2.v3^2*v3.v4

+ 54*v1.v1*v1.v3*v2.v2*v2.v3*v3.v4

+ 27*v1.v1*v1.v3*v2.v2*v2.v4*v3.v3

+ 54*v1.v1*v1.v3*v2.v3^2*v2.v4

+ 27*v1.v1*v1.v4*v2.v2*v2.v3*v3.v3

+ 18*v1.v1*v1.v4*v2.v3^3

+ 54*v1.v2*v1.v3*v1.v4*v2.v2*v3.v3

+ 108*v1.v2*v1.v3*v1.v4*v2.v3^2

+ 54*v1.v2*v1.v3^2*v2.v2*v3.v4

+ 108*v1.v2*v1.v3^2*v2.v3*v2.v4

+ 108*v1.v2^2*v1.v3*v2.v3*v3.v4

+ 54*v1.v2^2*v1.v3*v2.v4*v3.v3

+ 54*v1.v2^2*v1.v4*v2.v3*v3.v3

+ 18*v1.v2^3*v3.v3*v3.v4

+ 54*v1.v3^2*v1.v4*v2.v2*v2.v3

+ 18*v1.v3^3*v2.v2*v2.v4

;

* only loop-free graphs

Off Statistics;

id v1.v1 = 0;

id v2.v2 = 0;

id v3.v3 = 0;

Print +s F;

.sort

F =

+ 108*v1.v2*v1.v3*v1.v4*v2.v3^2

+ 108*v1.v2*v1.v3^2*v2.v3*v2.v4

+ 108*v1.v2^2*v1.v3*v2.v3*v3.v4

;

* no multiple edges

id v1.v2^2 = 0;

id v1.v3^2 = 0;

id v2.v3^2 = 0;

Print +s F;

.end

F = 0;

The conditions for “loop-free” and “no multiple edges” can be expressed much shorter in FORM than was
done in the above session. As we shall see in the next chapter id v?.v? = 0 is short notation for saying
that every inner product of a vector with itself equals zero. id u?.v?^2 = 0 is short notation for saying
that no inner product with exponent 2 occurs. Hence, the following session proves that there exists only one
loop-free graph without multiple edges and with degree sequence 5,5,4,3,3,2.

20

AutoDeclare Vector v;

Local F = dd_(v1,v1,v1,v1,v1,

v2,v2,v2,v2,v2,

v3,v3,v3,v3,

v4,v4,v4,

v5,v5,v5,

v6,v6);

id v?.v?=0; * loop-free

id v1?.v2?^2=0; * no multiple edges

Format 65;

Print F;

.end

F =

24883200*v1.v2*v1.v3*v1.v4*v1.v5*v1.v6*v2.v3*v2.v4*v2.v5*

v2.v6*v3.v4*v3.v5;

The third last command Format 65 is used to control the width of the output: 65 columns at most. The
expression corresponds with the following graph:

6 534

2

1

1.4.7 Exercises

1. Compose in FORM the expression

3
∑

i,j=0

aijx
iyj.

2. FORM contains a second summation function called sump_. It works like the regular function sum_,
except that the last argument is not the nth element of the sum, but the quotient of the nth element
and the (n − 1)th element. The first element of the sum is normalized to one. So, sump_(i,0,10,x)

evaluates to the series expansion of
1

1 − x
up to order ten.

Use the function sump_ to compose the expression

3
∑

i,j=0

xi

i!

yj

j!
, and write it as a polynomial in x.

3. Compose in FORM the expression

10
∑

i=0

(x+ 1)i, but throw away all powers of degree 4 and higher.

4. Consider the four-dimensional space-time with coordinates (x0, x1, x2, x3) = (ct, x, y, z). Suppose you
have a coordinate transformation (x0, x1, x2, x3) = (−ct, x, y, z). Show with FORM that xµx

µ =
−c2t2 + x2 + y2 + z2.

5. Let A, B, C, D be vectors in R3. Show with FORM the following equations known in vector analysis.

[i] (A × B) · (A × B) = (A · A)(B ·B) − (A ·B)2 (identity of Lagrange).

[ii] (A × B) × C− A × (B × C) = (A ·B)C − (B · C)A.

[iii] A × (B × C) + B × (C × A) + C× (A × B) = 0 (identity of Jacobi).

21

[iv] (A × B) × (C× D) = (A × C · D)B− (B × C · D)A.

[v] (A − B) × (A + B) = 2A× B.

[vi] (A × B) · (C × D) + (B × C) · (A × D) + (C× A) · (B × D) = 0.

6. Let f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) be polynomials with positive degree in xn and with coeffi-
cients in a field K (e.g, the set of rational numbers). We write

f = arx
r
n + ar−1x

r−1
n + · · · + a1xn + a0,

g = bsx
s
n + bs−1x

s−1
n + · · · + b1xn + b0,

where ar, . . . , a0, bs, . . . , b0 are polynomials in x1, x2, . . . , xn−1, and ar 6= 0, bs 6= 0. The Sylvester

matrix of f and g is the (r + s) × (r + s) matrix





































ar ar−1 · · · a1 a0 0 0 · · · 0
0 ar ar−1 · · · a1 a0 0 · · · 0
...

. . .
. . .

. . . · · · . . .
. . .

. . .
...

0 · · · 0 ar ar−1 · · · a1 a0 0
0 · · · 0 0 ar ar−1 · · · a1 a0

bs bs−1 · · · b1 b0 0 0 · · · 0
0 bs bs−1 · · · b1 b0 0 · · · 0
...

. . .
. . .

. . . · · · . . .
. . .

. . .
...

0 0 bs bs−1 · · · b1 b0 0
0 0 0 bs bs−1 · · · b1 b0





































where there are s lines constructed with the ai, and r lines constructed with the bi. The resultant of f
and g, denoted by Res(f, g), or Resxn

(f, g) if there has to be a variable xn, is the determinant of the
Sylvester matrix. The importance of the resultant lies in the following theorem.

Theorem 1 (Resultant Theorem) Let c1, c2 . . . , cn−1 be number in the algebraic closure of the field

K.

Resxn
(f, g)(c1, c2, . . . , cn−1) = 0 if and only if f(c1, c2, . . . , cn−1, xn) and g(c1, c2, . . . , cn−1, xn) have a

factor in common or ar(c1, c2, . . . , cn−1) = bs(c1, c2, . . . , cn−1) = 0.

(i) Use this theorem to find out when a quadratic polynomial in one variable and its derivative have
common zeros.

(ii) If f is a univariate polynomial of degree n and with leading coefficient an, then the discriminant of
f is equal to (−1)n(n−1)/2Res(f, f ′). Use this property to compute with FORM the discriminant
of a third degree univariate polynomial.

7. There is a different way to compute determinants with vectors rather than with commuting functions.
For vectors u1, . . . , un, v1, . . . , vn, we have in SCHOONSCHIP notation:

ǫu1···un
ǫv1···vn

=

∣

∣

∣

∣

∣

∣

∣

u1 · v1 · · · u1 · vn

...
. . .

...
un · v1 · · · un · vn

∣

∣

∣

∣

∣

∣

∣

So, if you identify a matrix element Mij with the dot product ui · vj , then contraction of the above
product of two Levi-Civita tensors yields the determinant of the matrix M . The following FORM

session show how the determinant example of this chapter can be carried out by this method.

AutoDeclare Vectors u,v;

Symbol a,b,c,d;

Local det = e_(u1,u2)*e_(v1,v2);

contract;

22

id u1.v1 = a;

id u1.v2 = b;

id u2.v1 = c;

id u2.v2 = d;

Print;

.end

det =

a*d - b*c;

(i) Prove that this method of computing a determinant is correct.

(ii) Experiment a bit to find out whether there is a difference in efficiency between the two method
of computing determinants.

8. In the following exercise you can experience the power of the delta function dd_ in graph theoretical
enumeration problems.

(i) Show that that there exist three loop-free graphs with degree sequence 4,3,2,1. Verify that each
graph has multiple edges.

(ii) Show that that there does not exist a loop-free graph without multiple edges and with degree
sequence 7,5,4,3,2,1,1,1.

(iii) Show that that there exists only one loop-free graph without multiple edges and with degree
sequence
7,4,3,3,2,1,1,1.

(iv) Show that up to isomorphism there exists only one connected loop-free graph without multiple
edges and with degree sequence 3,2,2,1,1,1.

(v) The terms of the Gram determinant for n vectors are in one-to-one-correspondence with the
graphs having degree sequence 2,2,. . .,2 (n numbers). Compare the efficiency of the computation
of such Gram determinants via contraction of a square of Levi-Civita tensors with the compuation
of graphs with degree sequence 2,2,. . .,2 using dd_.

23

Chapter 2

Pattern Matching

2.1 Substitution

Many operations in a FORM program are in the form of substitutions: replacing one pattern by another
one. The identify or shortly id statement does this in various ways. In the previous chapter we have
already seen how it can be used for a straightforward substitution.

In fact, it will only be a one-time substitution as the following example illustrates.

Symbol x;

Local expr = x + 1/x;

id x = x+1;

Print;

.sort

expr =

1 + x^-1 + x;

id x = x+1;

Print;

.end

expr =

2 + x^-1 + x;

The replacement rule x → x + 1 does not result in an infinite loop because an id statement will never act
on its own right hand side. It will only take any natural power of x and replace it by x+1. FORM actually
has no other choice than selecting natural powers because pattern matching of rational expressions is hardly
available in the system.

Another rather straightforward substitution is the replacement of an integer power of a symbol (exponent
0 is forbidden) or of products of such powers. There will be as many substitutions as possible, e.g., the
replacement x2 → y transforms x5 into xy2. Examples of substitution:

Symbols x,y,z,k;

Local expr = sum_(k,-2,5,x^k);

Print;

.sort

expr =

1 + x^-2 + x^-1 + x + x^2 + x^3 + x^4 + x^5;

id x^2 = y;

24

Print;

.sort

expr =

1 + x^-2 + x^-1 + x*y + x*y^2 + x + y + y^2;

id x*y = z;

Print;

.sort

expr =

1 + x^-2 + x^-1 + x + y*z + y + y^2 + z;

id 1/x = z^2;

Print;

.end

expr =

1 + x + y*z + y + y^2 + z + z^2 + z^4;

Expressions can be used in the right-hand side of statement; so, also in the id statement. FORM uses
the definitions of the expressions as they are present at the start of the module in which the id statement
is applied. An example:

Symbol x,y;

Local expr = x*y;

id x = expr;

Print;

.sort

expr =

x*y^2;

id x = expr;

id x = expr;

Print;

.end

expr =

x*y^6;

To summarize straightforward substitution: the left-hand side of the replacement rule may be a product
of a few factors with exponents, but may not contain a numerical factor, or be a sum of terms. For example,
id 2*x*y=z and id x+y=z are invalid statements. The right-hand side only has to be a valid expression.

Often one wants to apply a substitution rule repeatedly until it causes no further change anymore. This
is accomplished by surrounding the command by repeat and endrepeat. Three examples will do. The first
example is a computation of a Fibonacci number. The last two examples come from quantum mechanics:
working out the commutation relations of position and momentum operator, and working out a product of
Pauli matrices.

Fibonacci Numbers

In the following example we shall use a replacement rule to compute the nineteenth Fibonacci number F19.
Recall that the Fibonacci numbers Fn are recursively defined as

Fn = Fn−1 + Fn−2, F1 = 1, F2 = 1.

25

In other words, every Fibonacci number is the sum of the previous two. The sequence 1, x, x2, x3, x4, . . . also
has this property, provided x2 = x+ 1.

Symbol x;

Local Fibonacci19 = x^18;

repeat;

id x^2 = x + 1;

endrepeat;

id x = 1;

Print;

.end

Fibonacci19 =

4181;

Working out a Commmutator

We use the commutation relation [x, p] = h i between position operator x and momentum operator p repeat-

edly to work out the commutation relation [H,x] for the Hamiltonian H =
p2

2m
. In the example we shall

use the built-in variable i_ for the complex unit i =
√
−1. The mass m and Planck’s constant h (h

def
= h

2π)
are declared as symbols as they commute with everything else; The Hamiltonian, position, and momentum
operators are declared as noncommuting functions.

Symbols hbar,m;

Functions x,p,H;

Local [H,x] = H*x - x*H;

id H = p^2/(2*m);

Print;

.sort

[H,x] =

- 1/2*x*p*p*m^-1 + 1/2*p*p*x*m^-1;

repeat;

id x*p = p*x + hbar*i_;

endrepeat;

Print;

.end

[H,x] =

- p*i_*hbar*m^-1;

In no time, FORM gives the answer [H,x] = −h i
m
p.

Pauli Matrices

We consider the algebra generated by σ1, σ2, and σ3 satisfying the relations

σp σq = iǫpqrσr , for p 6= q, {σp, σq} def
= σpσq + σqσp = 2δpq,

for p, q, r = 1, 2, 3. The generators are called Pauli matrices because of the following matrix representation.

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

We work out the expression (σ1σ2 + σ1 + σ2 + σ3)
4. The following FORM program could be improved in

various ways, but that is not an issue now.

26

Function s;

Index k;

Dimension 3;

Local [s(1)*s(2)] = i_*e_(1,2,3)*e_(1,2,k)*s(k);

Local [s(1)*s(3)] = i_*e_(1,2,3)*e_(1,3,k)*s(k);

Local [s(2)*s(3)] = i_*e_(1,2,3)*e_(2,3,k)*s(k);

contract;

Print;

.sort

[s(1)*s(2)] =

s(3)*i_;

[s(1)*s(3)] =

- s(2)*i_;

[s(2)*s(3)] =

s(1)*i_;

Local F = (s(1)*s(2) + s(1) + s(2) + s(3))^4;

repeat;

id s(2)*s(1) = -s(1)*s(2);

id s(3)*s(1) = -s(1)*s(3);

id s(3)*s(2) = -s(2)*s(3);

id s(1)*s(2) = [s(1)*s(2)];

id s(1)*s(3) = [s(1)*s(3)];

id s(2)*s(3) = [s(2)*s(3)];

id s(1)^2 = 1;

id s(2)^2 = 1;

id s(3)^2 = 1;

endrepeat;

Print F;

.end

F =

8*i_;

In the first module, we let FORM compute various products of Pauli matrices. These results are used in
the second module to work out formulas.

2.1.1 Exercises

1. The kinetic energy T is given in terms of mass m and momentum p as T =
p2

2m
. Express T in terms of

(i) the velocity v, which is related to momentum and mass by p = mv.

(ii) acceleration a and time t, which are related to the velocity by v = at.

2. Transform in FORM the expression x2 + x+
1

x
into

(i) y2 + y +
1

y

(ii) y2 + y +
1

x

(iii) x2 + x+ y

27

3. How can you replace in FORM a+ b by d in the expression a+ b+ c.

4. Transform the expression (x2 + 1)2 + x2 + 2 into y2 + y + 1.

5. The basic element of the quaternions are i, j, and k, subject to the rules ij = k (and cyclic permutations
of i, j, and k), ji = −ij, ki = −ik, kj = −jk, and i2 = j2 = k2 = −1. Write a FORM program that
computes the quaternion (u+ 3i− k)3(−1 + tj), where u and t are unknowns. See [Cohen et al 92] for
a comparison of a FORM program and a Maple program.

6. Let D denote the differentiation operator
d

dx
. So, the following commutation relations hold:

[D,x] = 1, [D, cosx] = − sinx, [D, sinx] = cosx .

Write a FORM program that uses these relations to transform D3x3 sin2 x cosx into a sum of terms
with the D operator to the right, and finally replace D by 0. The remaining terms will form the third
derivative of x3 sin2 x cos x. Check your answer by pencil and paper or via a general purpose computer
algebra system like Derive, Maple, or Mathematica.

7. Consider the vector fields { d
dx
, x

d

dx
, x2 d

dx
}.

(i) Compute the commutation relations between these vector fields and verify that they form a Lie
algebra.

(ii) Determine the center of the Lie algebra, i.e., the set of elements that commute with any other
element of the Lie algebra.

(iii) Show that the vector fields { d
dx
, x

d

dx
, x2 d

dx
, x3 d

dx
} do not form a Lie algebra.

8. We consider the Lie algebra of type SU2 generated by the triple h,e,f , which satisfy the following
commutation relations

[h, e] = 2e, [h, f] = −2f, [e, f] = h.

The enveloping algebra has Poincaré-Birkhoff-Witt basis given by

hiejfk,

where i, j, k are nonnegative integers.

(i) Use the commutation relation to write f3e2h in terms of the Poincaré-Birkhoff-Witt basis.

(ii) What is the commutation relation between h and he2f3?

2.2 Pattern Objects

In the previous section we have looked at straightforward substitution via the id statement: a symbol, a
power of a symbol, and products of powers of symbols were replaced by new expressions. However, very
often you do not only want particular objects being replaced, but actually all objects of a certain type. For
example, if you are interested in integrating polynomials in one variable x, you do not want to replace xn

for specific values of the natural number n by 1
n+1x

n+1, but instead for all natural numbers. The rest of
this chapter will be about such pattern matching.

A pattern in FORM, also called a wildcard, is an elegant way of representing the syntactical structure
of an expression. The atomic pattern objects are denoted by a variable followed by a question mark and
represent one single object. For example, if x is a symbol, then x? will represent any symbol and x?^2 will
represent any square of a symbol. If p(i) represents the vector p with index i, then p(i?) represents the
vector p with any index, p?(i) represents any vector with index i, and p?(i?) represents any vector with
any index. And so on.

28

Because patterns are in general not restricted to single objects they can become rather complicated. For
example, x * y^n? * f(i,g?(i)) is a valid FORM pattern. In case x, y, i, n are symbols, and f, g are
functions, the above pattern represents a product of x, any integer power of y, and a function f of which the
first argument is equal to i and the second one is any function with argument i.

One more thing that you have to take into account when dealing with more complicated patterns: when
a wildcard such as x? appears twice in the left-hand side of an id statement both occurrences have to match
the same argument. For example, for two vectors u and v, the pattern u?.u? represents any dot product of
a vector with itself, and u?.v? represents any dot product, including the case of identical vectors in the dot
product.

2.2.1 Exercises

Advice: if you find it difficult to answer right now the exercises below, then work through the examples of
the next section and come back to these exercises afterwards. Or try things out in FORM to get the idea.

1. Given the symbols x, n, explain what the following patterns mean.

(i) x

(ii) 1/x

(iii) x?

(iv) x^n?

(v) x?^n

(vi) x?^n?

2. Given the vectors u, v and the indices i, j, explain what the following patterns mean.

(i) u(i)

(ii) u(i?)

(iii) u?(i)

(iv) u?(i?)

(v) u(i?)*v(j?)

(vi) u(i?)*v(i?)

(vii) u.v?

(viii) u?.v?

(ix) v?.v?

(x) u?.v?^2

2.3 Patterns in Replacement Rules

Patterns are used in replacement rules. In this section, we shall give examples that show you how to use
wildcards in FORM.

2.3.1 Polynomial Substitutions

Symbols x,y,z,n;

Local F = x^2 + y^3 + 1;

id x? = z;

Print;

.sort

F =

29

1 + z^2 + z^3;

id z^n? = x;

Print;

.sort

F =

3*x;

Local G = F + y^2 + 1;

id x?^n? = z;

Print G;

.end

G =

1 + 4*z;

Let us have a closer look at the above session. Because x has been declared as a symbol, the first identification
reads like “replace every symbol by z.” So, the expression F = x2 +y3 +1 is replaced by F = z2 +z3 +1 and
sorted into 1 + z2 + z3. The next identification reads like “replace any integer power of z by x.” The result
3x becomes less obscure when you realize that 1 can be described as z0. Finally we compose the expression
G = 3x+y2 +1 and apply the replacement rule “any symbol to any power goes into z”. Now, FORM leaves
the constant term intact because it expects at least a symbol.

2.3.2 Fibonacci Numbers

In the next two examples we shall use replacement rules to compute the nineteenth Fibonacci number F19.
Recall that the Fibonacci numbers Fn are recursively defined as

Fn = Fn−1 + Fn−2, F1 = 1, F2 = 1.

Symbols last, secondlast, dummy;

Function F;

On statistics;

Local Fibonacci19 = F(1,1) * dummy^17;

repeat;

id F(last?, secondlast?) * dummy = F(last + secondlast, last);

endrepeat;

id F(last?, secondlast?) = last;

Print;

.end

Time = 0.04 sec Generated terms = 1

Fibonacci19 Terms in output = 1

Bytes used = 10

Fibonacci19 =

4181;

Three remarks:

• We tagged the expression with dummy^17 and use a replacement rule that lowers the power of dummy
by one. The repetition stops when no power of dummy is left. This trick of tagging an expression by a
dummy variable to control repetition or to apply certain operations from left to right or vice versa in
the expression is often used in FORM programs.

30

• The symbol wildcard, used as a function argument, matches a whole expression (in this case a natural
number). You may say that the symbol wildcard as a function argument denotes “any function
argument.” We shall come back to this issue in the next section.

• There are two symbol wildcards on the left hand-side of id-statement, viz. last? and secondlast?.
They both match any function argument in the call of F. Then, in the right hand-side of the id-
statement, last and secondlast will be replaced by the matched numbers.

A downward recursion would result in a less efficient program with respect to computing time and number
of terms generated.

Symbols n;

Function F;

On statistics;

Local Fibonacci19 = F(19);

repeat;

id F(1) = 1;

id F(2) = 1;

id F(n?) = F(n-1) + F(n-2);

endrepeat;

Print;

.end

Time = 6.19 sec Generated terms = 4181

Fibonacci19 Terms in output = 1

Bytes used = 10

Fibonacci19 =

4181;

2.3.3 Differentiation of Polynomials

Differentiation of bivariate polynomials, say computing the derivative
∂2

∂x∂y

(

x2y3 + x3 + x4y4
)

, can be done

as follows in FORM.

Symbols x,y,m,n;

Local P = x^2*y^3 + x^3 + x^4*y^4;

Print;

.sort

P =

x^2*y^3 + x^3 + x^4*y^4;

id x^m? * y^n? = m*x^(m-1) * n*y^(n-1);

Print;

.end

P =

6*x*y^2 + 16*x^3*y^3;

2.3.4 Vector Calculus: Coordinate Transformations

An example from vector calculus: given a basis transformation yk = birxr, a vector T in the y-basis defined
as Ti = gijajkyk, and the restriction that the matrices a and b are inverses of each other, describe T in the
x-basis.

31

Vector x,y;

Tensors g,a,b;

Indices i,j,k;

Local [y(k)] = b(k,x);

Local [T(i)] = g(i,j) * a(j,k) * [y(k)];

id a(i?,k?) * b(k?,j?) = d_(i,j);

Print [T(i)];

.end

[Tx(i)] =

g(i,x);

So, we have proved with FORM that Ti = girxr. You may wonder why it works, but in FORM an index
matches another index or a vector that would have been an index if the SCHOONSCHIP notation had not
been used.

2.3.5 Levi-Civita Tensor

Let us illustrate the rules about repeated wildcards for a user-defined Levi-Civita tensor eps and a user-
defined Kronecker symbol delta with various contractions in 3-dimensional space.

Dimension 3;

Tensors eps(antisymmetric), delta(symmetric);

Indices i,j,k,l,m,n;

*

* three repeated indices

*

Local F1 = eps(i,j,k) * eps(i,j,k);

id eps(i?,j?,k?) * eps(i?,j?,k?) = 6;

Print F1;

.sort

F1 =

6;

*

* two repeated indices; antisymmetry is applied

*

Local F2 = eps(i,j,k) * eps(i,j,l);

id eps(i?,j?,k?) * eps(i?,j?,l?) = delta(k,l);

Print F2;

.sort

F2 =

delta(k,l);

*

* one repeated index

*

Local F3 = eps(i,j,k) * eps(i,l,m);

id eps(i?,j?,k?) * eps(i?,l?,m?) = delta(j,l) * delta(k,m) -

delta(j,k) * delta(l,m);

Print F3;

.sort

32

F3 =

- delta(j,k)*delta(l,m) + delta(j,l)*delta(k,m);

*

* no repeated index; only antisymmetry is applied

*

Local F4 = eps(i,j,k) * eps(n,m,l);

id eps(i?,j?,k?) * eps(l?,m?,n?) = eps(i,j,k) * eps(l,m,n);

Print F4;

.end

F4 =

- eps(i,j,k)*eps(l,m,n);

2.3.6 Exercises

1. How can you implement the rules for odd and even functions in FORM.

2. Implement the transformation rule expx exp y −→ exp(x+ y) and apply it to the expression (exp a+
exp b+ exp c)3. Simplify the result as far as possible.

3. Implement the simplification sin2 x+ cos2 x = 1, and apply it to the expressions sin2 a− 1, and sin3 a.

4. Write a FORM program that computes the Laguerre polynomials Ln(a, x). Recall that these polyno-
mials are recursively defined as

L0(a, x) = 1,

L1(a, x) = 1 + a− x,

Ln(a, x) =
(2n+ a− 1 − x)

n
Ln−1(a, x) − (n+ a− 1)

n
Ln−2(a, x),

for n > 1.

5. Write a FORM program that integrates univariate polynomials.

6. Consider the following Lorentz transformation in four-dimensional space-time

x′ = γ(x− vt),

y′ = y,

z′ = z,

t′ = γ(t− vx

c2
),

where

γ =
1

√

1 − v2

c2

Show with FORM that
x′

2
+ y′2 + z′

2 − c2t′
2

= x2 + y2 + z2 − c2t2.

7. Consider a space of n dimensions with coordinate functions φ1, φ2, . . . , φn and metric tensor given by

gij = δij +
φiφj

1 − (φk)2
,

where Einstein’s summation convention is used so that φ2
k =

n
∑

i

(φi)2.

33

(i) Verify with FORM that the inverse of the metric tensor is given by

gij = δij − φiφj

(ii) The Christoffel symbol Γjkl of the first kind is defined by

Γjkl =
1

2

(

∂gjl

∂φk
+
∂glk

∂φj
− ∂gkj

∂φl

)

Compute this symbol with FORM.

(iii) The Christoffel symbol Γi
jk of the second kind is defined by

Γi
jk = gilΓjkl ,

where we Einstein’s summation convention is used again. Compute this symbol with FORM.

2.4 Patterns and Functions

For functions there are basically four types of wildcarding:

1. one or more wildcard parameters of a function;

2. wildcards for functions;

3. a combination of the above two;

4. wildcards for groups of arguments.

2.4.1 Wildcard Parameters

We have already seen examples of such wildcarding in the previous section. But let us look at another one.
Suppose that we want to implement in FORM the simplification x

√
y =

√

x2y, and apply it to a
√
b,

√
2
√
b,

and
√√

a+ 1 ·
√√

a− 1.

Symbols a,b,x,y;

CFunction sqrt;

Local F1 = a * sqrt(b);

Local F2 = sqrt(2) * sqrt(b);

Local F3 = sqrt(sqrt(a)+1) * sqrt(sqrt(a)-1);

id x? * sqrt(y?) = sqrt(x^2*y);

Print;

.sort

F1 =

sqrt(a^2*b);

F2 =

sqrt(2)*sqrt(b);

F3 =

sqrt(- 1 + sqrt(a))*sqrt(1 + sqrt(a));

repeat;

id sqrt(x?) * sqrt(y?) = sqrt(x*y);

endrepeat;

id sqrt(4) = 2;

34

Print F2,F3;

.sort

F2 =

sqrt(2*b);

F3 =

sqrt(- 1 + sqrt(a)^2);

argument;

id sqrt(x?) * sqrt(x?) = x;

endargument;

Print F3;

.end

F3 =

sqrt(- 1 + a);

As you see the pattern x? * sqrt(y?) only matches the first formula; the factors sqrt(sqrt(a)+1) and
sqrt(2) are no symbols. If you specify a pattern sqrt(x?) * sqrt(y?), then these expressions match.
Note that in this case the wildcard may match a whole composite expression. Alas, the identification has
not replaced the product of square roots inside the last formula. For efficiency reason, the rule in FORM

is that substitutions are not executed inside the arguments of functions. Therefore FORM has a special
environment that allows manipulation of function arguments. This environment is indicated by the keywords
argument and endargument, as shown in the third module in the above program.

argument environments can be nested. The next example illustrates this.

CFunction f;

Symbols x,y;

Local expr = f(x,f(x));

id x=y;

Print;

.sort

expr =

f(x,f(x));

argument;

id x=y;

endargument;

Print;

.sort

expr =

f(y,f(x));

argument;

argument;

id x?=y^2;

endargument;

endargument;

Print;

.end

expr =

35

f(y,f(y^2));

2.4.2 Wildcards for Functions

There is nothing special about wildcards of functions or about the combination of this and the previous type
of wildcarding. We give one example that shows all.

Symbols x,y,z;

CFunctions f,g,h;

Local expr1 = f(x) + g(y);

id f?(x) = h(x);

Print;

.sort;

expr1 =

g(y) + h(x);

Local expr2 = f(x) + g(y);

id f?(x?) = z;

Print expr2;

.sort;

expr2 =

2*z;

Local expr3 = f(x+y) + f(x,y);

id f?(x?) = z;

Print expr3;

.end

expr3 =

z + f(x,y);

We added the last module to illustrate once more that a symbol can match as a function argument a whole
expression. But from this example, you also see that it can only match one argument and not more. To
achieve this we need a special kind of wildcard that refers to a group of arguments in a function. This is the
topic of the next subsection.

2.4.3 Wildcarding for Groups of Parameters

The wildcarding in FORM allows you to refer to a group of parameters. For example, the id statement in
the example below uses a variable that starts with a question mark to represent any sequence of adjacent
arguments in a function call. We call this an argument sequence wildcard .

Symbols x,y;

CFunctions f,g;

Local F = f(x,x,x) + f;

id f(?a) = g(0,?a,0,?a,0);

Print;

.end

F =

g(0,x,x,x,0,x,x,x,0) + g(0,0,0);

The variables ?a in the right hand side of the identify statement refer to the match of the wildcard.

36

A few remarks:

• Argument sequence wildcards are variables that start with a question mark followed by a nonempty
alphanumeric string. These variables do not have to be declared. Their use declares them and after
the statement they are forgotten again.

• An argument sequence wildcard can also refer to the sequence of all arguments in a function call.

• An argument sequence wildcard can also refer to an empty sequence.

• You can have more than one argument sequence wildcard. For example, if f is a function and x, y are
symbols, then the pattern f?(x,?a)*f?(y,?b) matches the product of any function which starts with
x and the same function that starts with y. The pattern f?(?a, x, ?b) matches any function that
has an argument x.

• If there are several options in matching the patterns, there is only one general rule that determines
which option will be taken: from left to right, the argument sequence wildcards will refer to lesser
numbers of arguments. Symmetry properties may change the way in which the option of matching is
chosen or in case of (anti)symmetric tensors even ignore the replacement rule (pattern matching would
often be too costly). An example of multiple options:

Symbols w,x,y,z;

Indices W,X,Y,Z;

CFunction F;

Tensor S(symmetric), C(cyclic);

Local expr = F(x,y,z) + S(X,Y,Z) + C(X,Y,Z);

id F(?a,w?,?b) = F(w,0,?a,0,?b);

id S(?a,W?,?b) = S(W,0,?a,0,?b);

id C(?a,W?,?b) = C(W,0,?a,0,?b);

Print;

.end

expr =

F(z,0,x,y,0) + S(X,Y,Z) + C(0,0,Y,Z,X);

Let us illustrate the wildcarding with argument fields by another example taken from tensor calculus.
We consider the metric tensor g, and the Riemann tensor and Ricci tensor denoted by R. We show how you
can implement in FORM the contractions gj

iRjk = Rik and gijRikjl = Rkl. It will also be an illustration of
how one can compute with upper (contravariant) and lower (covariant) indices in FORM.

Tensors g,R;

Indices i,j,k,l,m,n,low,up;

Local T1 = g(i,low,j,up) * R(j,low,k,low);

Local T2 = g(i,up,j,up) * R(i,low,k,low,j,low,l,low);

id g(i?,low,j?,up) * R?(?a,j?,low,?b) = R(?a,i,low,?b);

id g(i?, up,j?,up) * R?(?a,i?,low,?b,j?,low,?c) = R(?a,?b,?c);

id g(i?, up,j?,up) * R?(?a,j?,low,?b,i?,low,?c) = R(?a,?b,?c);

Print;

.end

T1 =

R(i,low,k,low);

T2 =

R(k,low,l,low);

As you see, we simply keep track of the type of the index by putting next to the index in the function call
a special index low or up, and we distinguish the indices by type in the identifications. The third identify
statement has only been added for the general case where repeated indices may be interchanged.

37

Of course, the above implementation of upper and lower indices is somewhat cumbersome. So let us
introduce a shorter notation such as U(i) and L(j) for an upper index i and lower index j, respectively.
The example now looks as follows:

Functions g,R,L,U;

Indices i,j,k,l,m,n;

Local T1 = g(L(i),U(j)) * R(L(j),L(k));

Local T2 = g(U(i),U(j)) * R(L(i),L(k),L(j),L(l));

id g(L(i?),U(j?)) * R?(?a,L(j?),?b) = R(?a,L(i),?b);

id g(U(i?),U(j?)) * R?(?a,L(i?),?b,L(j?),?c) = R(?a,?b,?c);

id g(U(i?),U(j?)) * R?(?a,L(j?),?b,L(i?),?c) = R(?a,?b,?c);

Print;

.end

T1 =

R(L(i),L(k));

T2 =

R(L(k),L(l));

It works! But it is good to realize that we rely on certain aspects of FORM. Firstly, note that there is
ambiguity in the matching of the pattern R?(?a,L(j?),?b) with the expression R(L(j),L(k)): should the
first question mark variable be an empty argument sequence or should the second question mark variable
match an empty statement. In the latter case, the first identification in the above example will have no
match. Apparently FORM searches until it finds a match. Secondly, note that a nested wildcarding for
functions is used. Although FORM allows this, for efficiency reasons, it will in general not try out all
possible matchings. Once it has found a match, it will stop looking for further matches. Apparently we were
lucky in the wildcarding of our example: FORM selected the correct pattern match for getting the work
done.

By denesting you can get more control about the wildcarding of nested functions. Below we show you
how to do this in our example.

Functions g,R,L,U;

Indices i,j,k,l,m,n,low,up;

Local T1 = g(L(i),U(j)) * R(L(j),L(k));

Local T2 = g(U(i),U(j)) * R(L(i),L(k),L(j),L(l));

*

* denest functions

*

repeat;

id R?(?a,L(i?),?b) = R(?a,i,low,?b);

id R?(?a,U(i?),?b) = R(?a,i,up,?b);

endrepeat;

*

* apply rules

*

id g(i?,low,j?,up) * R?(?a,j?,low,?b) = R(?a,i,low,?b);

id g(i?, up,j?,up) * R?(?a,i?,low,?b,j?,low,?c) = R(?a,?b,?c);

id g(i?, up,j?,up) * R?(?a,j?,low,?b,i?,low,?c) = R(?a,?b,?c);

*

* back to original notation

*

repeat;

id R?(?a,i?,low,?b) = R(?a,L(i),?b);

38

id R?(?a,i?, up,?b) = R(?a,L(i),?b);

endrepeat;

*

* Print the results

*

Print;

.end

T1 =

R(L(i),L(k));

T2 =

R(L(k),L(l));

In the next section, we shall show another way of handling upper and lower indices which does not lead to
two representations of the same mathematical object.

2.4.4 Exercises

1. Implement the simplifications ln(xy) → lnx + ln y and ln(xn) = n lnx (if n is an integer), and apply
them to the expression ln(abc) and ln(ab3).

2. Implement simplification rules for the determinant of matrices such that det(M5) simplifies into
det(M)5, and det(ABC) becomes (detA)(detB)(detC).

3. Show with FORM that if Ui and Vi are the components of covariant vectors U and V, respectively,
then Tij = UiVj − ViUj are the components of a covariant tensor T of order 2. Recall that a covariant

vector Ui transforms under coordinate changes like U i =
∂xk

∂xi Uk, and that a covariant tensor Tij of

order two transforms like T ij =
∂xk

∂xi

∂xl

∂xj Tkl.

4. If n = 2, write out the triple sum crstxryszt in explicit form using only replacement rules.

5. The ToVector command replaces a tensor into a product of vector components. For example,
ToVector t,v replaces t(m1,m2,m3) by v(m1)*v(m2)*v(m3). Use id statements to get the same job
done.

6. In classical electromagnetic theory, the electromagnetic field tensor Fµν is defined by

Fµν =





















0
Ex

c

Ey

c

Ez

c

−Ex

c
0 −Bz By

−Ey

c
Bz 0 −Bx

−Ez

c
−By Bx 0





















In other words, F00 = 0, F0ν =
Eν

c
for ν = 1, 2, 3, and Fij = −ǫijkBk for i, j, k = 1, 2, 3, where ǫ

denotes the Levi-Civita tensor.

We shall use as metric tensor gµν and its inverse gµν for special relativity the one with sign convention

39

g0ν = δ0ν and gij = −δij , for i, j = 1, 2, 3. Then the full contravariant form Fµν is

Fµν = gµρgµρFρσ =





















0 −Ex

c
−Ey

c
−Ez

c
Ex

c
0 −Bz By

Ey

c
Bz 0 −Bx

Ez

c
−By Bx 0





















Write the expression FµνFµν and ǫµνρσF
µνF ρσ, which are invariant under Lorentz transformations,

in terms of the electric field E and magnetic field B.

2.5 Conditions on Wildcards and Replacements

The pattern matching we have seen thus far involved wildcards that would match any variable of proper type.
Furthermore, no restrictions on the replacement rules have been made. In this section, we shall see how to
get more control over the wildcards and replacements. The last three subsections will contain “real world”
examples of differentiation of functions, tensor calculus with upper and lower indices, and computation with
gamma matrices.

2.5.1 Sets and Wildcarding

One of the types of variables in FORM is “set” or “array”. An example that explains the data type:

Symbol a1,a2;

Set a:a1,a2;

Local F = a[1] + a[2];

Print;

.end

F =

a1 + a2;

As you see, FORM assumes that sets or arrays start with index 1. Furthermore, sets are homogeneous
objects, i.e., elements of sets must be of the same type.

Sets are mostly used in wildcarding.

Symbols a,b,c,x;

Local F = a + b + c;

id x?{b,c} = 3;

Print;

.end

F =

6 + a;

x? would mean “any symbol”, whereas in our example we restrict the symbols to the set {b, c}. You can
also exclude symbols by ?!.

Symbols a,b,c,x;

Local F = a + b + c;

id x?!{b,c} = 3;

Print;

.end

40

F =

3 + b + c;

We called sets also arrays because wildcarding sets behave like these.

Symbols a1,a2,b1,b2,x,n;

Function f;

Set a : a1,a2;

Set b : b1,b2;

Local F = a[1] + a[2];

id x?a[n] = b[n] + f(n);

Print;

.end

F =

b1 + b2 + f(1) + f(2);

In the above example, x must belong to the set a, and n becomes the number of the element in the set to
which x matches. The same number is used at the right hand side of the identity. However, no arithmetic
can be done with n.

There exists a shortcut for changing names of set elements.

Symbols a1,a2,b1,b2,x,n;

Set a : a1,a2;

Set b : b1,b2;

Local F = a[1] + a[2];

id x?a?b = x;

Print;

.end

F =

b1 + b2;

Here, the identity statement reads as follows: x must belong to the set a, and in the right hand side each
occurrence of x will be replaced by the corresponding element of the set b.

The built-in sets in FORM are listed below. As all built-in objects, they end with an underscore.

Set Meaning: set of
even_ even integers
fixed_ fixed indices
index_ all indices
int_ integers
neg_ negative integers
neg0_ nonpositive integers
number_ all rational numbers
odd_ odd integers
pos_ positive integers
pos0_ nonnegative integers
symbol_ only symbols

Intervals can be specified as so-called ranged sets. {>=-3,<5, {<10}, and {>=2} denote [−3, 5), (−∞, 10),
and [2,∞), respectively.

With the built-in sets and the range sets you can restrict wildcards to some infinite sets as is shown in
the next example.

41

Symbols x,n;

Local F = sum_(n, -3, 3, x^n);

Print;

.sort

F =

1 + x^-3 + x^-2 + x^-1 + x + x^2 + x^3;

id x^n?pos_ = 0;

Print;

.sort

F =

1 + x^-3 + x^-2 + x^-1;

id x^n?!even_ = 0;

Print;

.end

F =

1 + x^-2;

Here, we replace first all positive powers of x by zero, and hereafter we remove all powers with odd exponent.

2.5.2 Restrictions on Replacements

When you create a couple of identifications, there may be a conflict of what rule to apply first. In FORM,
you can influence the applicability of an identification by options. One of the options is select. It is followed
by the names of one or more sets of symbols, functions, vectors, or indices. No built-in sets are allowed in
the select statement. The replacement rule will only be applied if after the matching of the left-hand side
no elements of the mentioned sets are left anywhere in the term. An example explains it better.

Symbols a,b,c,d;

Functions f,g;

Index i;

Set bcSet: b,c;

Local F1 = a*b*c;

id select bcSet a*b = b^2;

id select bcSet a*b*c = b^2*c^2;

Print;

.sort

F1 =

b^2*c^2;

Local F2 = f(i,a)*b + f(i,b)*c;

id select bcSet c?=g(d);

Print;

.end

F1 =

b^2*c^2;

F2 =

f(i,a)*g(d) + f(i,b)*c;

42

In the above example, the first replacement rule is not applied because after matching ab in the product abc
the element c of the set {b,c} is left behind. The second replacement rules matches F1 and will be applied.
The third replacement rule is applied to first term of expression F2 only. After matching a symbol in the
second term of F2 there is still an element of the set {b, c} left. The same happens in expression F1 when
one tries to apply the replacement rule.

There are more options to identify statements in FORM. Below we tabulate them and we illustrate the
use of some of them.

Option Meaning

disorder substitution in non-commutative algebra
ifmatch if there is a match, jump to a label after substitution
many multiple matches
multi single match with multiplicity
once single match
only exact match
select match with no selected symbols, functions,

vectors, or indices left

Symbols a,b,x,y,z;

Local F0 = (x+y)^4;

Print F0;

.sort

F0 =

4*x*y^3 + 6*x^2*y^2 + 4*x^3*y + x^4 + y^4;

Local F1 = (x+y)^4;

id once x = z;

Print F1;

.sort

F1 =

6*x*y^2*z + 4*x^2*y*z + x^3*z + 4*y^3*z + y^4;

Local F2 = (x+y)^4;

id x*y = z;

Print F2;

.sort

F2 =

4*x^2*z + x^4 + 4*y^2*z + y^4 + 6*z^2;

Local F3 = (x+y)^4;

id only x*y = z;

Print F3;

.sort

F3 =

4*x*y^3 + 6*x^2*y^2 + 4*x^3*y + x^4 + y^4;

Local F4 = (a+b)^2 * (x+y)^2;

Print F4;

.sort

F4 =

43

4*a*b*x*y + 2*a*b*x^2 + 2*a*b*y^2 + 2*a^2*x*y + a^2*x^2 + a^2*y^2 + 2*

b^2*x*y + b^2*x^2 + b^2*y^2;

id multi x?*y? = z;

Print F4;

.end

F4 =

2*a*y*z + 2*b*y*z + 4*x*y*z + 2*x^2*z + 2*y^2*z + 4*z^2;

The normal rule for pattern matching in FORM is that the pattern is taken out as many times as possible
before inserting the right-hand side (the most important exception is a wildcard power). No second attempt
of pattern matching is made. In the first identification in the above example, the option once overrules the
general behavior of the system: only one single match of a pattern is attempted. By the way, the default
is many. The next two identifications in the example are replacements xy → z in the polynomial (x + y)4.
The option only implies that the match must be exact. Finally, the option multi is used: it means a single
matching with multiplicity. In the given example, it means that when it is applied to the term 4abxy, only
ab is taken out with multiplicity one. The other product, viz., xy, is left untouched. So you obtain the term
4xyz. You can check that similar things happen for the other terms.

The ifmatch option is mostly used in cases where there is a long list of substitutions, but applying them
all at once would make the substitution tree too complicated. Below we only give a simple example to
illustrate the syntax and semantics of the statement. We remove from a polynomial in two variables x and
y all monomials in y and replace x by the symbol z.

Symbols x,y,z;

Local F = x^2*y + y + 1;

id ifmatch->1 x=z;

id y=0;

label 1;

Print;

.end

F =

1 + y*z^2;

The statement id ifmatch->1, x=z; will lead to a jump to label 1 if there is a match and after the
substitution has been made. Logically the above program is equivalent to

Symbols x,y,z;

Local F = x^2*y + y + 1;

if (match(x));

id x = z;

else;

id y=0;

endif;

Print;

.end

F =

1 + y*z^2;

Such a nesting of if-statements becomes rather impractical when many statements are involved. Moreover in
this setup the matching has to be done twice, while the ifmatch construction involves only a single pattern
matching.

44

We shall describe the option disorder with an example from Dirac algebra in dimension 4. The Dirac
gamma matrices γ0, γ1, γ2, and γ3 have the properties

γiγj + γjγi = 0 if i 6= j,

(γ0)2 = 1, (γi)2 = −1 for i = 1, 2, 3.

For γ5 = iγ0γ1γ2γ3, the following two equations hold:

γ5γk + γkγ5 = 0 for all k,

(γ5)2 = 1.

It is easy to have FORM confirm these rules.

Functions g3,...,g0,g,h;

Local [g5] = i_ * g0 * g1 * g2 * g3;

Local [g5^2] = [g5]^2;

Local [g0*g5+g5*g0] = g0 * [g5] + [g5] * g0;

Local [g1*g5+g5*g1] = g1 * [g5] + [g5] * g1;

Local [g2*g5+g5*g2] = g2 * [g5] + [g5] * g2;

Local [g3*g5+g5*g3] = g3 * [g5] + [g5] * g3;

repeat;

id g0*g0 = 1;

id g?*g? = -1;

id disorder g? * h?= - h * g;

endrepeat;

Print;

.end

[g5] =

g0*g1*g2*g3*i_;

[g5^2] =

1;

[g0*g5+g5*g0] = 0;

[g1*g5+g5*g1] = 0;

[g2*g5+g5*g2] = 0;

[g3*g5+g5*g3] = 0;

You may have expected replacement rules like:

id g2 * g1 = -g1 * g2;

id g3 * g1 = -g1 * g3;

id g3 * g2 = -g2 * g3;

id g4 * g1 = -g1 * g4;

id g4 * g2 = -g2 * g4;

id g4 * g3 = -g3 * g4 ;

But this is rather cumbersome. It is much easier to rely on the internal ordering of the functions and to
have just one identification like

id g? * h? = - h*g

But when you repeat such a replacement rule, you would get into an infinite loop. To avoid this, the option
disorder has been introduced in FORM. With this option, the identification is applied when the normal
ordering of terms in the pattern would change the order of the functions, if they were commuting. In
subsection 2.5.5 we shall discuss in detail how to compute with gamma matrices in FORM.

45

2.5.3 A Realistic Differentiation Example

By now, you should be able to understand the following more realistic example of differentiation of trigono-
metric functions.

Symbols x,y,n;

CFunctions sin,cos,tan,g;

Functions [sin], [cos], [tan], [-sin], [1/cos^2], f, dx;

Set commuting: sin, cos, tan;

Set noncommuting: [sin], [cos], [tan];

Set derivative: [cos], [-sin], [1/cos^2];

*

Local expr = sin(x)*tan(x) + cos(x);

*

id g?commuting?noncommuting(x) = g(x);

Multiply left dx;

repeat;

id dx*g?noncommuting[n](x) = derivative[n](x) + g(x)*dx;

id [-sin](x) = - [sin](x);

id [1/cos^2](x) = 1/[cos](x) * 1/[cos](x);

endrepeat;

id dx = 0;

id f?noncommuting?commuting(x) = f(x);

id 1/f?noncommuting?commuting(x) = 1/f(x);

*

Print;

.end

expr =

- sin(x) + cos(x)*tan(x) + 1/(cos(x))/(cos(x))*sin(x);

2.5.4 Contravariant and Covariant Indices

Now that we know about sets, we can look at another FORM implementation of contravariant and covariant
indices. We consider the same example as in Section 2.4.3. Covariant or lower indices like a and b are denoted
by La and Lb, where the leading L stands for “lower”. Similarly, contravariant or upper indices like a and b

are denoted by Ua and Ub, where the leading U stands for “upper”. We define two set, viz., LU and UL, that
enable us to check whether an index appears twice but of opposite type. This make it easy to define the
replacement rules for raising and lowering indices with the metric tensor as the example below shows. We
will work out the Ricci curvature tensor and the trace of the metric tensor.

Tensors g,R,h;

AutoDeclare Indices U,L;

Indices i,j,k,l,m;

Set UL: Ui, Li, Uj, Lj, Uk, Lk, Ul, Ll;

Set LU: Li, Ui, Lj, Uj, Lk, Uk, Ll, Ul;

Symbol n;

*

Local T1 = g(Li, Uj) * R(Lj, Lk);

Local T2 = g(Ui, Uj) * R(Li, Lk, Lj, Ll);

Local T3 = g(Ui, Lj) * R(Li, Uj);

Local T4 = g(Ui, Lj) * g(Uj, Li);

*

repeat;

id g(?a, i?UL[n], ?b) * h?(?c, j?LU[n], ?d) = h(?a, ?b, ?c, ?d);

id h?(?a, i?UL[n], ?b, j?LU[n], ?c) = h(?a, ?b, ?c);

46

endrepeat;

*

Print;

.end

T1 =

R(Li,Lk);

T2 =

R(Lk,Ll);

T3 =

R;

T4 =

g;

No indices in the answers means implicitly that contraction of all indices took place.

2.5.5 Dirac Algebra

First, we shall implement calculus with N -dimensional Dirac gamma matrices and pay extra attention to
the case N = 4. Later in this subsection we shall look at the class of gamma matrices available in FORM

and at how to use them to compute traces.

Theory

Henceforth, we shall use the Bjorken & Drell metric with indices running over time-space from 0 to N−1, and
with metric tensor gµν defined by g00 = 1, g0i = 0, for i = 1, . . . , N−1, and gij = −δij , for i, j = 1, . . . , N−1.
The inverse matrix gµν is equal to the metric tensor gµν , but will be used as well. Einstein’s summation
convention simplifies gµλg

λν to the Kronecker delta symbol δν
µ, but this can also be denoted by gν

µ.

The Dirac gamma matrices γ0, γ1, . . . , γN−1 are N×N -matrices satisfying the anti-commutation relation

{γµ, γν} = γµγν + γνγµ = 2gµν ,

for µ, ν = 0, . . . , N − 1. In other words,

γiγj + γjγi = 0 if i 6= j

(γ0)2 = 1, (γi)2 = −1 for i = 1, . . . , N − 1

In case N = 4, they can be introduced as a 4 × 4 generalization of the Pauli-matrices:

γi =

(

0 σi

σi 0

)

, γ0 =

(

0 1
1 0

)

,

where the Pauli-matrices are the usual 2 × 2 matrices

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

.

The Dirac gamma matrices with their anti-commutation relations form the Dirac algebra or Clifford algebra.

In case N = 4, we define the matrix
γ5 = iγ0γ1γ2γ3 .

47

It is easy to check (and we did it before with FORM) that (γ5)2 = 1 and that γ5 anti-commutes with all
γµ. Now define the operators

P± =
1

2
(1 ± γ5) .

These are projection operators: P 2
+ = P+, P

2
− = P−, P+P− = 0. With these projection operators the

underlying vector space splits into a sum of two γ5 eigenspaces corresponding with eigenvalues ±1.

The metric tensor can be used to raise or lower indices of tensors: for example, γµ = gµν γ
ν . In our metric,

this leads to γ0 = γ0, γi = −γi, for i = 1, . . . , N − 1. It is easy to check that the following anti-commutation
rules hold:

{γµ, γν} = 2gµ
ν = 2δµ

ν , {γµ, γν} = 2gµν ,

for µ, ν = 0, 1, . . . , N − 1. The first relation gives us γµ γµ = N IN , where IN denotes the identity matrix.

For any vector p we define

6 p def
== gµνp

µγν = pνγ
ν = pµγµ.

In our metric, an N -vector p = (p0, p1, . . . , pN−1) gives 6 p = p0γ0 − p1γ1 − p2γ2 − . . . − pN−1γN−1. The
following anti-commutation relations hold:

{6 p, 6 q} = 2p · q IN , {γµ, 6 p} = 2pµ, {γµ, 6 p} = 2pµ,

for µ, ν = 0, 1, . . . , N − 1 and N -vectors p, q. The first relation gives us 6 p2 = p · p IN .

Gamma Matrix Calculus

In Dirac algebra, an important job is to use the anti-commutation relations and other properties to simplify
a product of gamma matrices. We shall show how to prove with FORM some useful reduction rules. They
are N -dimensional variations of the so-called Chisholm identity.

Chisholm Identity

In dimension 4:

γµγµ1γµ2 · · · γµnγµ = −2γµn · · · γµ2γµ1 , for odd n ,

γµγµ1γµ2 · · ·γµnγµ = 2γµnγµ1γµ2 · · · γµn−1 + 2γµn−1 · · · γµ2γµ1γµn , for even n .

Special cases are n = 0, 2:
γµγµ = 4 I4, γµγµ1γµ2γµ = 4gµ1µ2 I4.

In the FORM program below, we shall prove the following identities for dimension N :

γmγm = N IN

γmγm1γm = (2 −N)γm1

γmγm1γm2γm = 4gm1m2 IN + (N − 4)γm1γm2

γmγm1γm2γm3γm = −2γm3γm2γm1 − (N − 4)γm1γm2γm3

γmγm1γm2γm3γm4γm = 2γm4γm1γm2γm3 + 2γm3γm2γm3γm4 + (N − 4)γm1γm2γm3γm4

The Chisholm identity mentioned above follows easily by taking N equal to four. In our program, the first
character of an index classifies it as an upper or lower index: we denote the gamma matrices γm1 and γm1

by g(U1)) and g(L1), respectively. The metric tensor is denoted by eta. The simplification is based on
applying repetitively the anti-commutation rules of gamma matrices. The order of defining the indices is
important here, because it determines in what direction the anti-commutation rules are going to be applied
(the option disorder plays its role!). Sets are used to match upper and lower indices. Of course we have
only one pair of matching upper and lower indices present in the local expressions that we investigate, and
therefore the sets could have been kept small, only involving the indices in this pair, but we wanted the
program to be more general. This way we can easily extend the FORM program to prove for example
Chisholm-like identities with lower indices or mixtures of lower and upper indices.

48

Functions g;

CFunction eta;

Indices Um, Lm, U1, ..., U4, L1, ..., L4;

Set U: Um, U1, ..., U4;

Set L: Lm, L1, ..., L4;

Set UL: Um, Lm, <U1, L1>, ..., <U4, L4>;

Set LU: Lm, Um, <L1, U1>, ..., <L4, U4>;

Index i,j;

Symbol k, N;

*

Local F1 = g(Um) * g(U1) * g(Lm);

Local F2 = g(Um) * g(U1) * g(U2) * g(Lm);

Local F3 = g(Um) * g(U1) * g(U2) * g(U3) * g(Lm)

+ 2 * g(U3) * g(U2) * g(U1);

Local F4 = g(Um) * g(U1) * g(U2) * g(U3) * g(U4) * g(Lm)

- 2 * g(U4) * g(U1) * g(U2) * g(U3)

- 2 * g(U3) * g(U2) * g(U1) * g(U4);

*

* bring g(Lm) to the left to cancel it with g(Um)

* and use rewrite rule for metric tensor eta

*

repeat;

id g(Um) * g(Lm) = N;

id g(i?) * g(Lm)= - g(Lm) * g(i) + 2*eta(i,Lm);

id g(i?U[k]) * eta(?a, j?L[k]) = g(?a);

endrepeat;

*

* bring product of gamma matrices in standard order

*

repeat;

id disorder g(i?U) * g(j?U)= - g(j) * g(i) + 2*eta(i,j);

endrepeat;

*

AntiBracket N;

Print;

.sort

F1 =

+ g(U1) * (2 - N);

F2 =

+ eta(U2,U1) * (4)

+ g(U1)*g(U2) * (- 4 + N);

F3 =

+ g(U1)*g(U2)*g(U3) * (4 - N);

F4 =

+ g(U1)*g(U2)*g(U3)*g(U4) * (- 4 + N);

*

* specialize to the case N=4

*

49

id N = 4;

AntiBracket eta;

Print;

.end

F1 =

+ g(U1) * (- 2);

F2 =

+ 4*eta(U2,U1);

F3 = 0;

F4 = 0;

We can improve the above program to make it applicable in more cases (e.g., also for expressions containing
gamma matrices with lower indices, or for contractions of gamma matrices with vectors), and to make the
notation more similar to the representation used inside FORM for gamma matrices. In the program below,
a product of gamma matrices is written in “contracted form”:

g(m1, m2, ..., mn) = g(m1) * g(m2) * ... * g(mn)

where each index mi is either Ui or Li, and where g(Ui) = γi, g(Li) = γi, for i=1, 2, . . . , N . The advantage
of this notation is that it allows us to enter a product of gamma matrices in a convenient way and that it
displays the results of computations in a clear way. It also makes it simple to include vector contractions
such as 6 p by using a vector object instead of an index object as argument of the function g. So, g(p), where
p is a vector, is short notation for g(Um) * p(Lm) and g(Lm) * p(Um), where the index pair (Um, Lm) of
course can be any pair of matching upper and lower indices.

Symbol N;

Dimension N;

Function g;

CFunction eta;

Vector p,q;

Indices Um, Lm, U1, ..., U5, L1, ..., L5;

Set U: Um, U1, ..., U5;

Set L: Lm, L1, ..., L5;

Set UL: Um, Lm, <U1, L1>, ..., <U5, L5>;

Set LU: Lm, Um, <L1, U1>, ..., <L5, U5>;

Index i,j,m,n;

Symbol k;

*

Local F1 = g(Lm, p, Um);

Local F2 = g(Um, L1, U2, Lm);

Local F3 = g(Um, p, q, U3, Lm) + 2 * g(U3, q, p);

Local F4 = g(Um, L1, U2, L3, U4, Lm)

- 2 * g(U4, L1, U2, L3)

- 2 * g(L3, U2, L1, U4);

Local F5 = g(Lm, U1, p, U3, q, U5, Um)

- 2 * g(U5, U1, p, U3, q)

+ 2 * g(q, U1, p, U3, U5)

+ 2 * g(U3, p, U1, q, U5);*

*

* change notation to product of gamma matrices

*

repeat;

50

id g(?a, i?, j?, ?b) = g(?a, i) * g(j, ?b);

endrepeat;

*

* bring low index to the left in the hope

* to meet a corresponding upper index

* bring vector arguments to the left

*

repeat;

repeat;

id g(i?U[k]) * g(j?L[k]) = d_(m,m);

endrepeat;

id g(i?U) * g(j?L) = - g(j) * g(i) + 2*eta(i, j);

id g(i?UL[k]) * eta(?a, j?LU[k], ?b) = g(?a, ?b);

id g(i?UL) * g(p?) = - g(p) * g(i) + 2*p(i);

id p?(i?UL[k]) * eta(m?, j?LU[k]) = p(m);

id eta(?a, i?UL[k], ?b) * eta(?c, j?LU[k], ?d)

= eta(?a, ?b, ?c, ?d);

endrepeat;

*

* bring low index to the right in the hope

* to meet a corresponding upper index

*

repeat;

repeat;

id g(i?L[k]) * g(j?U[k]) = d_(m,m);

endrepeat;

id g(i?L) * g(j?U) = - g(j) * g(i) + 2*eta(i, j);

id g(i?UL[k]) * eta(?a, j?LU[k], ?b) = g(?a, ?b);

id p?(i?UL[k]) * eta(j?LU[k], m?) = p(m);

id eta(?a, i?UL[k], ?b) * eta(?c, j?LU[k], ?d)

= eta(?a, ?b, ?c, ?d);

endrepeat;

*

* bring product of gamma matrices with respect to

* index arguments in standard order

*

repeat;

id disorder g(i?UL) * g(j?UL) = - g(j) * g(i) + 2*eta(i,j);

id g(i?UL[k]) * eta(?a, j?LU[k], ?b) = g(?a, ?b);

endrepeat;

*

* contract vector components with gamma matrices

* bring all vector arguments to the left

*

repeat;

id g(i?UL[k]) * p?(j?LU[k]) = g(p);

id g(i?UL) * g(p?) = - g(p) * g(i) + 2 * p(i);

id p?(i?UL[k]) * eta(m?, j?LU[k]) = p(m);

id eta(?a, i?UL[k], ?b) * eta(?c, j?LU[k], ?d)

= eta(?a, ?b, ?c, ?d);

endrepeat;

*

* bring product of gamma matrices with respect to

* vector arguments in standard order

51

*

repeat;

id disorder g(p?) * g(q?) = - g(q) * g(p) + 2*p.q;

endrepeat;

*

* symmetrize the metric tensor and

* go back to short notation

*

symmetrize eta;

repeat;

id g(i?,?a) * g(j?,?b) = g(i, ?a, j, ?b);

endrepeat;

*

AntiBracket N;

Print;

.sort

F1 =

+ g(p) * (2 - N);

F2 =

+ eta(U2,L1) * (- 4 + 2*N)

+ g(U2,L1) * (4 - N);

F3 =

+ g(p,q,U3) * (4 - N);

F4 =

+ eta(U2,L1)*eta(U4,L3) * (- 16 + 4*N)

+ g(U2,U4,L1,L3) * (4 - N)

+ g(U2,L1)*eta(U4,L3) * (8 - 2*N)

+ g(U2,L3)*eta(U4,L1) * (- 8 + 2*N)

+ g(U4,L3)*eta(U2,L1) * (8 - 2*N);

F5 =

+ g(p,q,U1,U3,U5) * (- 4 + N)

+ g(p,U1,U5)*q(U3) * (- 8 + 2*N)

+ g(p,U3,U5)*q(U1) * (8 - 2*N)

+ g(q,U3,U5)*p(U1) * (- 8 + 2*N)

+ g(U5)*p(U1)*q(U3) * (16 - 4*N);

*

* specialize to the case N=4

*

id N = 4;

52

AntiBracket eta;

Print;

.end

F1 =

+ g(p) * (- 2);

F2 =

+ 4*eta(U2,L1);

F3 = 0;

F4 = 0;

F5 = 0;

From the examples you see that the Chisholm identity actually holds for all indices, whether they are upper
or lower indices or vectors.

Let us prove with FORM another rule in Dirac algebra. First, some notation for antisymmetrized
products of gamma matrices:

Γµν = γ[µγν] =
1

2
(γµγν − γνγµ) ,

Γµνρ = γ[µγνγρ] =
1

6
(γµγνγρ + γνγργµ + γργµγν − γνγµγρ − γµγργν − γργνγµ) ,

and so on. Similar antisymmetrizations can be done for lower indices and for mixed indices.

Theorem 2 (Theorem) In dimension 4, using Bjorken-Drell metric:

Γµνρ = iǫµνρσγ
5γσ .

In the following FORM program, we rewrite every term explicitly in terms of gamma matrices with upper
indices so that we do not have to distinguish between upper and lower indices all the time. The Bjorken-Drell
metric is diagonal. So, γµ and γµ are related simply by γµ = gµµγ

µ without contraction of repeated indices.
The formula under consideration is also worked out so that Einstein’s summation convention is not needed
anymore.

Function g, G;

CFunction eta, eps, del;

Index a, b, c, d, k, m, n, r;

*

* make the left-hand side of the equality

*

Local [Gabc] = 1/6 * e_(1,2,3) * e_(a,b,c) * g(a) * g(b) * g(c);

contract;

id g(1) = g(a) * eta(a,a);

id g(2) = g(b) * eta(b,b);

id g(3) = g(c) * eta(c,c);

Print +s [Gabc];

.sort

[Gabc] =

+ 1/6*g(a)*g(b)*g(c)*eta(a,a)*eta(b,b)*eta(c,c)

- 1/6*g(a)*g(c)*g(b)*eta(a,a)*eta(b,b)*eta(c,c)

- 1/6*g(b)*g(a)*g(c)*eta(a,a)*eta(b,b)*eta(c,c)

+ 1/6*g(b)*g(c)*g(a)*eta(a,a)*eta(b,b)*eta(c,c)

53

+ 1/6*g(c)*g(a)*g(b)*eta(a,a)*eta(b,b)*eta(c,c)

- 1/6*g(c)*g(b)*g(a)*eta(a,a)*eta(b,b)*eta(c,c)

;

*

* define the right-hand side of the equality

* implicitly assume Einstein’s summation convention

*

Local [g5] = i_ * g(0) * g(1) * g(2) * g(3);

Local F2 = i_ * eps(a,b,c,d) * [g5] * g(d);

sum d,0,1,2,3;

Print +s F2;

.sort

F2 =

- g(0)*g(1)*g(2)*g(3)*g(0)*eps(a,b,c,0)

- g(0)*g(1)*g(2)*g(3)*g(1)*eps(a,b,c,1)

- g(0)*g(1)*g(2)*g(3)*g(2)*eps(a,b,c,2)

- g(0)*g(1)*g(2)*g(3)*g(3)*eps(a,b,c,3)

;

*

* compute the difference of the left- and right-hand side

*

Local F = F2 - [Gabc];

repeat;

id g(a?) * g(a?) = eta(a,a);

id disorder g(a?) * g(b?)= - g(b) * g(a) + 2*eta(a,b);

endrepeat;

.sort

*

* work out the contraction of repeated indices and

* show that for all combinations of indices the result equals zero

*

Symbols x, y, z;

Local R = sum_(a, 0, 3, sum_(b, 0, 3, (sum_(c, 0, 3, F*x^a*y^b*z^c))));

Bracket x, y, z;

.sort

repeat;

id g(a?) * g(a?) = eta(a,a);

id disorder g(a?) * g(b?)= - g(b) * g(a) + 2*eta(a,b);

endrepeat;

id eps(?a) = e_(?a);

id eta(a?,a?) = -1 + 2*d_(0,a);

id eta(a?,b?) = d_(a,b);

id e_(0,1,2,3) = 1;

Print R;

.end

R = 0;

54

Gamma Matrices in FORM

Let us now look at the calculus of gamma matrices that is available in FORM. A product of gamma
matrices is denoted by g_(i, mu, nu, ...). The index i distinguishes between different spin lines. This
extra label is necessary because in high energy physics gamma matrices are associated with fermion lines
in a Feynman diagram, and if more than one such line occurs, then a different set of gamma matrices
(operating in independent spin spaces) is required to represent each line. Gamma matrices associated
with different spin lines commute; gamma matrices from the same spin line are normally collected into
one g_ function, but this is not obligatory on the input side. For example, you can input 6 pγµ 6 pγν as
g_(1,p)*g_(1,mu)*g_(1,p)*g_(1,nu) and FORM will automatically display it as g_(1,p,mu,p,nu). In
FORM, almost all you can do with these expressions is taking the trace of a string of gamma matrices. Taking
the trace of a spin line with index i is accomplished by the commands trace4,i and with tracen,i. In the first
case, FORM uses algorithms that are applicable in four dimensions only. For example, it uses the Chisholm
identity. See the reference guide for details about the algorithms used. The second command does not assume
dimension 4 and it cannot handle properties of γ5 (denoted by g5_(i) or g_(i, ..., 5_, ...)). FORM

shortens 1 + γ5 and 1 − γ5 to g6_(i) (or g_(i, ..., 6_, ...)) and g7_(i) (or g_(i, ..., 7_, ...)),
respectively. The identity matrix is denoted by gi_(i). It is possible to alter the value of the trace of the
identity matrix: its default value is 4, but by using the statement unittrace value it can be changed into
value. In the following table we summarize the notations for gamma matrices and the conventions that are
used in FORM. Here, the spin line is always denoted by the character i.

FORM Notation Meaning

gi_(i) identity
g_(i,m) γm

g5_(i) γ5

g_(i,5_) γ5

g6_(i) γ6 def
= 1 + γ5

g_(i,6_) γ6

g7_(i) γ7 def
= 1 − γ5

g_(i,7_) γ7

g_(i,r,s) g_(i,r)*g_(i,s)

g_(i,m,...,r,s) g_(i,m,...r)*g_(i,s)

It is important to know that FORM uses the Pauli metric instead of the Bjorken & Drell metric. This
means that space-time indices usually run from 1 to 4, that the identity matrix represents the metric, that
no distinction between upper and lower indices is required, and that the gamma matrices in FORM fulfill
the anti-commutation relation

{ g_(j1,mu), g_(j1,nu) } = 2 * d_(mu,nu)

and the commutation relation

[g_(j1,mu), g_(j2,nu)] = 0 if j1 6=j2

The relation between the gamma matrices in Pauli metric and Bjorken & Drell metric is

g_(...,1) = γ0, g_(...,k) = iγk−1,

for k = 2, 3, 4 and complex unit i. In Pauli metric, the Levi-Civita tensors that are generated by trace
routines are imaginary.

Example from Particle Physics: the Process e+e− −→ µ+µ−

We shall compute the amplitude squared summed over spins for the process e+e− −→ µ+µ− at tree level,
with massless electrons and muons, due to the electromagnetic interaction

LI = −eAµj
µ, jα = :ψeγ

αψe: + :ψµγ
αψµ: .

We choose momenta as follows e+(k1)e
−(k2) −→ µ+(p1)µ

−(p2). There is just one Feynman diagram, namely

55

e
+

e
−

µ
+

µ
−

Ignoring the labels for the spin lines, the amplitude M for this process is given by

M = i
e2

(k1 + k2)2
v(k1)γ

ρu(k2)u(p2)γµv(p1) .

So, the amplitude squared summed over spins, using for massless particles
∑

spins

u(p)u(p) = 6 p and

∑

spins

v(p)v(p) = 6 p, equals

∑

spins

|M|2 =
e4

k4
tr(6 k1γ

ρ 6 k2γ
σ) tr(6 p1γρ 6 p2γσ) = 8e4

(t2 + u2)

s2
,

where we use the Mandelstam variables

k = k1 + k2 = p1 + p2, s = k2, t = (k1 − p1)
2 = (k2 − p2)

2, u = (k1 − p2)
2 = (k2 − p1)

2 .

For further simplification of this result we refer to the same example in [Schellekens 97]. The following
FORM session finds the above answer.

Vectors k1, k2, p1, p2;

Symbols s, t, u, e;

Indices mu, nu, rho, sigma;

*

Local M2 =

* electron line

e^2 * g_(1, k1, rho, k2, sigma) *

* photon propagator

d_(rho,mu) * d_(sigma,nu) / s^2 *

* muon spin line

e^2 * g_(2, p1, mu, p2, nu)

;

Trace4,1;

Trace4,2;

Bracket e,s;

Print;

.sort

M2 =

+ s^-2*e^4 * (32*k1.p1*k2.p2 + 32*k1.p2*k2.p1);

*

id k1.k2 = s/2;

56

id p1.p2 = s/2;

id k1.p1 = -t/2;

id k2.p2 = -t/2;

id k1.p2 = -u/2;

id k2.p1 = -u/2;

Bracket e,s;

Print;

.end

M2 =

+ s^-2*e^4 * (8*t^2 + 8*u^2);

Another Example from Particle Physics: Decay of Heavy Leptons

The following is an example from high energy physics that illustrates the efficiency of the trace algorithms
that have been implemented in FORM. We are looking at the reaction e+e− −→ τ+τ− −→ udντudντ . This
is a 2 to 6 reaction, but it has some features that make it easier than one might expect.

Vectors p1,...,p8,Q,q1,q2;

Indices m1,m2,m3,n1,n2,n3;

Symbol emass,tmass,mass4,mass5,mass7,mass8;

On Statistics;

Local F =

*

* The incoming e+ e- pair. momenta p2 and p1

*

(g_(1,p2)-emass)*g_(1,m1)

*(g_(1,p1)+emass)*g_(1,n1)

*

* The tau line. tau- is q1, tau+ is q2.

*

*g_(2,p3)*g_(2,m2)*g7_(2)

*(g_(2,q1)+tmass)*g_(2,m1)

*(-g_(2,q2)+tmass)*g_(2,m3)*g7_(2)*g_(2,p6)

*g_(2,n3)*g7_(2)*(-g_(2,q2)+tmass)*g_(2,n1)

*(g_(2,q1)+tmass)*g_(2,n2)*g7_(2)

*

* The u d-bar pair. p4 is u, p5 is d-bar.

*

*(g_(3,p4)+mass4)*g_(3,m2)*g7_(3)

*(g_(3,p5)-mass5)*g_(3,n2)*g7_(3)

*

* The d u-bar pair. p7 is d, p8 is u-bar.

*

*(g_(4,p7)+mass7)*g_(4,m3)*g7_(4)

*(g_(4,p8)-mass8)*g_(4,n3)*g7_(4)

;

trace4,1;

trace4,2;

trace4,3;

trace4,4;

contract;

print +s;

.end

57

Time = 0.49 sec Generated terms = 164

F Terms in output = 27

Bytes used = 1354

F =

- 524288*p1.p2*p3.p4*p5.p7*p6.p8*q1.q2*tmass^2

+ 524288*p1.p2*p3.p4*p5.q1*p6.p8*p7.q2*tmass^2

+ 524288*p1.p2*p3.p4*p5.q2*p6.p8*p7.q1*tmass^2

+ 262144*p1.p5*p2.p7*p3.p4*p6.p8*q1.q1*q2.q2

+ 524288*p1.p5*p2.p7*p3.p4*p6.p8*q1.q2*tmass^2

+ 262144*p1.p5*p2.p7*p3.p4*p6.p8*tmass^4

- 524288*p1.p5*p2.q2*p3.p4*p6.p8*p7.q1*tmass^2

- 524288*p1.p5*p2.q2*p3.p4*p6.p8*p7.q2*q1.q1

+ 262144*p1.p7*p2.p5*p3.p4*p6.p8*q1.q1*q2.q2

+ 524288*p1.p7*p2.p5*p3.p4*p6.p8*q1.q2*tmass^2

+ 262144*p1.p7*p2.p5*p3.p4*p6.p8*tmass^4

- 524288*p1.p7*p2.q1*p3.p4*p5.q1*p6.p8*q2.q2

- 524288*p1.p7*p2.q1*p3.p4*p5.q2*p6.p8*tmass^2

- 524288*p1.q1*p2.p7*p3.p4*p5.q1*p6.p8*q2.q2

- 524288*p1.q1*p2.p7*p3.p4*p5.q2*p6.p8*tmass^2

+ 524288*p1.q1*p2.q2*p3.p4*p5.p7*p6.p8*tmass^2

+ 1048576*p1.q1*p2.q2*p3.p4*p5.q1*p6.p8*p7.q2

- 524288*p1.q2*p2.p5*p3.p4*p6.p8*p7.q1*tmass^2

- 524288*p1.q2*p2.p5*p3.p4*p6.p8*p7.q2*q1.q1

+ 524288*p1.q2*p2.q1*p3.p4*p5.p7*p6.p8*tmass^2

+ 1048576*p1.q2*p2.q1*p3.p4*p5.q1*p6.p8*p7.q2

+ 262144*p3.p4*p5.p7*p6.p8*q1.q1*q2.q2*emass^2

+ 262144*p3.p4*p5.p7*p6.p8*emass^2*tmass^4

- 524288*p3.p4*p5.q1*p6.p8*p7.q1*q2.q2*emass^2

+ 1048576*p3.p4*p5.q1*p6.p8*p7.q2*q1.q2*emass^2

+ 1048576*p3.p4*p5.q1*p6.p8*p7.q2*emass^2*tmass^2

- 524288*p3.p4*p5.q2*p6.p8*p7.q2*q1.q1*emass^2

;

2.5.6 Exercises

1. Implement the rule J(−n, z) = (−1)nJ(n, z), if n is a natural number. Apply your rule for n = 3,
n = 4, and general n.

2. For an invertible matrix M holds the equation

dM−1

dt
= −M−1

(

dM

dt

)

M−1.

Write a FORM program that computes the derivative of M−3.

3. Write a FORM program that computes the derivative of x4 ln2 x.

4. Write a FORM program that computes the integrals

∫

x4 cosxdx and

∫

x4 sinxdx.

5. Let T =
(

T ij
klm

)

denote a tensor of order and type indicated by the indices.

Prove with FORM that S = (Tk) =
(

T ij
kij

)

is a covariant vector.

6. From the contravariant tensor S = (Sij) and the covariant tensor T = (Tkl), both of order two, form
the inner product U = (U i

l) = (SijTjl). Show with FORM that U is a mixed tensor of order two.

58

7. Carry out in FORM the following trace calculation, published in [Veltman 89]: Compute

trace(γµ1
γµ2

· · · γµ10
γµ1γµ2 · · ·γµ10)

and replace the dimension d by d− 4. The answer should be equal to

−31023169536+ 38971179008d− 21328977920d2 + 6679521280d3 − 1320732160d4 +

171464832d5 − 14710080d6 + 816960d7 − 27840d8 + 520d9 − 4d10 .

8. Repeat the following calculation in high energy physics, which is also described in the REDUCE
manual: the computation of the Compton scattering cross-section as given in Bjorken and Drell Eqs.
(7.72) through (7.74). Requested is the trace of

α2

2

(

k′

k

)2 (6 pf +m

2m

) (6 pf +m

2m

) (6 e′ 6 e 6 ki

2k · pi
+

6 e 6 e′ 6 kf

2k′ · pi

) (6 pi +m

2m

) (6 ki 6 e 6 e′
2k · pi

+
6 kf 6 e′ 6 e
2k′ · pi

)

where ki and kf are the four-momenta of incoming and outgoing photons, with polarization vectors
e and e′ and laboratory energies k and k′, respectively, and where pi and pf are incident and final
electron four-momenta. It is necessary to put the particles “on the mass shell” in the calculation:

k2
i = 0, k2

f = 0, p2
i = m2, p2

f = m2 .

For the polarization vectors hold

pi ·e = 0, pi ·e′ = 0, ki ·e = 0, kf ·e′ = 0, pf ·e = −kf ·e, pf ·e′ = ki ·e′, e2 = −1, e′2 = −1 .

Furthermore,

pi ·pf = m2+ki ·kf , pi ·ki = mk, pi ·kf = mk′, pf ·ki = mk′, pf ·kf = mk, ki ·kf = m(k−k′) .
With these relations you should readily get the following Compton scattering cross-section:

α2

2m2

(

k′

k

)2 (

k′

2k
+

k

2k′
+ 2(e · e′)2 − 1

)

9. Consider again the annihilation of an electron pair and creation of a muon pair, but now without the
assumption of massless particles. Show that the amplitude squared summed over spins is given in the
Mandelstam variables by

∑

spins

|M|2 = 8e4
(t2 + u2 + 4s(m2 +M2) − 2(m2 +M2)2)

s2
,

where m and M are the electron and muon mass, respectively.

2.6 Limitations in Wildcarding

2.6.1 Coefficients and Wildcards

We started the subsection about wildcard parameters with the simplification x
√
y =

√

x2y. The implemented

replacement rule worked well for the formula a
√
b, but look what is the result when applied to 2

√
a.

Symbol a,x,y;

CFunction sqrt;

Local F = 2 * sqrt(a);

id x? * sqrt(y?) = sqrt(x^2*y);

Print;

.end

F =

2*sqrt(a);

59

The coefficient is not recognized in the wildcarding. In FORM, you cannot write an identification like
2*sqrt(y?). The best workaround is to put the coefficient inside a dummy function via the PolyFun option
to a FORM directive. Then you can write the replacement which involves coefficients. In our example it
could look like

Symbol a,x,y;

CFunctions sqrt,dummy;

Local F = 2 * sqrt(a);

Print;

.sort (PolyFun = dummy);

F =

sqrt(a)*dummy(2);

id dummy(x?) * sqrt(y?) = sqrt(x^2*y);

Print;

.end

F =

sqrt(4*a);

The semicolon at the end of the PolyFun option is obligatory. This statement is an example of a module
option statement. There can be more than one module option statement. The module option statement(s)
are the last statement(s) before the FORM directives at the end of the module. They are local settings that
overwrite more general settings. They hold only for the current module.

Another working style is to use a PolyFun declaration. Like any other declaration it will remain valid
during the session and does not have to be put in all .sort instructions. The declaration PolyFun; switches
the PolyFun option off. So, we can also use the following FORM program:

Symbol a,x,y;

CFunctions sqrt,dummy;

Polyfun dummy;

Local F = 2 * sqrt(a);

Print;

.sort

Polyfun;

id dummy(x?) * sqrt(y?) = sqrt(x^2*y);

Print;

.end

Another way of getting hold of the coefficients is by use of the collect statement. With this statement
you can put data which are between brackets (either by the Bracket or AntiBracket statement) inside a
regular function. Our example would look like

Symbol a,x,y;

CFunctions sqrt,dummy;

Local F = 2 * sqrt(a);

AntiBracket a;

Print;

.sort

F =

+ sqrt(a) * (2);

collect dummy;

60

Print;

.sort

F =

sqrt(a)*dummy(2);

id dummy(x?) * sqrt(y?) = sqrt(x^2*y);

Print;

.end

F =

sqrt(4*a);

2.6.2 Sums of Wildcards

Another type of pattern matching which is currently not allowed in FORM is f(x?+y?), and variations
thereof. For example, additivity of a function f cannot be specified as follows:

Symbols x,y,z;

CFunction f;

Local expr = f(x + y + z);

id f(x? + y? + z?) = f(x) + f(y) + f(z);

Print;

.end

expr =

f(x + y + z);

The reason for not allowing this kind of wildcarding in function arguments is efficiency: the pattern
f(x1?+x2?+...+xn?) has in general n! possible assignments for the wildcards. Efficiency is also the rea-
son for not implementing pattern matching for composite denominators and for powers with non-integer
exponents.

However, the above problem of additivity of a function can be implemented by the following trick. In
fact, we implement more: linearity of a function.

Vectors x,y,z;

Index i;

CFunction f;

Local expr = f(2*x + y + z);

id f(i?) = f(i);

Print;

.end

expr =

2*f(x) + f(y) + f(z);

The explanation is as follows: the wildcard in the function is an index. If FORM gets a vectorlike argument
in the function, it assumes that it is there because of contraction of indices. In other words, it assumes that
the function is linear in this argument.

2.6.3 Exercises

1. Implement the trigonometric identities

sin(x+ y) = sinx cos y + cosx sin y,

cos(x+ y) = cosx cos y + sinx sin y,

61

and apply them to sin(a+ b) and sin(a+ b+ c).

2. Implement the rule sin(2x) → 2 sinx cosx, and apply it to sin(2a), sin(3a), and sin(4a).

62

Chapter 3

Procedural Programming

3.1 Superstructure of the Preprocessor

FORM provides the usual facilities of procedural programming languages: control flow statements such as
repetition with “do”- and “while”-loops and choice control structures of type “if-then-else” and “switch” are
present, and procedures can be defined and called as one pleases. There is however an important difference
with many languages: FORM consists of two parts, viz., the preprocessor and the compiler. At both levels,
tools of procedural programming are provided. In this section we shall describe the functionality of the
preprocessor. In the second section, the programming facilities at compiler level will be discussed.

The preprocessor reads from the input stream and prepares input for the compiler. The preprocessor
prepares program blocks, also called modules , which are translated by the compiler, and immediately exe-
cuted. As such, you can consider the preprocessor as an autonomous unit that facilitates the efficient and
easy writing of FORM programs. A command for the preprocessor is called a preprocessor instruction. It
always starts with the sharp symbol (#), it does not have to end with a semicolon, and it is executed when
it is encountered in the input stream. Preprocessor instructions are there to make programming in FORM

easier. For example, the preprocessor has its own structures for control flow and it allows you to write
procedures. To make preparation of code for the compiler easier, the preprocessor is equipped with variables
that can be defined or redefined by the user or by other preprocessor actions. The preprocessor variables
can be recognized by the quotes that are around them when they are referred to. In this section we shall
concentrate on the control flow preprocessor instructions and the preprocessor variables; the preprocessor
instructions that have to do with I/O will be discussed in a later chapter.

3.1.1 Choice

Most Common Choice: #if . . . #else . . . #endif

The conditional statement in the preprocessor provides a way to include code selectively. Formally, it has
the following syntax.

#if condition

statseq1

[#else

statseq2]

#endif

where condition is a logical variable or a composite logical expression, statseq1 and statseq2 are expressions,
statements, or sequences of statements separated by semicolons, and [] denotes an optional part. Omitting
the optional part is equivalent to saying “continue”. The #endif instruction marks the end of the choice.
The condition is evaluated: if it is true, i.e., if it has a non-zero value, statseq1 is read by the preprocessor

63

and then reading continues after the #endif instruction. If condition is false, i.e., if it is zero, and if there
is an else part, statseq2 is read instead. Hence it is allowed to use the following code snippet.

#if ‘i’

statements

#endif

instead of

#if ‘i’ != 0

statements

#endif

provided that the so-called preprocessor variable ‘i’ has a value that can be interpreted as a number. If
there is just a string, and not a number, the condition is false.

A composite condition is composed of variables and numbers via relational operators (less than, equal
to, etc.) and logical operators (and, or). The operator are tabulated below. Relational operators are in
FORM mostly the same as in the C programming language and are either numerical comparisons or string
comparisons with respect to the lexicographic ordering of strings. The same holds for logical operators, with
the exception that the negation (!) does not exist in FORM.

Operator Meaning

= or == equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
&& and
| | or

A typical #if statement is

#if {‘i’%2} == 0

1

#else

-1

#endif

where ‘i’ is a preprocessor variable, which is defined elsewhere in the FORM program, and where we have
used the percentage symbol % for modular arithmetic (x%y is the remainder when x is divided by y). For
an even integer the result is 1; odd numbers give -1. The curly brackets in the if part are required for this
behavior. Otherwise, the preprocessor does not carry out the remainder calculation and it will compare two
very different strings, viz., i%2 and 0. This behavior will become more clear after preprocessor variables
and their calculus have been discussed.

Nested #if Statements and the #elseif Instruction

Nested #if statements are allowed, and FORM provides the shortcut #elseif.

#if ‘x’ < 0

-1

#else

#if ‘x’ = 0

0

#else

64

1

#endif

#endif

is equivalent to

#if ‘x’ < 0

-1

#elseif ‘x’ = 0

0

#else

1

#endif

The following sequence of #if, #elseif, #else, and #endif instructions is the most general way of writing
a multi-way decision.

#if condition1

statseq1

#elseif condition2

statseq2

#elseif condition3

statseq3

.

#elseif conditionn

statseqn

#else

statseqn+1

#endif

The conditions are evaluated in order; if any condition is true, the sequence of statements associated with it
is read by the preprocessor, and this terminates the whole chain so that reading continues after the #endif

instruction. The last #else part handles the “none of the above” or default case where none of the other
conditions is satisfied. If there is no explicit reading required for the default, the #else part can be omitted,
or it can be used for error checking an “impossible” condition.

Multi-way Decision: #switch

The #switch instruction, together with #break, #default, and #endswitch, provides a multi-way decision,
which tests whether a string matches one of a number of constant string values, and which branches accord-
ingly. In other words, these instructions allow the user to conveniently make code for a number of cases
that are distinguished by the string value of a preprocessor variable.

#switch string

#case string1

statseq1

#break

#case string2

statseq2

#break

#case string3

65

statseq3

#break

.

#case stringn

statseqn

#break

[#default

statseqn+1

#break]

#endswitch

Each case is labeled by a string. FORM looks for the first case of which the string matches the string value
of the preprocessor variable in the #switch instruction and, if found, starts at that case. The case labeled
#default is read if none of the other cases are satisfied. The #default case can be omitted: then, if none
of the cases match, reading just continues after the #endswitch instruction, i.e., no action at all takes place.
The #break instruction causes an immediate exit from the switch. It prevents that after the code of one
case is read, processing falls through to the next case.

Simple Examples of Choice

Let us have the conditional statements of the previous sections in an executable FORM program.

#define two "2"

#define three "3"

#define four "4"

#define quatro "4"

Symbols x2,...,x5;

Local F‘two’ =

#if {‘two’%2} == 0

1

#else

-1

#endif

;

Local F‘three’ =

#if {‘three’%2} == 0

1

#else

-1

#endif

;

Local F‘four’ =

#switch {‘four’/2}

#case {‘quatro’/2}

+ x2

#case ‘three’

+ x3

#break

#case 2

+ x4

#default

+ x5

#endswitch

66

;

Print;

.end

F2 =

1;

F3 =

- 1;

F4 =

x2 + x3;

With the #define instruction you can give a string value to a preprocessor variable. Of course, the string
values in our example have a numerical interpretation, and the preprocessor knows this. It concatenates
regular string characters and preprocessor variables: the names F2, F3, and F4 of the local expressions in the
above session are constructed in this way. Furthermore, you can do arithmetic operations with preprocessor
variables that have a numerical interpretation: in our example, we compute the remainder and quotient of
division by two.

Be warned that the preprocessor does not always interpret string values numerically or in the same way
as you would do. For example, rational numbers are rounded to integers (in the direction to zero) before
any further processing, in case curly brackets are present. The following FORM session illustrates this.

#define minustwothird "-2/3"

Local expr1a = ‘minustwothird’;

Local expr1b =

#if ‘minustwothird’ > -3/2

1

#elseif ‘minustwothird’ == 0

0

#else

-1

#endif

;

Local expr1c =

#if {‘minustwothird’} > -3/2

1

#elseif {‘minustwothird’} == 0

0

#else

-1

#endif

;

Local expr1d = {‘minustwothird’};

Print;

.end

expr1a =

- 2/3;

expr1b =

- 1;

expr1c =

1;

67

expr1d = 0;

Again, the curly brackets get the integer calculator of the preprocessor activated while reading the input
stream.

3.1.2 Repetition

In general, three types of repetitions can be distinguished

• unconditional repetition, in which a predetermined set of actions are carried out,

• conditional repetition, in which actions are repeated while or until some condition is fulfilled,

• mixed repetition, in which above types of repetition are both present.

The last two types of repetition are not available in the preprocessor; they can only be simulated. Uncondi-
tional repetition can be used in a straightforward way.

Unconditional Repetition

• Counted Do-Loop

The preprocessor provides two types of unconditional do-loops. The first one is similar to the one found in
most programming languages, and is referred to as a counted do-loop.

#do counter = start, finish [, stepsize]

statseq

#enddo

where counter is a preprocessor variable used for counting with initial value start . The counter is incremented
at the end of each step in the repetition by the value of stepsize until it passes the value of finish. Then
the repetition stops and FORM continues reading after the #enddo instruction. statseq represents any valid
FORM expression, statement, or sequence of statements separated by semicolons, which are read at each
step in the repetition. The stepsize is optional: if omitted, the default value 1 will be assumed. You cannot
alter the finish and stepsize from within the loop; it is however allowed to redefine the preprocessor variable
counter. Furthermore, the preprocessor variable used for counting has no value or no meaning outside the
loop.

In the following four examples, we compute the sum of the first ten natural numbers with the preprocessor.
The first session uses a simple #do loop to compose an expression that is by definition equal to the requested
sum.

Local S =

#do i = 1, 10

+ ‘i’

#enddo

;

Print;

.end

S =

55;

A preprocessor variable can be used to make the program more general.

68

#define MAX "10"

Local S =

#do i = 1, ‘MAX’

+ ‘i’

#enddo

;

Print;

.end

S =

55;

The above two sessions were just there for explaining the simple counted do-loop. In a real FORM program,
it is of course easier to use the following code, which is also more readable.

#define MAX "10"

Local S = 1 + ... + ‘MAX’;

Print;

.end

S =

55;

Counted do-loops can be nested.

Local S =

#do i = 1, 5

#do j = 0, 1

+ 2*‘i’ - ‘j’

#enddo

#enddo

;

Print;

.end

S =

55;

In the above three do-loop programs we have used the #do to compose a local expression. This is why we
always have a semicolon after the #enddo instruction on a separate line in the above programs. Of course
the loop control structure can also be used with “complete” FORM statements.

Local S0 = 0;

#do i = 1, 10

Local S‘i’ = S{‘i’-1} + ‘i’;

#enddo

Print S10;

.end

S10 =

55;

The start, finish, and stepsize of a counted do-loop do not need to be integers: rationals will also do because
the preprocessor’s arithmetic will always give an integer result. The following rather weird example illustrates
that FORM does its best to make sense of the instructions.

AutoDeclare Symbol x;

Local S =

69

#do i = -2, 9/2, 3/2

+ x‘i’

#enddo

;

Print;

.end

S =

- 3 + 2*x + x0 + x1 + x2 + x3 + x4;

First of all the finish and stepsize of the loop are calculated via integer division as 4 and 1, respectively.
The concatenation of strings “x-1” and “x-2” for i = -1 and i = -2 lead to the summands 2*x-3 in the end
result.

• Listed Do-Loop

The second variation on the #do loop is the listed do-loop.

#do name = { sequence }

statseq

#enddo

where sequence consists of strings separated by commas or vertical bars, and statseq is an expression, state-
ment, or sequences of statements separated by semicolons. The separators of the strings can even be mixed
in one loop instruction. The vertical bar is available as separator for reason of backward compatibility; the
preferred separator in FORM is the comma. The following example shows all details to know.

Indices i,j,k;

Function T;

Local expr =

#do p = {1,i|2\,i|j,(k,k)}

+ T(‘p’)

#enddo

;

Print;

.end

expr =

T(k + T(k)) + T(i) + T(j) + T(1) + T(2,i);

We “escape” a comma in 2\,i so that it is read as one parameter with string value "2,i" and so that it gives
the last term in the above expression. The first term in the output is a bit strange: it shows that FORM

indeed picks the terms between the round brackets in one step of the loop and processes them recursively,
one by one, from left to right.

• Realistic Examples of Unconditional Do-Loops

We end this subsection about unconditional repetition with three, more realistic examples of unconditional
#do loops. In the first example we are going to take the series expansion of ln(1 + x) about x = 0 up to 50
terms and substitute in it the series expansion of ex − 1 about x = 0. The expansions we need are:

ln(1 + x) =
N

∑

i=1

(−1)i+1xi/i+ O(xN+1)

and

ex − 1 =

N
∑

i=1

1

i!
xi + O(xN+1) = x(1 +

x

2
(1 +

x

3
(1 +

x

4
(1 + · · ·)))) .

70

* check that exp(ln(1+x))-1 = x up to order 50 in series expansions

#define N "50"

On Statistics;

Symbol i, x(:‘N’), y(:‘N’);

* define ln(1+x)

Local X = - sum_(i, 1, ‘N’, sign_(i)/i*x^i);

* tag x by y

id x = x*y;

* so that we can use the telescope formula of exp(x)-1.

* in this example, the expansion will be slow.

#do i=2,’N’+1

id y = 1 + x*y/‘i’;

#enddo

* print the result

Print;

.end

Time = 1068.25 sec Generated terms = 1295970

X Terms in output = 1

Bytes used = 18

X =

x;

The program gives the expected answer x, but it uses quite some time to do so because it generates more
than a million terms, even though powers with degree higher than 50 are discarded during the computation.
The program becomes about 125 times faster when this build up is suppressed by sorting the terms after
each substitution. This is done by adding a .sort instruction inside the loop. Then, only about 15000 terms
are generated during the computation.

* check that exp(ln(1+x))-1 = x up to order 50 in series expansions

#define N "50"

On Statistics;

Symbol i, x(:‘N’), y(:‘N’);

* define series expansion of ln(1+x)

Local X = - sum_(i, 1, ‘N’, sign_(i)/i*x^i);

* tag x by y

id x = x*y;

* so that we can use the telescope formula of exp(x)-1.

* in this example, sorting takes place at each step of the expansion.

#do i=2,’N’+1

id y = 1 + x*y/‘i’;

.sort: step ‘i’;

Time = 1.12 sec Generated terms = 675

X Terms in output = 675

step 2 Bytes used = 9638

#enddo

Time = 3.79 sec Generated terms = 4247

X Terms in output = 433

step 3 Bytes used = 7182

Time = 4.97 sec Generated terms = 2206

X Terms in output = 348

71

step 4 Bytes used = 7030

.

.

.

Time = 8.42 sec Generated terms = 6

X Terms in output = 3

step 50 Bytes used = 158

Time = 8.43 sec Generated terms = 3

X Terms in output = 1

step 51 Bytes used = 18

* print the result

Print;

.end

Time = 8.43 sec Generated terms = 1

X Terms in output = 1

Bytes used = 18

X =

x;

We have added a commentary to the .sort instruction so that the statistics shows which step of the do-
loop is involved. The commentary to the module instruction is initiated by a colon, it is terminated by a
semicolon, and the characters in between form the message printed.

The second example is about simplifying an expression in a 6-dimensional Clifford algebra generated by
elements e1, e2, . . . , e6 with relations

e2i = 1, eiej + ejei = 0 for i 6= j ∈ { 1, . . .6 } .

In this case, you do not want to write down the relations one by one; it is much easier to use a #do loop for
this purpose.

#define DIM "6";

Symbols i;

Functions e;

Local expr = sum_(i, 1, ‘DIM’, e(i)) ^ 3;

repeat;

#do i = 1, ‘DIM’

#do j = ‘i’+1, ‘DIM’

id e(‘j’) * e(‘i’) = -e(‘i’) * e(‘j’);

#enddo

id e(‘i’) * e(‘i’) = 1;

#enddo

endrepeat;

Print;

.end

expr =

6*e(1) + 6*e(2) + 6*e(3) + 6*e(4) + 6*e(5) + 6*e(6);

The third example is about computing Fibonacci numbers Fn, which are recursively defined by

Fn = Fn−1 + Fn−2, F1 = 1, F2 = 1.

72

They can be efficiently generated with preprocessor instructions.

#define MAX "7"

Local F1 = 1;

Local F2 = 1;

#do n = 3, ‘MAX’

.sort

Drop F{‘n’-2};

Skip F{‘n’-1};

Local F‘n’ = F{‘n’-1} + F{‘n’-2};

Print;

#enddo

F3 =

2;

F4 =

3;

F5 =

5;

F6 =

8;

.end

F7 =

13;

There are more reasons for showing this example. It makes once more clear that curly brackets, instead of
round brackets, are used to set precedence in the preprocessor. But we also want to point out the Drop and
Skip instruction. When the Drop statement is used, the expression can be used in the current module, but
after the next .sort or .store instruction the expression does not exist anymore. The Skip instruction
inactivates the expression only for the range of the current module. The skipped expression may be used
in the right hand side of an identification, but no operation is performed on the expression in the current
module. In our example, this means that we forget about Fibonacci numbers when they are not needed
anymore in the recursive computation. Furthermore, when it comes to printing of results, we forget about the
Fibonacci number computed in the previous step; we only show the result of the newly computed number.
The printing is inside the loop; therefore the .end instruction appears in the above output much later than
in the source file, where it is just after the #enddo instruction.

Conditional Repetition

The following example, in which the Fibonacci number F19 is computed, shows how a conditional repetition
like a post-checked do-loop can be constructed. Other conditional repetitions can be treated similarly.

Symbol x;

Local F19 = x^18;

#do i = 1, 1

id x^2 = x+1;

if (count(x,1)>1) redefine i "0";

.sort

73

#enddo

id x = 1;

Print;

.end

F19 =

4181;

As long as there exist powers of x of degree higher than 1 — the count function is for power counting — we
reset the preprocessor variable to the value 0 inside the loop. In effect, the do-loop becomes a post-checked
do-loop.

A few remarks about the above FORM code are still necessary. The condition, which determines whether
the loop should be terminated or not, is checked during program execution, via a regular if statement. The
redefinition of the loop variable i is not carried out by the preprocessor instruction #redefine, but instead
by a regular command called redefine, because it is part of a choice control structure at compiler level and
not at preprocessor level. This command should be before the last .sort inside the loop, because the #do

instruction is part of the preprocessor. This implies that the value of the loop variable i is considered before
the module is executed. This means that if the redefine command would be after the last .sort inside the
loop, two things would go wrong: First, the loop would be terminated before the redefine command would
ever make a chance of being executed. Secondly, the statement would be compiled in the expectation that
there exists a variable i, but then the loop would be terminated. Afterwards, when the statement is being
executed, the redefine statement would refer to a variable that does not exist anymore.

The above construction can also be used to simulate a kind of multi-module repeat; as we shall see in
the next section, the repeat loop may only contain statements from within a single module. The code will
look as follows:

#do i = 1, 1

some statements

if (match(pattern)) redefine i "0";

.sort

#enddo

As long as there are terms with the pattern — the match function will select them — the statements
will be repeated. Note that if there are more expressions, they will all be repeated, even those expressions
that do not contain the pattern any longer. The above code emulates a do–until loop that can contain one
or more .sort instructions. In subsection 3.1.5 we shall use this kind of control structure in processing word
problems in Coxeter groups.

3.1.3 Preprocessor Variables

In order to help in the preparation of code for the compiler, the preprocessor is equipped with variables that
can be defined or redefined by the user or by other preprocessor actions. We have already seen examples
of preprocessor variables in the choice and repetition examples of the previous subsections. Preprocessor
variables have regular names that are composed of strings of alphanumeric characters of which the first must
be alphabetic. Recall that FORM is case-sensitive with respect to variables. In the table below we list all
preprocessor instructions that deal with definition and removal of preprocessor variable.

Instruction Meaning

#define var "string" initialize the preprocessor variable var with the string value
#redefine var "string" (re)set the preprocessor variable var to the string value
#undefine var remove the preprocessor variable var

The preprocessor variables can be recognized in a FORM program and be distinguished from regular vari-
ables by the quotes that are around them when they are referred to. This convention makes it possible to

74

concatenate regular strings of character and preprocessor variables to form larger strings of characters. The
following example, which involves four preprocessor variables, viz., ‘i’, ‘j’, ‘MAX’, and ‘max’, illustrates
the concatenation of strings.

#define MAX "2"

#define max "2"

AutoDeclare Symbol x;

#do i = 1, ‘MAX’

#do j = 1, ‘max’

Local F‘i’‘j’ = x^‘i’‘j’;

#enddo

#enddo

Print;

.end

F11 =

x^11;

F12 =

x^12;

F21 =

x^21;

F22 =

x^22;

The left and right quotes can be nested. Hence ‘max‘i’’ will result in the preprocessor variable i to be
substituted first. If it happens to be the string "1", the result after the first substitution is max1 and then
FORM first looks up its string value. This explains the following session.

#define max1 "2"

#define max2 "3"

AutoDeclare Symbol x;

#do i = 1, 2

#do j = 1, ‘max‘i’’

Local F‘i’‘j’ = x^‘i’‘j’;

#enddo

#enddo

Print;

.end

F11 =

x^11;

F12 =

x^12;

F21 =

x^21;

F22 =

x^22;

F23 =

x^23;

75

When the preprocessor encounters a left curly bracket it will read till the matching right curly bracket and
test whether the characters, after substitution of the preprocessor variables, can be interpreted numerically.
If so, the preprocessor calculator will compute the numeric result and the original string is replaced by a
textual representation of the number computed. If no numerical interpretation of an expression between
curly brackets is possible, the whole string, including the curly brackets, will be passed on to the later stages
of the FORM program. An example is the FORM program of the previous section, in which Fibonacci
numbers were computed: the statement

Local F‘n’ = F{‘n’-1} + F{‘n’-2};

evaluates to

Local F6 = F5 + F4;

if the preprocessor variable ‘n’ has the value 6.

A valid numerical expression can contain digits and the characters +, -, *, /, ^, %, !, &, |, (,), {, and }.
Very important is that the comma , is not a legal character for the preprocessor calculator. This explains
the difference between

if f(x?!{0}) = 1/x;

which the preprocessor changes into the syntacticly incorrect statement

if f(x?!0) = 1/x;

and the statement

if f(x?!{0,0}) = 1/x;

which the preprocessor leaves untouched, because of the presence of the comma, so that the identify statement
is carried out for nonzero x. Parentheses () and curly brackets { } are used for setting priority rules in
preprocessor calculations. The other characters listed above occur in arithmetic operators. All arithmetic is
done over integers in a finite range: from −231 to 231 − 1 on 32 bit platforms, and from −263 to 263 − 1 on
64 bit systems. The table below lists all operators that the preprocessor has at its disposal.

Operator Meaning

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% remainder after division
! factorial
& bitwise AND (as in C)
^% a postfix 2log
^/ a postfix integer square root

3.1.4 Procedure

One of the most important features of the preprocessor is the use of procedures. A FORM procedure has
the following syntax

#procedure name [(parameterseq)]

statements

#endprocedure

76

where the optional (parameterseq) is a sequence of names consisting of regular alphanumerical characters;
the parameters are separated by commas. The parameters are preprocessor variables and hence they must
be referred to between left and right quotes. The procedure is activated by the #call instruction, which has
the following syntax

#call name [(argumentseq)]

where the argumentseq is a sequence of FORM expressions separated by commas or vertical bars (as in the
listed do-loop). If the definition of a procedure has no parameters, the procedure call should not contain
arguments either.

Let us look at an example: the Fibonacci numbers again.

#procedure fibonacci(F,n)

*

* Procedure to compute Fibonacci numbers

* Input: F: the function that represents the number

* It should have one argument, viz. n, which is

* for internal use and must be declared as a symbol

* before the procedure call.

*

repeat;

id ‘F’(1) = 1;

id ‘F’(2) = 1;

id ‘F’(‘n’?) = ‘F’(‘n’-1) + ‘F’(‘n’-2);

endrepeat;

#endprocedure

Symbol n;

CFunction F;

On Statistics;

Local F19 = F(19);

#call fibonacci(F,n)

Print;

.end

Time = 6.71 sec Generated terms = 4181

F19 Terms in output = 1

Bytes used = 10

F19 =

4181;

Although the procedure looks like a subroutine, it works in fact more like a macro. When the procedure is
called, the preprocessor checks whether the procedure is defined, and if so, whether the number of arguments
matches the number of parameters in the procedure definition. When everything seems to be okay, the
preprocessor substitutes the program block. In our example, the program block consists of a repetition of
identifications that compute the requested Fibonacci number by downward recursion (as in Section 2.3.2).

The very deep recursion in the above procedure is rather costly. One way to solve this problem is to
tabulate the ten lowest Fibonacci numbers. Then the reduction stops when a table element is reached.
This brings us to the creation of tables in FORM. A table is a special function in FORM: it is a kind of
array filled with data. A table must be declared first with the Table statement and it must be filled before
any executable statement. It declares the table automatically as a commuting function. This could have
been done more explicitly via the CTable instruction. A noncommuting table is declared with the NTable

instruction. The array can be multidimensional, be of special type such as “sparse”, and have wildcards as
formal parameters. The creation of a table of Fibonacci numbers and its use goes as follows.

77

#define MAXTAB "10"

Table Ftbl(1:‘MAXTAB’);

Fill Ftbl(1) = 1;

Fill Ftbl(2) = 1;

#do i = 3, ‘MAXTAB’

Fill Ftbl(‘i’) = Ftbl({‘i’-1}) + Ftbl({‘i’-2});

#enddo

#procedure fibonacci(F,n)

*

* Procedure to compute Fibonacci numbers

* Input: F: the function that represents the number

* It should have one argument, viz. n, which is

* for internal use and must be declared as a symbol

* before the procedure call.

*

id ‘F’(?x) = Ftbl(?x); * replace F by Ftbl

repeat;

id Ftbl(‘n’?) = Ftbl(‘n’-1) + Ftbl(‘n’-2);

endrepeat;

#endprocedure

Symbol n;

CFunction F;

On Statistics;

Local F19 = F(19);

#call fibonacci(F,n)

Print;

.end

Time = 0.89 sec Generated terms = 4181

F19 Terms in output = 1

Bytes used = 10

F19 =

4181;

The curly brackets in the statement

Fill Ftbl(‘i’) = Ftbl({‘i’-1}) + Ftbl({‘i’-2});

are essential for efficient use of the table. Of course, the first part of the above program could have been
used on its own to compute the nineteenth Fibonacci number.

#define MAXTAB "19"

Table Ftbl(1:‘MAXTAB’);

Fill Ftbl(1) = 1;

Fill Ftbl(2) = 1;

#do i = 3, ‘MAXTAB’

Fill Ftbl(‘i’) = Ftbl({‘i’-1}) + Ftbl({‘i’-2});

#enddo

On Statistics;

Local F19 = Ftbl(19);

Print;

.end

78

Time = 0.61 sec Generated terms = 4181

F19 Terms in output = 1

Bytes used = 10

F19 =

4181;

However, this is still not the most efficient FORM program to compute the Fibonacci number. Nevertheless,
it is a clear and easy implementation. The version below, which we have explained before, is the fastest
(CPU-time 6 times faster) and the least memory consuming, but it is a little bit more complicated.

#define MAX "19"

On Statistics;

Local F1 = 1;

Local F2 = 1;

#do n = 3, ‘MAX’

.sort

Drop F{‘n’-2};

Skip F{‘n’-1};

Local F‘n’ = F{‘n’-1} + F{‘n’-2};

#enddo

Print;

.end

The .sort, Drop, and Skip are essential for the efficiency. They make that not 4181 terms are generated
but only 2 × 18 = 36 terms, or better to say, that an algorithm of running time O(2n) is replaced by an
algorithm of running time O(2n).

As a second example of the use of procedures in FORM, we rewrite our example of differentiation of
trigonometric functions from Section 2.5.3.

#procedure diff(x,dx)

id g?commuting?noncommuting(‘x’) = g(‘x’);

Multiply left ‘dx’;

repeat;

id ‘dx’*g?noncommuting[n](‘x’) = derivative[n](‘x’) + g(‘x’)*‘dx’;

id [-sin](‘x’) = - [sin](‘x’);

id [1/cos^2](‘x’) = 1/[cos](‘x’) * 1/[cos](‘x’);

endrepeat;

id ‘dx’ = 0;

id f?noncommuting?commuting(‘x’) = f(‘x’);

id 1/f?noncommuting?commuting(‘x’) = 1/f(‘x’);

#endprocedure

*

* The following statements could be put in a standard include file

*

Symbols x,n;

CFunctions sin,cos,tan,g;

Functions [sin], [cos], [tan], [-sin], [1/cos^2], f, dx;

Set commuting: sin, cos, tan;

Set noncommuting: [sin], [cos], [tan];

Set derivative: [cos], [-sin], [1/cos^2];

FunPowers allfunpowers;

*

* And the rest of the program is as follows

*

79

Local expr = sin(x)*tan(x) + cos(x);

#call diff(x,dx)

Print;

.end

expr =

- sin(x) + cos(x)*tan(x) + 1/(cos(x))^2*sin(x);

The comments are even more important here as they give a clue to how to work more easily with FORM.
In our example, we can put the differentiation procedure in a file called diff.prc, without the left and right
quotes around the parameters. The accompanying declarations can be stored in a file called diff.h (the
declarations of x, and dx are kept outside). The two files look as follows.

80

diff.prc

#procedure diff(x,dx)

id g?commuting?noncommuting(x) = g(x);

Multiply left dx;

repeat;

id dx*g?noncommuting[n](x) = derivative[n](x) + g(x)*dx;

id [-sin](x) = - [sin](x);

id [1/cos^2](x) = 1/[cos](x) * 1/[cos](x);

endrepeat;

id dx = 0;

id f?noncommuting?commuting(x) = f(x);

id 1/f?noncommuting?commuting(x) = 1/f(x);

#endprocedure

diff.h

#-

Symbols n;

CFunctions sin,cos,tan,g;

Functions [sin], [cos], [tan], [-sin], [1/cos^2], f, dx;

Set commuting: sin, cos, tan;

Set noncommuting: [sin], [cos], [tan];

Set derivative: [cos], [-sin], [1/cos^2];

FunPowers allfunpowers;

#+

Now, the program can just look like

#include diff.h

Symbol x;

Function dx;

Local expr = sin(x)*tan(x) + cos(x);

#call diff(x,dx)

Print;

.end

How does it run under FORM? When the preprocessor encounters the #include diff.h, it inserts the
contents of the file into the input. The #- instruction means that the listing of the input, when running the
program, will be turned off until further notice. With the #+ instruction, logging of input is resumed again.
We added these instructions in the file diff.h because normally it is unnecessary to see the declarations
needed for the procedure definition. When the preprocessor encounters the procedure call, it will first look
whether there is a definition in the program given. If not, it will look for the definition in a file whose name
is the name of the procedure extended with .prc. This file is searched for in the current directory or in the
directories listed in the environment variable FORMPATH or indicated by the -p option in the command
that starts the system. The proof of the pudding is in the eating: let us run the FORM program.

#include diff.h

#-

Symbol x;

Function dx;

Local expr = sin(x)*tan(x) + cos(x);

#call diff(x,dx)

Print;

.end

expr =

- sin(x) + cos(x)*tan(x) + 1/(cos(x))^2*sin(x);

81

We end with a few remarks about procedures in FORM.

• When a procedure is called, the system checks whether the number of arguments matches the number
of parameters in the procedure call.

• The number of arguments is available by the nargs_ function.

• The parameters inside the procedures are local preprocessor variables; in this way, name conflicts are
avoided.

• Recursive procedure definitions are not allowed.

3.1.5 Processing Word Problems in Coxeter Groups

What we have learned so far in this chapter can be applied in a realistic FORM application: processing
word problems in Coxeter groups.

Following [du Cloux 99], let us first give a brief introduction to the topic. A Coxeter system is a pair
(W,S) consisting of a group W and a set of generators S ⊂W , subject only to relations of the form

(st)ms,t = 1 , for s, t ∈ S ,

where 1 denotes the identity element in the group W and the ms,t are natural numbers or ∞ satisfying the
following conditions:

ms,s = 1, ms,t ≥ 2 for s 6= t ,

and ms,t = ∞ means that no relation occurs for the pair s, t. Formally, W is the quotient F/N , where F is
the free group on the set S and N is the smallest normal subgroup of F that contains all elements (st)ms,t .
We allow ourselves to write s ∈W for the image of s ∈ S and we refer to W as the Coxeter group generated
by S. The information contained in the numbers ms,t can be given in the form of the so-called Coxeter

graph for the group, with vertex set S, and an edge between s and t if and only if ms,t > 2, labeled by ms,t

if ms,t > 3. In most cases, the generators are numbered s1, s2, etc., and the vertices of the Coxeter graph
are numbered accordingly.

For example, the symmetric group Sn+1 of all permutations of a sequence of n + 1 objects, with the
following n adjacent transpositions as generators s1 = (1 2), s2 = (2 3), . . . sn = (nn + 1) forms a Coxeter
group with Coxeter graph

1◦ 2◦ · · · · · · n◦
where we have labeled the vertices by the corresponding indices of the generators. The Coxeter group is
said to be of type An. The finite Coxeter groups, also referred to as the finite reflection groups, have been
classified. For details see [Humprheys 90].

For a Coxeter system (W,S), the generators s ∈ S have order 2 in W . Hence, each element w 6= 1 in
W can be written in the form w = s1s2 · · · sr for some si (not necessarily distinct) in S. If r is as small as
possible, we call it the length of w, written l(w), and call any expression of w as a product of r elements of
S a reduced expression. The Poincaré series of W is the formal power series W (t) in indeterminate t defined

by W (t) =
∑

w∈W

tl(w).

Let J be an arbitrary subset of S and denote by WJ the subgroup generated by J . Furthermore, de-
fine the set W J = {w ∈ W | l(sw) > l(w) for s ∈ J }. Then, each left coset WJw contains a unique
element wJ of minimal length, l(wJw

J) = l(wJ) + l(wJ) for all wJ ∈ WJ , and W J = {w ∈ W |
w is unique element wJ in coset WJw }. It follows that each w ∈ W can be uniquely written as product
wJw

J with wJ ∈W J and wJ ∈ WJ such that l(w) = l(wJ) + l(wJ).

We choose once and for all an increasing sequence of subsets J0 = ∅ ⊂ J1 ⊂ · · · ⊂ Jn = S, with #Jj = j

for j = 0, 1, . . . , n and define Wj as the subgroup of W generated by Jj . We also set Xj = Wj
Jj−1 , for

j = 1, . . . , n. Then, the canonical multiplication map (x1, . . . , xn) → x1 · · ·xn from X1 × · · · ×Xn to W is
bijective. The decomposition w = x1 · · ·xn of a group element w given by the previous bijection is called the

82

special decomposition of w. We also have chosen now a linear ordering on S: the first element is the unique
element of J1, the second one is the unique element of J2 not in J1, and so on. This allows us to define a
well-ordering on the free monoid S∗ on the set S by ordering words first by length, then lexicographically
from the left in each given length. We call this the ShortLex ordering.

For each w ∈ W we denote by NF(w) the unique smallest reduced expression for w in the ShortLex
ordering. NF(w) is called the normal form of w with respect to the ShortLex ordering. In principal, the
normal form of w can be recursively found as follows: The normal form of the identity element is the
empty string. Let w 6= 1, then NF(w) = s1 NF(s1w), where s1 is the smallest generator s ∈ S such that
l(sw) < l(w). We say here “in principle” because we have no effective way described yet to determine which
s ∈ S satisfy the length condition l(sw) < l(w).

From NF(w) = s1 · · · sp one can recursively read off the special decomposition w = x1 · · ·xn in the
following way. Define q to be the smallest integer ≥ 0 such that sq+1 = sn, q = p if there is no such integer.
Then xn = sq+1 · · · sp, xn = 1 if q = p, and s1 · · · sq ∈ Wn−1. Roughly stated, the term xn can be read off
from NF(w) as the last “slice” taken from the first appearance of the generator sn (empty if there is no such
appearance). Continue with s1 · · · sq ∈ Wn−1 in a similar way to compute xn−1, and so on.

A rewrite system in the free monoid S∗ on the set of generators S is a set of ordered pairs R = { (x, y) |
x, y ∈ S∗ }, with x > y in the ShortLex ordering for each (x, y) ∈ R; we shall write x→ y instead of (x, y).
If a word z ∈ S∗ contains the left-hand side of a rule x→ y as an interval, i.e., if z = uxv for some u, v ∈ S∗,
we say that the rule x→ y applies to z and that uyv is the reduction of z corresponding to x→ y. If none
of the rules in R applies to z, we say that z is R-reduced . Because reductions are strictly decreasing in the
ShortLex ordering, one can obtain from a given word an R-reduced word in a finite number of steps, i.e., all
sequences of rewrites terminate. However, several distinct R-reduced words might be obtained from a given
word. A rewrite system is said to be confluent or complete if each word possesses a unique R-reduction,
which is also referred to as the R-normal form of the word. The rewrite system is reduced if the following
conditions hold:

• for each x→ y in R, y is R-reduced.

• for each x→ y in R, x is reduced with respect to all “lower” rules.

With a complete rewrite system, the word problem is easily solved: two words are equivalent if and only
they have the same normal form. The so-called Knuth-Bendix completion procedure constructs from any
finite set R of rewrite rules a (possibly infinite) complete and reduced set R′ of rules. For finite Coxeter
groups, the starting rewrite system R could be the following set of rules:

s2 → 1 for s ∈ S and αs,tus,t → tαs,t for s > t in the ShortLex ordering.

Here, αs,t denotes the element stst . . . obtained by multiplying ms,t − 1 generators alternatingly equal to s
and t, for ms,t <∞, and us,t = t if ms,t is even, us,t = s otherwise. A result of le Chenadec [le Chenadec 86]
states that when no two generators in S commute, i.e., if ms,t ≥ 3 for all s 6= t, then the completion procedure
creates the following rewrite rules other than the rules s2 → 1 for s in S:

αsi1
,sj1

. . . αsip ,sjp
usip ,sjp

→ sj1αsi1
,sj1

. . . αsip ,sjp
,

(a “concatenation” of the defining relations) where i1, . . . , ip and j1, . . . , jp satisfy

i1 > j1

ik < jk for 1 < k ≤ p

uik,jk
= sjk+1

for 1 ≤ k < p

In [le Chenadec 86, du Cloux 98] complete rewrite systems are given for many types of Coxeter groups.
Below we list complete rewrite systems for the Coxeter groups of type An and Bn.

Type An, n ≥ 1
1◦ 2◦ · · · · · · n◦

83

Completion gives the following n2 − n+ 1 rules:

s2i → 1 1 ≤ i ≤ n
sisj → sjsi 1 ≤ j ≤ i− 2, 3 ≤ i ≤ n

sisi−1 . . . si−jsi → si−1sisi−1 . . . si−j 1 ≤ j < i ≤ n

In case n = 3 we get the following complete rewrite system.

s21 → 1
s22 → 1
s23 → 1

s3s1 → s1s3
s2s1s2 → s1s2s1
s3s2s3 → s2s3s2

s3s2s1s3 → s2s3s2s1

Note that the last rewrite rule is clear from the relations between s1, s2, and s3, but it cannot be derived
from earlier rules; you need the relation s3s1 = s1s3 in the right-to-left direction. This rule is obtained by
the Knuth-Bendix completion procedure.

Type Bn, n ≥ 2
1◦ 2◦ · · · · · · n−1◦

4

n◦
Completion gives the following n2 − n+ 1 rules:

s2i → 1 1 ≤ i ≤ n
sisj → sjsi 1 ≤ j ≤ i− 2, 3 ≤ i ≤ n

sisi−1 . . . si−jsi → si−1sisi−1 . . . si−j 1 ≤ j < i < n
(snsn−1 . . . sn−j)

2 → sn−1snsn−1 . . . sn−jsnsn−1 . . . sn−j+1 1 ≤ j < n

The FORM session below shows the result of computing all elements of the group S4 via the above
rewrite system for the Coxeter group of type A3 and the result of computing the Poincaré polynomial. The
calculation is set up in such a way that it works for any Coxeter group of type An. Further explanation
follows immediately after the sample session.

#define n "3"

* define a procedure to generate reduction rules

#procedure reduce()

id s?^2 = 1;

#do i = 3,‘n’

#do j = 1,{‘i’-2}

id s‘i’ * s‘j’ = s‘j’ * s‘i’;

#enddo

#enddo

#do i = 2,‘n’

#do j = 1,{‘i’-1}

id s‘i’ * ... * s‘j’ * s‘i’ =

s{‘i’-1} * s‘i’ * ... * s‘j’;

#enddo

#enddo

#endprocedure

*

AutoDeclare Functions s;

CFunctions dummy;

Symbol x, t;

* initialize: start with trivial element

Local expr = 1;

Local lastElements = 1;

84

* create recursively new elements of the group

#do dummyindex = 1,1

.sort

* generate new words with word length raised by one

Drop lastElements;

Skip expr;

Local elements = lastElements * t * (s1+...+s‘n’);

* generate reduction rules and apply them on the newly created elements

repeat;

#call reduce

endrepeat;

* remove newly created elements that have too small word length

if (count(<s1,1>,...,<s‘n’,1>) < count(t,1)) discard;

.sort (polyfun=dummy);

* make coefficients equal to 1

Skip expr;

id dummy(x?) = 1;

.sort

* terminate loop if no new elements are added anymore

#if (termsin(elements)!=0)

Local lastElements = elements;

Local expr = expr + elements;

#redefine dummyindex "0"

#endif

.sort

#enddo

* list all group elements; words of length l are tagged by the power t^l

On statistics;

Drop elements;

Bracket t;

Print +s;

.sort

Time = 0.05 sec Generated terms = 24

expr Terms in output = 24

Bytes used = 658

expr =

+ t * (

+ s1

+ s2

+ s3

)

+ t^2 * (

+ s1*s2

+ s1*s3

+ s2*s1

+ s2*s3

+ s3*s2

)

+ t^3 * (

85

+ s1*s2*s1

+ s1*s2*s3

+ s1*s3*s2

+ s2*s1*s3

+ s2*s3*s2

+ s3*s2*s1

)

+ t^4 * (

+ s1*s2*s1*s3

+ s1*s2*s3*s2

+ s1*s3*s2*s1

+ s2*s1*s3*s2

+ s2*s3*s2*s1

)

+ t^5 * (

+ s1*s2*s1*s3*s2

+ s1*s2*s3*s2*s1

+ s2*s1*s3*s2*s1

)

+ t^6 * (

+ s1*s2*s1*s3*s2*s1

)

+ 1

;

* compute the Poincare polynomial

Off statistics;

id s? = 1;

Print;

expr =

1 + 3*t + 5*t^2 + 6*t^3 + 5*t^4 + 3*t^5 + t^6;

The first part of the FORM program is a procedure, called reduce, that generates the complete and reduced
rewrite system for the Coxeter group of type An. In the next part of the FORM program, all elements of
the group are computed recursively. In fact, we compute the element

∑

w∈W tl(w)w in the group algebra
Q[t]W over the ring of polynomials in the indeterminate t. We start with the identity element and multiply
it with t (s1 + s2 + . . . + sn). At this point, no reduction takes place. Hereafter, we multiply each term
that was newly created with t (s1 + s2 + . . .+ sn) and use the rewrite rules to verify if a new group element
has been found or not. If the reduction process leads to an element of shorter length the term is discarded
(via the discard command). The verification is most easily done by comparing the sum of exponents of
the generators in the word under investigation with the exponent of the power of t. The count procedure
is used for power counting in the statement if (count(<s1,1>,...,<s‘n’,1>) < count(t,1)); . This
process of multiplying newly created elements with t (s1 + s2 + . . .+ sn) and verifying whether new elements
are created or not is repeated. At each step in the repetition we set the coefficient of a newly found element
w equal to tl(w), i.e., we replace any numerical coefficient with 1. The algorithm terminates when no new
elements are found anymore. This is most easily checked with the termsin procedure, which counts the
number of terms in a given FORM expression.. The last step of computing the Poincaré polynomial is easy
to do: just replace all generators with 1. Our result for n = 3 is in perfect agreement with the following

86

general formula for the Poincaré polynomial W (t) of the Coxeter group of type An.

W (t) =

n
∏

i=1

(ti + ti−1 + . . .+ t+ 1) =

n
∏

i=1

ti+1 − 1

t− 1

To get an idea of the performance of FORM, we list the timings for n = 3, . . . , 8 and relate the CPU-time
with the maximum word length, denoted lmax.

n CPU-time (sec) #W lmax

3 0.05 24 6
4 0.28 120 10
5 3.04 720 15
6 40.58 5040 21
7 633.32 40320 28
8 11069.00 362880 36

The data suggest the following recursive formula for the CPU-time (or at least for the upper bound of the
CPU-time):

CPU-time(n) = CPU-time(n− 1) × lmax(n− 1).

3.1.6 Exercises

1. Let the Fibonacci polynomial Fn(x) be given by F1(x) = 1, F2(x) = x, and Fn(x) = xFn−1(x) +
Fn−2(x), for n > 2. Write a program that computes the Fibonacci polynomial. Can your program
compute F50(x)?

2. How would you generate in FORM the expression

25
∑

i=0

(−1)iai and change it with identifications into

25
∑

i=0

(−1)ibi?

3. Write a FORM procedure that allows you to work out contracted expressions like dot products of
vectors and FORM expressions of type a(p, q), where a is a matrix, and p, q are vectors.

4. Write a FORM procedure that given an integer n and a list of three variables returns the sum of
all monomials that have n as total degree. E.g., #call(monomialsum(2,x,y,z) should return x2 +
xy + y2 + xz + yz + z2. Generalize your program to any number of variables in the sense that
#call(monomialsum(n,m,x) creates the sum of all monomials in m unknowns x1, x2, . . . , xm of total
degree n

5. Write a FORM procedure that can integrate multivariate polynomials.

6. Write a FORM procedure that can integrate integrals of types
∫

xn cosxdx and
∫

xn cosxdx.

7. The Coxeter group of type H3 has Coxeter graph

1◦
5

2◦ 3◦

and the following complete rewrite system

s2i → 1 for i = 1, 2, 3
s3s1 → s1s3

s2s1s2s1s2 → s1s2s1s2s1
s3s2s3 → s2s3s2

s3s2s1s2s3s2 → s2s3s2s1s2s3
(s3s2s1s2s1)

2 → s2s3s2s1s2s1s3s2s1s2

Write a FORM program to compute all elements of the Coxeter group and the Poincaré polynomial.

87

8. Look up the complete rewrite system for the Coxeter group of type Bn.

(i) Write a FORM program that can be used to compute all elements of the Coxeter group of type
Bn and the Poincaré polynomial for n = 2, . . . , 5. By the way, the Poincaré polynomial W (t) is
for a Coxeter group of type Bn given by

W (t) =
n

∏

i=1

(ti + ti−1 + . . .+ t+ 1) =
n

∏

i=1

t2i − 1

t− 1

Make sure that your result is in agreement with this formula.

(ii) Conjecture a general formula for the maximum word length in the Coxeter group of type Bn and
try to find a reduced expression for the longest element.

(iii) Determine the order of the Coxeter element s1s2 . . . sn for n = 2, . . . , 5. Can you guess a general
formula for the order of the Coxeter element?

3.2 Control Structures at Compiler Level

In this section we shall discuss three control structures, known at the compiler level: choice, repetition, and
“go to”.

3.2.1 Choice

The preprocessor conditional statement only selects statements for execution; it does not restrict the set
of expressions to be manipulated. For this purpose, FORM has a “real” if statement with the following
syntax.

if (condition);

statseq

[elseif (condition);

statseq]*

[else;

statseq]

endif;

where condition is a conditional statement, statseq is a sequence of statements separated by semi-colons,
[] denotes an optional part, and * denotes a part which can be repeated zero or more times. Omitting an
optional part is equivalent to saying “continue”. If all optional parts are omitted and only one statement is
executed when the condition is met, then

if (condition);

statement;

endif;

can be further abbreviated to

if (condition) statement;

An example:

Symbols a,b,c;

Local F = a*c + b*c;

if (match(a)) id c=a;

endif;

Print;

88

.end

F =

a^2 + b*c;

In the above example, the match function selects only those terms that have an a inside. Only for these
terms, the substitution rule is applied.

One more example:

Symbols a,b,c;

Local F = a*c + b*c;

if (match(a)=0) id c=a;

Print;

.end

F =

a*b + a*c;

Now, only those expressions are selected that do not contain an a. The way it works is that match(expression)
returns the number of times the pattern matches the term. The pattern is given in the same format as the
left-hand side of a substitution. So it may contain keywords like once, many, select, etc., and it may contain
wildcards.

Three other “questions about terms” can be made in FORM:

• count(object, weight, . . .) counts the number of times the object occurs with given weight in the current
term.

• coefficient return the numerical coefficient of the current term.

• findLoop returns the value 1 if a certain loop exists in the current term, and 0 otherwise. A loop is a
cyclic contraction of summable indices in (anti)symmetric functions or tensors. Examples of loops of
size 3 are
f(i1,i2)*f(i2,i3)*f(i3,i1) and f(i4,i1,i2)*f(i5,i2,i3)*f(i6,i3,i1)*f(i4,i7,i8).

Let us go into details.

The count function is for power counting. In the example below, we use it to get rid of all terms of a
polynomial of too high degree.

Symbols x;

Local F = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6;

if (count(x,1)>3) discard;

endif;

Print;

.end

F =

1 + x + x^2 + x^3;

The second argument of count is the weight of the first object. You can have weights different from the
usual number 1. The next example illustrates that when x has weight 2, the term x^2 has a power counted
as 4 and therefore can be discarded.

Symbols x;

Local F = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6;

if (count(x,2)>3) discard;

Print;

.end

89

F =

1 + x;

One can also test whether the exponent of a monomial is a multiple of a given number. For example, the
statement

if (count(x,1) = multipleof(3))

tests whether the exponent of a monomial in x is a multiple of 3.

Symbols x;

Local F = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6;

if (count(x,1)=multipleof(3)) discard;

Print;

.end

F =

x + x^2 + x^4 + x^5;

coefficient, which is also abbreviated as coeff, returns the numeric coefficient of the current term. It
can for instance be used to discard terms with too small coefficients.

Symbols a,b,i,j;

Local F = sum_(i,0,4,a^i/fac_(i)) * sum_(j,0,4,b^j/fac_(j));

if (coefficient < 1/10) discard;

Bracket b;

Print;

.end

F =

+ b * (1 + a + 1/2*a^2 + 1/6*a^3)

+ b^2 * (1/2 + 1/2*a + 1/4*a^2)

+ b^3 * (1/6 + 1/6*a)

+ 1 + a + 1/2*a^2 + 1/6*a^3;

In the first chapter, in subsection 1.4.6, we have used the symmetric dd_ function to find graphs with
prescribed degrees. For FORM to be more useful in graph theory, it must provide ways to detect and
manipulate cycles or loops in graphs, i.e., paths in graphs with common begin- and endpoint. The FORM

functions replaceLoop and findLoop serve this purpose in the context of (anti)symmetric functions or
tensors with summable indices. We give a simple example to illustrate the syntax and use of findLoop:
we determine all connected, loop-free graphs with degree sequence 1,1,2,2,3,3 and without multiple edges or
loops of size 3.

AutoDeclare Vector v;

AutoDeclare Index i;

CTensor f(symmetric);

Local G = dd_(v1,v2,v3,v3,v4,v4,v5,v5,v5,v6,v6,v6);

id v?.v?=0; * loop-free

id v1?.v2?^2=0; * no multiple edges

id v1.v2=0; * connected

Format 65;

Print;

.sort

90

G =

144*v1.v3*v2.v5*v3.v6*v4.v5*v4.v6*v5.v6 + 144*v1.v3*v2.v6*

v3.v5*v4.v5*v4.v6*v5.v6 + 144*v1.v4*v2.v5*v3.v5*v3.v6*

v4.v6*v5.v6 + 144*v1.v4*v2.v6*v3.v5*v3.v6*v4.v5*v5.v6 +

144*v1.v5*v2.v3*v3.v6*v4.v5*v4.v6*v5.v6 + 144*v1.v5*v2.v4*

v3.v5*v3.v6*v4.v6*v5.v6 + 144*v1.v5*v2.v5*v3.v4*v3.v6*

v4.v6*v5.v6 + 144*v1.v5*v2.v6*v3.v4*v3.v5*v4.v6*v5.v6 +

144*v1.v5*v2.v6*v3.v4*v3.v6*v4.v5*v5.v6 + 144*v1.v5*v2.v6*

v3.v5*v3.v6*v4.v5*v4.v6 + 144*v1.v6*v2.v3*v3.v5*v4.v5*

v4.v6*v5.v6 + 144*v1.v6*v2.v4*v3.v5*v3.v6*v4.v5*v5.v6 +

144*v1.v6*v2.v5*v3.v4*v3.v5*v4.v6*v5.v6 + 144*v1.v6*v2.v5*

v3.v4*v3.v6*v4.v5*v5.v6 + 144*v1.v6*v2.v5*v3.v5*v3.v6*

v4.v5*v4.v6 + 144*v1.v6*v2.v6*v3.v4*v3.v5*v4.v5*v5.v6;

repeat;

#do l=1,6

#do k=1,‘l’

id v‘k’.v‘l’ = f(i‘k’,i‘l’);

#enddo

#enddo

endrepeat;

if (findLoop(f,arguments=2,loopsize=3)) discard;

repeat;

#do l=1,6

#do k=1,‘l’

id f(i‘k’,i‘l’) = v‘k’.v‘l’;

#enddo

#enddo

endrepeat;

Print;

.end

G =

144*v1.v5*v2.v6*v3.v4*v3.v5*v4.v6*v5.v6 + 144*v1.v5*v2.v6*

v3.v4*v3.v6*v4.v5*v5.v6 + 144*v1.v5*v2.v6*v3.v5*v3.v6*

v4.v5*v4.v6 + 144*v1.v6*v2.v5*v3.v4*v3.v5*v4.v6*v5.v6 +

144*v1.v6*v2.v5*v3.v4*v3.v6*v4.v5*v5.v6 + 144*v1.v6*v2.v5*

v3.v5*v3.v6*v4.v5*v4.v6;

From the expression G in the two stages of the computation it is clear that graphs of type

91

have been removed and that we are left with graphs of type

In the second stage of the above computation, we first rewrite the dot products of vectors in terms of function
calls of the symmetric functions f with the indices corresponding with the vectors. In the conditional
statement, if a term is encountered that is a loop of size 3 in the function calls of f with 2 arguments, then
this term is discarded. Hereafter we rewrite the product of function calls as dot products of vectors. These
terms represent the graphs that are left.

We have used one of the allowed formats of the findLoop statement:

findLoop function, arguments=number, loopsize=number

where function is a symmetric or antisymmetric function or tensor. The arguments part says that only
occurrences of the function with the specified number of arguments are considered. The loopsize part
says that only loops of certain size are considered; in our example, only loops of size 3. Other options
are loopsize<number, in which case all loops of size less than the specified number are considered, and
loopsize=all, in which case all loops are considered. So, we could have left out the id v1?.v2?^2=0; and
instead we could have used the condition loopsize<4 to obtain the same result. You can also specify via
the option include=index which summable index must be included in the loop. The order of the option is
irrelevant. The replaceLoop statement has one more mandatory argument, viz., outfun=name, in which
the name of the (cyclesymmetric) function is given that is used to collect the remaining indices. For example,

replaceLoop f,arguments=3,loopsize=3,outfun=ff;

replaces

f(i4,i1,i2)*f(i5,i2,i3)*f(i6,i3,i1)*f(i4,i7,i8)

by

f(i4,i5,i6)*f(i4,i7,i8),

but the statement

replaceLoop f,arguments=3,loopsize=3,outfun=ff,include=i9;

leaves the term as it is.

92

Let us continue with the discussion about the conditional statement at compiler level. As we have seen in
the previous section, relational operators are in FORM mostly the same as in the C programming language.
The same holds for logical operators with the exception that the negation (! in C) does not exist in FORM.

Operator Meaning

= or == equal to
!= not equal to
> greater than
< less than
>= greater than or equal to
<= less than or equal to
&& and
| | or

Furthermore, the conditional statement must be completely within a single module; one cannot have a
.sort statement inside an if-statement. The same holds for other control sturctures at compiler level such
as the repetition constructs repeat and while, which will be discussed in the next subsection.

3.2.2 Repetition

Repetitions can be constructed in several ways. You have already seen the repeat statement in several
examples. Its syntax is

repeat;

statseq

endrepeat;

where statseq is a statement or a sequence of statements separated by semicolons. These statements will
be executed until they no longer have any effect. FORM also provides a pre-checked repetition, commonly
called a while-loop, which has the following syntax.

while (condition);

statseq

endwhile;

where condition is a conditional statement, and statseq is a statement or a sequence of statements separated
by semicolons. As long as the condition is satisfied, these statements will be executed. An example:

Symbols x,y,z;

Local F = x^3 * y^5;

while (match(x*y^2));

id x*y^2 = z;

endwhile;

print;

.end

F =

x*y*z^2;

So, the replacement rule xy2 −→ z is applied as long as there is a subexpression xy2 present.

93

3.2.3 GO TO

Another way to construct loops is by labels and goto-statements. Below is an example of a post-checked
repetition.

Symbols x;

Local F = 1;

Label 1;

Multiply x;

if (count(x,1)<10);

goto 1;

endif;

print;

.end;

F =

x^10;

The prototype of this post-checked repetition is as follows:

label 1;

statseq

if (condition);

goto 1;

endif;

The prototype of a pre-checked repetition is the following.

label 1;

if (condition);

statseq

goto 1;

endif;

Labels are restricted to integers from 0 to 20, but they may be reused in other modules.

3.2.4 Exercises

1. Explain the result of the following program

Symbols x,y;

Local F = 1 + y^2*x^4 + y^3*x^5 + y^4*x^6 + y^5*x^7;

if (count(y,-1,x,2)>7);

discard;

endif;

Print;

.end

2. Compute the sum
5

∑

i=−5

1

i2
xi and then throw away all terms with positive exponent and those with

coefficient smaller than 1
10 .

94

3. Picard’s method for generating an approximate solution of the initial value problem

y′ = f(x, y), y(x0) = y0

is to iterate the formula

yn+1(x) = y0 +

∫ x

x0

f(ξ, yn(ξ)) dξ

starting from y0(x) = y0.

(i) Write a FORM program that for a given polynomial f in x and y and a given number N computes
the approximate solution p(x) that agrees with the exact solution y(x) up to and including degree
N , i.e.,
y(x)−p(x) = O(xN+1). Avoid expression swell by performing computations only up to and includ-
ing
degree N and let the iteration only stop when two successive approximations are equal.

(ii) Compute y5(x) for the initial-value problem

y′ = xy2, y(0) = 1.

(iii) Check if your program can also compute y20.

(iv) Compare the result in part (iii) with the series expansion of the exact solution y(x) =
1

1 − x2
.

95

Chapter 4

Answers to Problems of Chapter 1

4.1 Getting Started

1. Does anything happen when you change the Local [(a+b)^2] = (a+b)^2 statement in the first ex-
ample by Local [(a+b)^2] = (a+b)*(a+b) ?

The proof is in eating the pudding.

FORM version 3.-(Nov 29 1997). Run at: Tue Jan 6 19:32:18 1998

Symbols a,b;

Local [(a+b)^2] = (a+b)^2;

Print;

.end

Time = 0.10 sec Generated terms = 3

F Terms in output = 3

Bytes used = 52

[(a+b)^2] =

2*a*b + a^2 + b^2;

FORM recognizes the equal terms in the product and treats them as powers so that the binomial
formula of Newton can be applied instead of working out the brackets one by one. This is one of the
rare cases in which FORM touches the input. In general, FORM never tries to interpret the right
hand side of a statement until it needs it and even then it is inserted in its proper place before any
interpretation takes place.

2. Does anything happen when you change the Symbols a,b declaration in the first example by
Functions a,b ?

The FORM session:

FORM version 3.-(Nov 29 1997). Run at: Tue Jan 6 19:42:14 1998

Functions a,b;

Local F = (a+b)^2;

Print;

.end

Time = 0.10 sec Generated terms = 4

F Terms in output = 4

Bytes used = 74

F =

a*a + a*b + b*a + b*b;

96

Here, a and b are used as functions (without arguments). A general property of functions in FORM is
that they do not commute. Hence, the binomial formula of Newton cannot be applied. The brackets
must be worked out by brute force into a sum of 4 terms.

3. Consider the following FORM program.

Symbol a;

Functions b, c;

Local F1 = (a+b+c)^2;

Local F2 = (a+(b+c))^2;

Print;

.end;

What is the difference in working out expression F1 and expression F2?

The FORM session:

FORM version 3.-(Nov 29 1997). Run at: Wed Jan 7 13:04:18 1998

Symbol a;

Functions B, C;

Local F1 = (a+B+C)^3;

Local F2 = (a+(B+C))^3;

Print;

.end;

Time = 0.16 sec Generated terms = 27

F1 Terms in output = 15

Bytes used = 286

Time = 0.27 sec Generated terms = 15

F2 Terms in output = 15

Bytes used = 286

F1 =

a^3 + 3*B*a^2 + 3*B*B*a + B*B*B + B*B*C + 3*B*C*a + B*C*B + B*C*C + 3*C*

a^2 + 3*C*B*a + C*B*B + C*B*C + 3*C*C*a + C*C*B + C*C*C;

F2 =

a^3 + 3*B*a^2 + 3*B*B*a + B*B*B + B*B*C + 3*B*C*a + B*C*B + B*C*C + 3*C*

a^2 + 3*C*B*a + C*B*B + C*B*C + 3*C*C*a + C*C*B + C*C*C;

Note that the expansion of expression F1 needs more intermediate terms. The reason is the following:
both expressions contain one symbol and two functions, in other words one commuting and two non-
commuting objects. The rule that is used by FORM is that binomial expansion is applicable when
at most one noncommuting object is involved. Therefore, expression F1 must be expanded by brute
force, which generates some extra intermediate terms. In expression F2, the noncommuting functions
are grouped into a single noncommuting object. Hence, the third power can be expanded first by the
binomial formula of Newton into a sum of four terms. Hereafter the powers of B+C are worked out. You
may wonder why FORM does not automatically place brackets, but this would violate the principle
of not touching the input if not necessary.

4. Check whether the following is a valid FORM program.

s,t,u; * these are the symbols to be used.

L,F =

(t+u)

^2; * this is the local expression to be manipulated.

Print; .end

97

The following FORM session shows that there are no difficulties.

FORM version 3.-(Nov 29 1997). Run at: Wed Jan 7 13:00:59 1998

s,t,u; * these are the symbols to be used.

L,F =

(t+u)

^2; * this is the local expression to be manipulated.

Print; .end

Time = 0.01 sec Generated terms = 3

F Terms in output = 3

Bytes used = 52

F =

2*t*u + t^2 + u^2;

4.2 Types of Variables

1. Check how FORM handles the summation convention for the following expressions.

[i] aijxj

[ii] aiixj

[iii] aijxiyj

[iv] δijxixj

In the FORM session below you see examples of the Einstein summation convention and of the
SCHOONSCHIP notation.

Vectors x,y;

Tensor a;

Indices i,j;

Local F1 = a(i,j)*x(j);

Local F2 = a(i,i)*x(j);

Local F3 = a(i,j)*x(i)*y(j);

Local F4 = d_(i,j)*x(i)*x(j);

Print;

.end

F1 =

a(i,x);

F2 =

a(i,i)*x(j);

F3 =

a(x,y);

F4 =

x.x;

2. Demonstrate with FORM the following equalities.

[i] aijxiyj = ajixjyi

[ii] (aij + aji)xixj = 2aijxixj

98

We show that the difference of left- and right-hand side of the equations are equal to zero. Automatic
contraction will do the work.

Vectors x,y;

Tensor a;

Indices i,j;

Local F1 = a(i,j)*x(i)*y(j) - a(j,i)*x(j)*y(i);

Local F2 = (a(i,j) + a(j,i))*x(i)*x(j) - 2*a(i,j)*x(i)*x(j);

Print;

.end

F1 = 0;

F2 = 0;

3. Let a be an antisymmetric tensor of rank two. Demonstrate with FORM the following two properties.

[i] aijxixj = 0 for any vector x.

[ii] the tensor b of rank two defined by the contraction bij = aikakj is symmetric.

The first property is immediately clear in FORM when you declare the tensor a to be antisymmetric.
The second property is verified by showing that bij − bji = 0.

Tensor A(antisymmetric);

Vectors x;

Indices i,j,k;

Local F1 = A(i,j)*x(i)*x(j);

Local F2 = A(i,k)*A(k,j) - A(j,k)*A(k,i);

Print;

.end

F1 = 0;

F2 = 0;

4. There are three ways to control the printing of powers of functions:

FunPowers nofunpowers;

FunPowers commutingonly;

FunPowers allfunpowers;

Find out by experimentation what the statements actually do and check also how they affect the
printing of powers of tensors.

First a FORM session that shows everything:

Function f;

Commuting g;

Tensor t;

Local expr = f*f*g*g*t*t;

Print;

.sort;

expr =

f*f*g^2*t*t;

99

FunPowers nofunpowers;

Print;

.sort

expr =

f*f*g*g*t*t;

FunPowers commutingonly;

Print;

.sort

expr =

f*f*g^2*t*t;

FunPowers allfunpowers;

Print;

.end

expr =

f^2*g^2*t*t;

Conclusions:

• Tensors are never printed with powers.

• With nofunpowers, products of same functions are never printed with powers.

• With commutingonly, products of same commuting functions are printed with powers and prod-
ucts of same noncommuting functions are not. This is the default behavior of FORM.

• With allfunpowers, all products of same functions, regardless of there type, are printed with
powers.

4.3 Some FORM Examples

1. Compose in FORM the expression

3
∑

i,j=0

aijx
iyj.

Symbols x,y,i,j;

CFunction a;

Local F=sum_(i,0,2,x^i*sum_(j,0,2,a(i,j)*y^j));

Print;

.end

F =

a(0,0) + a(0,1)*y + a(0,2)*y^2 + a(1,0)*x + a(1,1)*x*y + a(1,2)*x*y^2 +

a(2,0)*x^2 + a(2,1)*x^2*y + a(2,2)*x^2*y^2;

2. FORM contains a second summation function called sump_. It works like the regular function sum_,
except that the last argument is not the nth element of the sum, but the quotient of the nth element
and the (n − 1)th element. The first element of the sum is normalized to one. So, sump_(i,0,10,x)

evaluates to the series expansion of
1

1 − x
up to order ten.

Use the function sump_ to compose the expression
3

∑

i,j=0

xi

i!

yj

j!
, and write it as a polynomial in x.

100

Symbols x,y,i,j;

Local F=sump_(i,0,3,x/i)*sump_(j,0,3,y/j);

Bracket x;

Print;

.end

F =

+ x * (1 + y + 1/2*y^2 + 1/6*y^3)

+ x^2 * (1/2 + 1/2*y + 1/4*y^2 + 1/12*y^3)

+ x^3 * (1/6 + 1/6*y + 1/12*y^2 + 1/36*y^3)

+ 1 + y + 1/2*y^2 + 1/6*y^3;

3. Compose in FORM the expression

10
∑

i=0

(x+ 1)i, but throw away all powers of degree 4 and higher.

In the declaration of a symbol you may already restrict the powers that will appear in the result.

Symbol i, x(:3);

Local F = sum_(i,0,10,(x+1)^i);

Print;

.end

F =

11 + 55*x + 165*x^2 + 330*x^3;

4. Consider the four-dimensional space-time with coordinates (x0, x1, x2, x3) = (ct, x, y, z). Suppose you
have a coordinate transformation (x0, x1, x2, x3) = (−ct, x, y, z). Show with FORM that xµx

µ =
−c2t2 + x2 + y2 + z2.

Vectors p,P;

Indices mu=0;

Symbols c,t,x,y,z;

Local F = p(mu)*P(mu);

sum mu,0,1,2,3;

id p(0) = c*t;

id p(1) = x;

id p(2) = y;

id p(3) = z;

id P(0) = -c*t;

id P(1) = x;

id P(2) = y;

id P(3) = z;

Print;

.end

F =

- c^2*t^2 + x^2 + y^2 + z^2;

5. Let A, B, C, D be vectors in R3. Show with FORM the following equations known in vector analysis.

[i] (A × B) · (A × B) = (A · A)(B ·B) − (A ·B)2 (identity of Lagrange).

101

[ii] (A × B) × C− A × (B × C) = (A ·B)C − (B · C)A.

[iii] A × (B × C) + B × (C × A) + C× (A × B) = 0 (identity of Jacobi).

[iv] (A × B) × (C× D) = (A × C · D)B− (B × C · D)A.

[v] (A − B) × (A + B) = 2A× B.

[vi] (A × B) · (C × D) + (B × C) · (A × D) + (C× A) · (B × D) = 0.

Dimension 3;

Vectors A,B,C,D;

Indices i,j,k,l,m,n,p,q;

Local F1 = e_(i,j,k)*A(i)*B(j) * e_(m,n,k)*A(m)*B(n);

Local F2 = e_(i,j,k) * (e_(m,n,i)*A(m)*B(n)) * C(j) -

e_(i,j,k) * A(i) * (e_(m,n,j)*B(m)*C(n));

Local F3 = e_(i,j,k) * A(i) * (e_(m,n,j)*B(m)*C(n)) +

e_(i,j,k) * B(i) * (e_(m,n,j)*C(m)*A(n)) +

e_(i,j,k) * C(i) * (e_(m,n,j)*A(m)*B(n));

Local F4 = e_(i,j,k) * (e_(m,n,i)*A(m)*B(n)) * (e_(p,q,j)*C(p)*D(q));

Local F5 = e_(i,j,k)*(A(i)-B(i))*(A(j)+B(j));

Local F6 = e_(i,j,k)*A(i)*B(j) * e_(m,n,k)*C(m)*D(n) +

e_(i,j,k)*B(i)*C(j) * e_(m,n,k)*A(m)*D(n) +

e_(i,j,k)*C(i)*A(j) * e_(m,n,k)*B(m)*D(n);

contract;

Print;

.end

F1 =

A.A*B.B - A.B^2;

F2 =

- A(k)*B.C + C(k)*A.B;

F3 = 0;

F4 =

e_(A,C,D)*B(k) - e_(B,C,D)*A(k);

F5 =

2*e_(A,B,k);

F6 = 0;

6. Let f(x1, x2, . . . , xn) and g(x1, x2, . . . , xn) be polynomials with positive degree in xn and with coeffi-
cients in a field K (e.g, the set of rational numbers). We write

f = arx
r
n + ar−1x

r−1
n + · · · + a1xn + a0,

g = bsx
s
n + bs−1x

s−1
n + · · · + b1xn + b0,

where ar, . . . , a0, bs, . . . , b0 are polynomials in x1, x2, . . . , xn−1, and ar 6= 0, bs 6= 0. The Sylvester

matrix of f and g is the (r + s) × (r + s) matrix

102





































ar ar−1 · · · a1 a0 0 0 · · · 0
0 ar ar−1 · · · a1 a0 0 · · · 0
...

. . .
. . .

. . . · · · . . .
. . .

. . .
...

0 · · · 0 ar ar−1 · · · a1 a0 0
0 · · · 0 0 ar ar−1 · · · a1 a0

bs bs−1 · · · b1 b0 0 0 · · · 0
0 bs bs−1 · · · b1 b0 0 · · · 0
...

. . .
. . .

. . . · · · . . .
. . .

. . .
...

0 0 bs bs−1 · · · b1 b0 0
0 0 0 bs bs−1 · · · b1 b0





































where there are s lines constructed with the ai, and r lines constructed with the bi. The resultant of f
and g, denoted by Res(f, g), or Resxn

(f, g) if there has to be a variable xn, is the determinant of the
Sylvester matrix. The importance of the resultant lies in the following theorem.

Theorem 3 (Resultant Theorem) Let c1, c2 . . . , cn−1 be number in the algebraic closure of the field

K.

Resxn
(f, g)(c1, c2, . . . , cn−1) = 0 if and only if f(c1, c2, . . . , cn−1, xn) and g(c1, c2, . . . , cn−1, xn) have a

factor in common or ar(c1, c2, . . . , cn−1) = bs(c1, c2, . . . , cn−1) = 0.

(i) Use this theorem to find out when a quadratic polynomial in one variable and its derivative have
common zeros.

(ii) If f is a univariate polynomial of degree n and with leading coefficient an, then the discriminant of
f is equal to (−1)n(n−1)/2Res(f, f ′). Use this property to compute with FORM the discriminant
of a third degree univariate polynomial.

(i) Consider the polynomial f = ax2 + bx + c. To find common zeros of the polynomial f and its
derivate f ′, we need to work out the condition Res(f, f ′) = 0. Note that in this case

Res(f, f ′) =

∣

∣

∣

∣

∣

∣

a b c
2a b 0
0 2a b

∣

∣

∣

∣

∣

∣

.

The FORM session looks as follows:

Symbols a,b,c,x;

CFunction M;

Indices i1,i2,i3;

Local R = e_(1,2,3)*e_(i1,i2,i3)*M(1,i1)*M(2,i2)*M(3,i3);

contract;

id M(1,1) = a;

id M(1,2) = b;

id M(1,3) = c;

id M(2,1) = 2*a;

id M(2,2) = b;

id M(2,3) = 0;

id M(3,1) = 0;

id M(3,2) = 2*a;

id M(3,3) = b;

Print;

.end

R =

- a*b^2 + 4*a^2*c;

103

We get Res(f, f ′) = −a(b2 − 4ac). Assuming that a 6= 0, we conclude that the discriminant of f must
be equal to zero.

(ii) Consider the polynomial f = ax3 + bx2 + cx + d. To find discriminant of f , we use the formula
Res(f, f ′) = −a discriminant(f). Note that in this case

Res(f, f ′) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a b c d 0
0 a b c d

3a 2b c 0 0
0 3a 2b c 0
0 0 3a 2b c

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The FORM session to compute the discriminant of f looks as follows:

Symbols a,b,c,d,x;

CFunction M;

AutoDeclare Indices i;

Local D = - e_(1,2,3,4,5)*e_(i1,i2,i3,i4,i5)*

M(1,i1)*M(2,i2)*M(3,i3)*M(4,i4)*M(5,i5) / a;

contract;

id M(1,1) = a;

id M(1,2) = b;

id M(1,3) = c;

id M(1,4) = d;

id M(1,5) = 0;

id M(2,1) = 0;

id M(2,2) = a;

id M(2,3) = b;

id M(2,4) = c;

id M(2,5) = d;

id M(3,1) = 3*a;

id M(3,2) = 2*b;

id M(3,3) = c;

id M(3,4) = 0;

id M(3,5) = 0;

id M(4,1) = 0;

id M(4,2) = 3*a;

id M(4,3) = 2*b;

id M(4,4) = c;

id M(4,5) = 0;

id M(5,1) = 0;

id M(5,2) = 0;

id M(5,3) = 3*a;

id M(5,4) = 2*b;

id M(5,5) = c;

Print;

.end

D =

18*a*b*c*d - 4*a*c^3 - 27*a^2*d^2 + b^2*c^2 - 4*b^3*d;

7. There is a different way to compute determinants: with vectors rather than with commuting functions.
For vectors u1, . . . , un, v1, . . . , vn, we have in SCHOONSCHIP notation:

ǫu1···un
ǫv1···vn

=

∣

∣

∣

∣

∣

∣

∣

u1 · v1 · · · u1 · vn

...
. . .

...
un · v1 · · · un · vn

∣

∣

∣

∣

∣

∣

∣

104

So, if you identify a matrix element Mij with the dot product ui · vj , then contraction of the above
product of two Levi-Civita tensors yields the determinant of the matrix M . The following FORM

session show how the determinant example in this chapter can be carried out by this method.

AutoDeclare Vectors u,v;

Symbol a,b,c,d;

Local det = e_(u1,u2)*e_(v1,v2);

contract;

id u1.v1 = a;

id u1.v2 = b;

id u2.v1 = c;

id u2.v2 = d;

Print;

.end

det =

a*d - b*c;

(i) Prove that this method of computing a determinant is correct.

(ii) Experiment a bit to find out whether there is a difference in efficiency between the two method
of computing determinants.

(i)
∣

∣

∣

∣

∣

∣

∣

u1 · v1 · · · u1 · vn

...
. . .

...
un · v1 · · · un · vn

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

δi1j1u1(i1)v1(j1) · · · δi1jn
u1(i1)vn(jn)

...
. . .

...
δinj1un(in)v1(j1) · · · δinjn

un(in)vn(jn)

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

δi1j1 · · · δi1jn

...
. . .

...
δinj1 · · · δinjn

∣

∣

∣

∣

∣

∣

∣

u1(i1) · · ·un(in)v1(j1) · · · vn(jn)

= ǫi1···in
ǫj1···jn

u1(i1) · · ·un(in)v1(j1) · · · vn(jn)

= ǫu1···un
ǫv1···vn

.

(ii)

Below you see the printouts of the computation of a general 10× 10 matrix with both methods under
default settings of FORM and using a Pentium 166Mhz PC with 16 MB RAM. Most statistics messages
have been left out.

*

* Method with functions

*

AutoDeclare Indices i;

CFunction M;

On statistics;

Local detF = e_(1,...,10)*

e_(i1,...,i10)*

M(1,i1)*M(2,i2)*M(3,i3)*M(4,i4)*M(5,i5)*

M(6,i6)*M(7,i7)*M(8,i8)*M(9,i9)*M(10,i10);

contract;

.end;

:

105

:

:

Time = 1208.26 sec Generated terms = 3628800

detF Terms in output = 3628800

Bytes used = 130839812

*

* Method with vectors

*

AutoDeclare Vectors u,v;

On statistics;

Local detV = e_(u1,...,u10)*

e_(v1,...,v10);

contract;

.end

:

:

:

Time = 410.66 sec Generated terms = 3628800

detV Terms in output = 3628800

Bytes used = 88215006

As you see the method with commuting functions takes about 20 minutes to generate all 10! =
3,628,800 terms in the determinant, whereas the method with vectors only takes 7 minutes. Also the
memory usage of the second method is less because less sorting is needed.

8. In the following exercise you can experience the power of the delta function dd_ in graph theoretical
enumeration problems.

(i) Show that that there exist three loop-free graphs with degree sequence 4,3,2,1. Verify that each
graph has multiple edges.

(ii) Show that that there does not exist a loop-free graph without multiple edges and with degree
sequence 7,5,4,3,2,1,1,1.

(iii) Show that that there exists only one loop-free graph without multiple edges and with degree
sequence
7,4,3,3,2,1,1,1.

(iv) Show that up to isomorphism there exists only one connected loop-free graph without multiple
edges and with degree sequence 3,2,2,1,1,1.

(v) The terms of the Gram determinant for n vectors are in one-to-one-correspondence with the
graphs having degree sequence 2,2,. . .,2 (n numbers). Compare the efficiency of the computation
of such Gram determinants via contraction of a square of Levi-Civita tensors with the compuation
of graphs with degree sequence 2,2,. . .,2 using dd_.

(i) In the session below the three graphs with requested properties are calculated.

AutoDeclare Vectors v;

Local F = dd_(v1,v1,v1,v1,

v2,v2,v2,

v3,v3,

v4);

id v?.v?=0; * loop-free

106

Print +s F;

.end

F =

+ 144*v1.v2^2*v1.v3*v1.v4*v2.v3

+ 72*v1.v2^2*v1.v3^2*v2.v4

+ 48*v1.v2^3*v1.v3*v3.v4

;

(ii) The following session proves that no graph with requested properties exists.

AutoDeclare Vectors v;

Local F = dd_(v1,v1,v1,v1,v1,v1,v1,

v2,v2,v2,v2,v2,

v3,v3,v3,v3,

v4,v4,v4,

v5,v5,

v6,v7,v8);

id v?.v?=0; * loop-free

id v1?.v2?^2 = 0; * no multiple edges

Print F;

.end

F = 0;

(iii) In the session below the one graph with requested properties are calculated.

AutoDeclare Vectors v;

Local F = dd_(v1,v1,v1,v1,v1,v1,v1,

v2,v2,v2,v2,

v3,v3,v3,

v4,v4,v4,

v5,v5,

v6,v7,v8);

id v?.v?=0; * loop-free

id v1?.v2?^2 = 0; * no multiple edges

format 65;

Print F;

.end

F =

8709120*v1.v2*v1.v3*v1.v4*v1.v5*v1.v6*v1.v7*v1.v8*v2.v3*

v2.v4*v2.v5*v3.v4;

(iv) The session below differs from the ones we already met in this exercises that identify statements
are added that are necessary to guarantee connectedness of the graph. They turn out to be sufficient
as well.

AutoDeclare Vectors u,v,w;

Local F = dd_(u,u,u,v,v,w,w,v1,v2,v3);

id v?.v?=0; * loop-free

id u?.v?^2 = 0; * no multiple edges

id v1.v2 = 0; * connected

id v1.v3 = 0;

107

id v2.v3 = 0;

Print +s F;

.end

F =

+ 24*u.v*u.w*u.v1*v.v2*w.v3

+ 24*u.v*u.w*u.v1*v.v3*w.v2

+ 24*u.v*u.w*u.v2*v.v1*w.v3

+ 24*u.v*u.w*u.v2*v.v3*w.v1

+ 24*u.v*u.w*u.v3*v.v1*w.v2

+ 24*u.v*u.w*u.v3*v.v2*w.v1

+ 24*u.v*u.v1*u.v2*v.w*w.v3

+ 24*u.v*u.v1*u.v3*v.w*w.v2

+ 24*u.v*u.v2*u.v3*v.w*w.v1

+ 24*u.w*u.v1*u.v2*v.w*v.v3

+ 24*u.w*u.v1*u.v3*v.w*v.v2

+ 24*u.w*u.v2*u.v3*v.w*v.v1

;

It is easy to see that up to isomorphism there is only one graph. The above graphs are all isomorphic
to
u.v*u.w*u.v1*v.v2*w.v3 via a permutation of v1, v2, v3, in combination with a permutation of v
and w.

(v) Comparison of the following FORM program would show that the use of the dd_ function is more
efficient. By the way, only the value of the preprocessor variable ‘n’ has to be changed in the program
listed below.

#define n "10";

Vectors v1,...,v‘n’;

Local G‘n’ = e_(v1,...,v‘n’)^2;

contract;

.end

versus

#define n "10";

Autodeclare Vector v;

Local F = dd_(<v1,v1>,...,<v‘n’,v‘n’>);

.end

108

Chapter 5

Answers to Problems of Chapter 2

5.1 Substitution

1. The kinetic energy T is given in terms of mass m and momentum p as T =
p2

2m
. Express T in terms of

(i) the velocity v, which is related to momentum and mass by p = mv.

(ii) acceleration a and time t, which are related to the velocity by v = at.

Straightforward substitution does the work.

Symbols m,a,p,t,v;

Local T = p^2/(2*m);

id p = m*v;

Print;

.sort

T =

1/2*m*v^2;

id v = a*t;

Print;

.end

T =

1/2*m*a^2*t^2;

2. Transform in FORM the expression x2 + x+
1

x
into

(i) y2 + y +
1

y

(ii) y2 + y +
1

x

(iii) x2 + x+ y

In this exercise you only have to take into account differences between patterns of type x and 1/x,
where x is some symbol.

Symbols x,y;

Local F1 = x^2 + x + 1/x;

id x = y;

109

id 1/x = 1/y;

Print F1;

.sort

F1 =

y^-1 + y + y^2;

Local F2 = x^2 + x + 1/x;

id x = y;

Print F2;

.sort

F2 =

x^-1 + y + y^2;

Local F3 = x^2 + x + 1/x;

id 1/x = y;

Print F3;

.end

F3 =

x + x^2 + y;

3. How can you replace in FORM a+ b by d in the expression a+ b+ c.

The trick is to replace a by d-b instead of trying to replace a+b by d.

Symbols a,b,c,d;

Local F = a + b + c;

id a = d - b;

Print;

.end

F =

c + d;

4. Transform the expression (x2 + 1)2 + x2 + 2 into y2 + y + 1.

Writing the substitution as x2 = y − 1 will replace all higher powers of x.

Symbols x,y;

Local F = (x^2+1)^2 + x^2 + 2;

id x^2 = y - 1;

Print;

.end

F =

1 + y + y^2;

5. The basic element of the quaternions are i, j, and k, subject to the rules ij = k (and cyclic permutations
of i, j, and k), ji = −ij, ki = −ik, kj = −jk, and i2 = j2 = k2 = −1. Write a FORM program that
computes the quaternion (u+ 3i− k)3(−1 + tj), where u and t are unknowns. See [Cohen et al 92] for
a comparison of a FORM program and a Maple program.

In one repeat-loop we shall work out products into canonical form.

110

Functions i,j,k;

Symbols t,u;

Local F = (u+3*i-k)^3*(-1+t*j);

repeat;

id i*j = k;

id j*k = i;

id k*i = j;

id j*i = -k;

id i*k = -j;

id k*j = -i;

id i*i = -1;

id j*j = -1;

id k*k = -1;

endrepeat;

Bracket i,j,k;

Print;

.end

F =

+ i * (30 + 3*t*u^2 - 10*t - 9*u^2)

+ j * (- 30*t*u + t*u^3)

+ k * (- 10 + 9*t*u^2 - 30*t + 3*u^2)

+ 30*u - u^3;

The Bracket statement has been added to increase readability.

6. Let D denote the differentiation operator
d

dx
. So, the following commutation relations hold:

[D,x] = 1, [D, cosx] = − sinx, [D, sinx] = cosx .

Write a FORM program that uses these relations to transform D3x3 sin2 x cosx into a sum of terms
with the D operator to the right, and finally replace D by 0. The remaining terms will form the third
derivative of x3 sin2 x cos x. Check your answer by pencil and paper or via a general purpose computer
algebra system like Derive, Maple, or Mathematica.

The trick of augmenting a formula with some extra factor, carrying out operations defined in terms
of this extra factor, and finally removing this extra factor, can be applied in many cases. Computing
with differential operators to calculate a derivative is just one of the examples.

Functions D,x,[sin(x)],[cos(x)];

FunPowers allfunpowers;

Local F = D^3*x^3*[sin(x)]^2*[cos(x)];

Print;

.sort

F =

D^3*x^3*[sin(x)]^2*[cos(x)];

repeat;

id D*x = x*D + 1;

id D*[sin(x)] = [sin(x)]*D + [cos(x)];

id D*[cos(x)] = [cos(x)]*D - [sin(x)];

111

endrepeat;

id D = 0;

*

* write all terms in the order of

* power of x, power of sin(x), power of cos(x).

*

repeat;

id [sin(x)]*x = x*[sin(x)];

id [cos(x)]*x = x*[cos(x)];

id [cos(x)]*[sin(x)] = [sin(x)]*[cos(x)];

endrepeat;

Print;

.end

F =

7*x^3*[sin(x)]^3 - 20*x^3*[sin(x)]*[cos(x)]^2 - 63*x^2*[sin(x)]^2*

[cos(x)] + 18*x^2*[cos(x)]^3 - 18*x*[sin(x)]^3 + 36*x*[sin(x)]*[cos(x)]^

2 + 6*[sin(x)]^2*[cos(x)];

7. Consider the vector fields { d
dx
, x

d

dx
, x2 d

dx
}.

(i) Compute the commutation relations between these vector fields and verify that they form a Lie
algebra.

(ii) Determine the center of the Lie algebra, i.e., the set of elements that commute with any other
element of the Lie algebra.

(iii) Show that the vector fields { d
dx
, x

d

dx
, x2 d

dx
, x3 d

dx
} do not form a Lie algebra.

In the FORM program below, D denotes the differential operator
d

dx
. All we need to do is repeatedly

use the commutation relation [
d

dx
, x] = 1 to move the differential operator the right-hand side of

expressions.

Functions x,D;

Symbols a,b,c;

FunPowers allfunpowers;

*

* (i) The requested commutation relations

*

Local [D,x*D] = D*x*D - x*D*D;

Local [D,x^2*D] = D*x^2*D - x^2*D*D;

Local [x*D,x^2*D] = x*D*x^2*D - x^2*D*x*D;

repeat;

id D*x = x*D + 1;

endrepeat;

Print;

.sort

[D,x*D] =

D;

[D,x^2*D] =

2*x*D;

112

[x*D,x^2*D] =

x^2*D;

*

* (ii) The center of the Lie algebra

*

Local Z = a*D + b*x*D + c*x^2*D;

Local [Z,D] = Z*D - D*Z;

Local [Z,x*D] = Z*x*D - x*D*Z;

Local [Z,x^2*D] = Z*x^2*D - x^2*D*Z;

repeat;

id D*x = x*D + 1;

endrepeat;

Print [Z,D], [Z,x*D],[Z,x^2*D];

.sort

[Z,D] =

- 2*x*D*c - D*b;

[Z,x*D] =

- x^2*D*c + D*a;

[Z,x^2*D] =

x^2*D*b + 2*x*D*a;

*

* (iii) Proof that [x^2*D, x^3*D] = x^4*D

*

Local [x^2*D,x^3*D] = x^2*D*x^3*D - x^3*D*x^2*D;

repeat;

id D*x = x*D + 1;

endrepeat;

Print [x^2*D,x^3*D];

.end

[x^2*D,x^3*D] =

x^4*D;

You see that the center of the Lie algebra is equal to 0 because the system of equations that a, b, and c
must satisfy has clearly only the trivial solution set. The last part of the computations shows that the
given set of four vector fields in part (iii) is not closed under computing commutators and therefore
cannot be a basis of a Lie algebra.

8. We consider the Lie algebra of type SU2 generated by the triple h,e,f , which satisfy the following
commutation relations

[h, e] = 2e, [h, f] = −2f, [e, f] = h.

The enveloping algebra has Poincaré-Birkhoff-Witt basis given by

hiejfk,

where i, j, k are nonnegative integers.

(i) Use the commutation relation to write f3e2h in terms of the Poincaré-Birkhoff-Witt basis.

(ii) What is the commutation relation between h and he2f3?

113

Because noncommutative algebra is the default choice in FORM, the system is very convenient for
this kind of computations.

Functions h,e,f;

FunPowers allfunpowers;

Local F1 = f^3*e^2*h;

Local F2 = h * h*e^2*f^3 - h*e^2*f^3 * h;

repeat;

id e*h = h*e - 2*e;

id f*h = h*f + 2*f;

id f*e = e*f - h;

endrepeat;

Print;

.end

F1 =

6*h^3*f - 6*h^2*e*f^2 + 30*h^2*f + h*e^2*f^3 - 18*h*e*f^2 + 48*h*f + 2*e

^2*f^3 - 12*e*f^2 + 24*f;

F2 =

- 2*h*e^2*f^3;

5.2 Pattern Objects

1. Given the symbols x, n, explain what the following patterns mean.

(i) x

(ii) 1/x

(iii) x?

(iv) x^n?

(v) x?^n

(vi) x?^n?

Pattern Meaning

x The symbol x
1/x x−1

x? Any symbol
x^n? Any nonnegative power of x
x?^n Any symbol x raised to a fixed integer power n
x?^n? Any symbol to any power

2. Given the vectors u, v and the indices i, j, explain what the following patterns mean.

(i) u(i)

(ii) u(i?)

(iii) u?(i)

(iv) u?(i?)

(v) u(i?)*v(j?)

(vi) u(i?)*v(i?)

(vii) u.v?

114

(viii) u?.v?

(ix) v?.v?

(x) u?.v?^2

Pattern Meaning

u(i) The vector u with index i
u(i?) The vector u with any index
u?(i) Any vector with index i
u?(i?) Any vector with any index
u(i?)*v(j?) Product of vectors u and v with any indices
u(i?)*v(i?) Product of vectors u and v with equal indices
u.v? Dot product of vector u with any vector
u?.v? Any dot product
v?.v? Dot product of any vector with itself
u?.v?^2 Square of any dot product

5.3 Patterns in Replacement Rules

1. How can you implement the rules for odd and even functions in FORM.

Symbol x,y;

Functions odd, even;

Local ODD = odd(-x);

Local EVEN = even(-x);

Local F = odd(-x-y) + even(-x-y) + odd(x-y) + odd(-x+y);

id odd(-x?) = - odd(x);

id even(-x?) = even(x);

Print;

.end

ODD =

- odd(x);

EVEN =

even(x);

F =

odd(- x - y) + odd(- x + y) + odd(x - y) + even(- x - y);

We added the expression F to illustrate how rudimentary our current implementation is.

2. Implement the transformation rule expx exp y −→ exp(x+ y) and apply it to the expression (exp a+
exp b+ exp c)3. Simplify the result as far as possible.

A repeat-loop is necessary to simplify results as far as possible.

CFunction exp;

Symbols x,y,a,b,c;

Local F = (exp(a) + exp(b) + exp(c))^3;

id exp(x?) * exp(y?) = exp(x+y);

Print +s;

.sort;

115

F =

+ exp(a)*exp(2*a)

+ 3*exp(b)*exp(a + b)

+ 3*exp(b)*exp(2*a)

+ exp(b)*exp(2*b)

+ 6*exp(c)*exp(a + b)

+ 3*exp(c)*exp(a + c)

+ 3*exp(c)*exp(2*a)

+ 3*exp(c)*exp(b + c)

+ 3*exp(c)*exp(2*b)

+ exp(c)*exp(2*c)

;

repeat;

id exp(x?) * exp(y?) = exp(x+y);

endrepeat;

Print +s;

.end

F =

+ 6*exp(a + b + c)

+ 3*exp(a + 2*b)

+ 3*exp(a + 2*c)

+ 3*exp(2*a + b)

+ 3*exp(2*a + c)

+ exp(3*a)

+ 3*exp(b + 2*c)

+ 3*exp(2*b + c)

+ exp(3*b)

+ exp(3*c)

;

3. Implement the simplification sin2 x+ cos2 x = 1, and apply it to the expressions sin2 a− 1, and sin3 a.

All you need to do is to write the substitution rule in the form of sin2 x = 1 − cos2 x.

CFunctions sin, cos;

Symbols a,x;

Local F1 = sin(a)^2 - 1;

Local F2 = sin(a)^3;

id sin(x?)^2 = 1 - cos(x)^2;

Bracket sin;

Print;

.end

F1 =

- cos(a)^2;

F2 =

+ sin(a) * (1 - cos(a)^2);

4. Write a FORM program that computes the Laguerre polynomials Ln(a, x). Recall that these polyno-
mials are recursively defined as

L0(a, x) = 1,

116

L1(a, x) = 1 + a− x,

Ln(a, x) =
(2n+ a− 1 − x)

n
Ln−1(a, x) − (n+ a− 1)

n
Ln−2(a, x),

for n > 1.

We shall give two solutions to the problem: one simple, but inefficient program, and another more
complicated program that works much more efficient.

*

* easy, but inefficient program

*

Symbols a,x,n;

CFunction L;

On statistics;

Local Laguerre8 = L(8,a,x);

repeat;

id L(1,a,x) = 1;

id L(2,a,x) = 1+a-x;

id L(n?,a,x) = (2*n+a-1-x)/n*L(n-1,a,x) - (n+a-1)/n*L(n-2,a,x);

endrepeat;

Print;

.end

Time = 11.83 sec Generated terms = 20000

Laguerre8 1 Terms left = 35

Bytes used = 492

Time = 19.02 sec Generated terms = 32181

Laguerre8 1 Terms left = 70

Bytes used = 984

Time = 19.03 sec Generated terms = 32181

Laguerre8 Terms in output = 36

Bytes used = 508

Laguerre8 =

1 - 1389/140*a*x + 76529/10080*a*x^2 - 1507/672*a*x^3 +

295/1008*a*x^4 - 17/1008*a*x^5 + 1/2880*a*x^6 + 481/140*a

- 381/80*a^2*x + 50177/20160*a^2*x^2 - 9883/20160*a^2*x^3

+ 157/4032*a^2*x^4 - 1/960*a^2*x^5 + 349/144*a^2 - 5953/

5040*a^3*x + 8129/20160*a^3*x^2 - 1/21*a^3*x^3 + 1/576*a^3

*x^4 + 329/360*a^3 - 467/2880*a^4*x + 131/4032*a^4*x^2 - 1/

576*a^4*x^3 + 115/576*a^4 - 59/5040*a^5*x + 1/960*a^5*x^2

+ 73/2880*a^5 - 1/2880*a^6*x + 1/576*a^6 + 1/20160*a^7 -

7*x + 2441/280*x^2 - 3187/840*x^3 + 247/336*x^4 - 347/5040

*x^5 + 61/20160*x^6 - 1/20160*x^7;

*

* less obvious, but efficient program

*

Symbols a, x, n, last, secondlast, dummy;

CFunction L;

On statistics;

Local Laguerre8 = L(2,1+a-x,1)*dummy^6;

117

repeat;

id L(n?, last?, secondlast?) * dummy =

L(n+1, (2*n+a+1-x)/(n+1)*last - (n+a)/(n+1)*secondlast, last);

endrepeat;

id L(n?, last?, secondlast?) = last;

.end

Time = 0.29 sec Generated terms = 36

Laguerre8 Terms in output = 36

Bytes used = 508

5. Write a FORM program that integrates univariate polynomials.

Symbols x,dx,n;

*

* Next could be any polynomial in x

*

Local P = 1+x+x^3;

*

* Tag the expression and apply differentiation rule

*

multiply dx;

id dx*x^n? = 1/(n+1)*x^(n+1);

Print;

.end

P =

x + 1/2*x^2 + 1/4*x^4;

6. Consider the following Lorentz transformation in four-dimensional space-time

x′ = γ(x− vt),

y′ = y,

z′ = z,

t′ = γ(t− vx

c2
),

where

γ =
1

√

1 − v2

c2

Show with FORM that
x′

2
+ y′2 + z′

2 − c2t′
2

= x2 + y2 + z2 − c2t2.

Below, we use uppercase characters X, Y, Z, and T to denote the new coordinates x′, y′, z′, t′.

Symbols t, x, y, z, v, c, gamma, [c^2-v^2];

Local X = gamma*(x-v*t);

Local Y = y;

Local Z = z;

Local T = c*gamma*(t-v*x/c^2);

Local S = X^2 + Y^2 + Z^2 - T^2;

id gamma^2 = c^2/[c^2-v^2];

repeat;

118

id c^2/[c^2-v^2] = 1 + v^2/[c^2-v^2];

endrepeat;

Print S;

.end

S =

- t^2*c^2 + x^2 + y^2 + z^2;

7. Consider a space of n dimensions with coordinate functions φ1, φ2, . . . , φn and metric tensor given by

gij = δij +
φiφj

1 − (φk)2
,

where Einstein’s summation convention is used so that φ2
k =

n
∑

i

(φi)2.

(i) Verify with FORM that the inverse of the metric tensor is given by

gij = δij − φiφj

(ii) The Christoffel symbol Γjkl of the first kind is defined by

Γjkl =
1

2

(

∂gjl

∂φk
+
∂glk

∂φj
− ∂gkj

∂φl

)

Compute this symbol with FORM.

(iii) The Christoffel symbol Γi
jk of the second kind is defined by

Γi
jk = gilΓjkl ,

where we Einstein’s summation convention is used again. Compute this symbol with FORM.

FORM is not good in working with rational expressions: you have to write the denominator as one
function, say [1-phi(n)^2], and then design appropriate rewrite rules for getting the job done. An-
other point in the program below is that for computing derivates we need to work with noncommuting
objects. This is why we distinguish between commuting and noncommuting functions. Uppercase
characters are used to denote commuting functions; corresponding names in lowercase refer to the
corresponding noncommuting functions.

Functions g, ginv, del, phi, [1-phi(n)^2];

CFunctions PHI, [1-PHI(n)^2];

FunPowers allfunpowers;

Indices i,j,k,l,n;

*

* (i) metric tensor and its inverse

*

Local [g(ik)] = d_(i,k) + PHI(i)*PHI(k)/[1-PHI(n)^2];

Local [ginv(kj)] = d_(k,j) - PHI(k)*PHI(j);

Local I = [g(ik)] * [ginv(kj)];

id PHI(i?)^2 = 1 - [1-PHI(n)^2];

id 1/PHI? * PHI? = 1;

Print I;

.sort

I =

d_(i,j);

119

*

* (ii) Christoffel symbols of the 1st kind

*

Local C1 = 1/2*(del(k)*g(j,l) + del(j)*g(l,k) - del(l)*g(j,k));

*

* definition of metric tensor

*

id g(i?,j?) = d_(i,j) + phi(i)*phi(j)/[1-phi(n)^2];

*

* rules for differentiation

*

repeat;

id del(i?)*phi(j?) = d_(i,j)+ phi(j)*del(i);

endrepeat;

id del(i?)/[1-phi(n)^2] = 2*phi(i)/[1-phi(n)^2]^2;

id del(i?) = 0;

Print +s C1;

.sort;

C1 =

- phi(j)*phi(k)*phi(l)*([1-phi(n)^2])^(-2)

+ phi(j)*phi(l)*phi(k)*([1-phi(n)^2])^(-2)

+ phi(l)/([1-phi(n)^2])*d_(j,k)

+ phi(l)*phi(k)*phi(j)*([1-phi(n)^2])^(-2)

;

*

* normalization:

* bring over one denominator = (1-phi(n)^2)^2

* first we simplify the numerator

*

id 1/[1-phi(n)^2]^2 = 1;

id 1/[1-phi(n)^2] = 1-phi(n)^2;

*

* move to commuting functions

*

id phi(i?) = PHI(i);

*

* further simplification of numerator

*

id PHI(i?)^2 = 1 - [1-PHI(n)^2];

*

* The requested formula

*

multiply 1/[1-PHI(n)^2]^2;

id PHI?^(-2) * PHI? = 1/PHI;

Print +s C1;

.sort

C1 =

+ ([1-PHI(n)^2])^(-2)*PHI(j)*PHI(k)*PHI(l)

+ 1/([1-PHI(n)^2])*PHI(l)*d_(j,k)

;

120

*

* (iii) Christoffel symbols of 2nd kind

*

Local C2 = ginv(i,l) * C1;

id ginv(i?,j?) = d_(i,j) - PHI(i)*PHI(j);

Print C2;

.sort

C2 =

([1-PHI(n)^2])^(-2)*PHI(i)*PHI(j)*PHI(k) - ([1-PHI(n)^2])^(-2)*PHI(i)*

PHI(j)*PHI(k)*PHI(l)^2 + 1/([1-PHI(n)^2])*PHI(i)*d_(j,k) - 1/(

[1-PHI(n)^2])*PHI(i)*PHI(l)^2*d_(j,k);

*

* normalization:

* bring over one denominator = (1-PHI(n)^2)^2

* first we simplify the numerator

*

id 1/[1-PHI(n)^2]^2 = 1;

id 1/[1-PHI(n)^2] = 1-PHI(n)^2;

*

* further simplification of numerator

*

id PHI(i?)^2 = 1 - [1-PHI(n)^2];

Print +s C2;

.sort

C2 =

+ PHI(i)*PHI(j)*PHI(k)*[1-PHI(n)^2]

+ PHI(i)*[1-PHI(n)^2]^2*d_(j,k)

;

*

* bringing back the denominator

*

id [1-PHI(n)^2]*[1-PHI(n)^2] = 1;

id [1-PHI(n)^2] = 1/[1-PHI(n)^2];

AntiBracket PHI;

Print +s C2;

.end

C2 =

+ d_(j,k) * (

+ PHI(i)

)

+ 1/([1-PHI(n)^2]) * (

+ PHI(i)*PHI(j)*PHI(k)

);

So, we have

Γjkl =
δjkφ

l

1 − (φn)2
+

φjφkφl

(1 − (φn)2)2

121

and

Γi
jk = δjkφ

i +
φiφjφk

1 − (φn)2

5.4 Patterns and Functions

1. Implement the simplifications ln(xy) → lnx + ln y and ln(xn) = n lnx (if n is an integer), and apply
them to the expression ln(abc) and ln(ab3).

We give two solutions to the problem. The first one is a very direct, but somewhat elaborate way of
getting the job done.

Symbols x,y,z,a,b,c,dummy,n;

CFunction ln;

Local F1 = ln(a*b);

Local F2 = ln(a*b*c);

id ln(x?*y?) = ln(x) + ln(y);

Print;

.sort

F1 =

ln(a) + ln(b);

F2 =

ln(a*b*c);

argument;

id a = dummy/b;

endargument;

id ln(x?*y?) = ln(x) + ln(y);

argument;

id dummy = a*b;

endargument;

id ln(x?*y?) = ln(x) + ln(y);

Print F2;

.sort

F2 =

ln(a) + ln(b) + ln(c);

Local F3 = ln(a*b^3);

id ln(x?)=x;

id x?*y?^n? = x+n*y;

id x? = ln(x);

Print F3;

F3 =

ln(a) + 3*ln(b);

The second solution is more delicate, but works in many more circumstances.

Symbols x,y,a,b,c,n;

Function ln;

Local F1 = ln(a*b);

Local F2 = ln(a*b*c);

122

Local F3 = ln(a*b^3);

argument ln;

multiply left ln;

repeat;

id ln*x? = ln(x) + ln;

id ln(x?)*y? = ln(x);

endrepeat;

id ln=0;

endargument;

id ln(x?) = x;

Print;

F1 =

ln(a) + ln(b);

F2 =

ln(a) + ln(b) + ln(c);

F3 =

ln(a) + 3*ln(b);

2. Implement simplification rules for the determinant of matrices such that det(M5) simplifies into
det(M)5, and det(ABC) becomes (detA)(detB)(detC).

Symbol M,A,B,C,n;

CFunction det;

FunPowers allfunpowers;

Local F5 = det(M^5);

Local F3 = det(A*B*C);

id det(M?)=M;

repeat;

id M?=det(M);

endrepeat;

Print;

.end

F5 =

det(M)^5;

F3 =

det(A)*det(B)*det(C);

Alternatively:

Symbol M,A,B,C,n;

CFunction det;

FunPowers allfunpowers;

Local F5 = det(M^5);

Local F3 = det(A*B*C);

id det(M?)=M;

repeat;

id M?=det(M);

endrepeat;

Print;

123

.end

F5 =

det(M)^5;

F3 =

det(A)*det(B)*det(C);

3. Show with FORM that if Ui and Vi are the components of covariant vectors U and V, respectively,
then Tij = UiVj − ViUj are the components of a covariant tensor T of order 2. Recall that a covariant

vector Ui transforms under coordinate changes like U i =
∂xk

∂xi Uk, and that a covariant tensor Tij of

order two transforms like T ij =
∂xk

∂xi

∂xl

∂xj Tkl.

In the program below t(dx,i,up,dxbar,j,low) denotes
∂xi

∂xj
.

Tensors [T_kl],U,V,t;

Indices i,j,k,l,low,up,dx,dxbar;

Local [Tbar_ij] = U(i,low)*V(j,low) - V(i,low)*U(j,low);

id U?(i,low) = t(dx,k,up,dxbar,i,low) * U(k,low);

id U?(j,low) = t(dx,l,up,dxbar,j,low) * U(l,low);

id U(k,low) * V(l,low) = [T_kl] + V(k,low)*U(l,low);

Print;

.end

[Tbar_ij] =

[T_kl]*t(dx,k,up,dxbar,i,low)*t(dx,l,up,dxbar,j,low);

4. If n = 2, write out the triple sum crstxryszt in explicit form using only replacement rules.

Tensor a,dummy;

Vectors x,y,z;

Indices r,s,t;

Local expr = a(r,s,t)*x(r)*y(s)*z(t);

multiply dummy();

repeat;

id a(?p,z?)*dummy(?q)=a(?p)*dummy(1,?q)*z(1)+a(?p)*dummy(2,?q)*z(2);

endrepeat;

id a()*dummy(?p)=a(?p);

Format 65;

Print;

.end

expr =

a(1,1,1)*x(1)*y(1)*z(1) + a(1,1,2)*x(1)*y(1)*z(2) + a(1,2,

1)*x(1)*y(2)*z(1) + a(1,2,2)*x(1)*y(2)*z(2) + a(2,1,1)*

x(2)*y(1)*z(1) + a(2,1,2)*x(2)*y(1)*z(2) + a(2,2,1)*x(2)*

y(2)*z(1) + a(2,2,2)*x(2)*y(2)*z(2);

Of course, in real computations you would use the sum_ statement.

5. The ToVector command replaces a tensor into a product of vector components. For example,
ToVector t,v replaces t(m1,m2,m3) by v(m1)*v(m2)*v(m3). Use id statements to get the same job
done.

124

The following program shows that the ToVector command is present in FORM for convenience and
some efficiency only.

Tensor t;

Vector v;

Indices m1,m2,m3;

Local F = t(m1,m2,m3);

repeat;

id t(m1?,?m) = v(m1)*t(?m);

endrepeat;

id t() = 1;

Print;

.end

F =

v(m1)*v(m2)*v(m3);

6. In classical electromagnetic theory, the electromagnetic field tensor Fµν is defined by

Fµν =





















0
Ex

c

Ey

c

Ez

c

−Ex

c
0 −Bz By

−Ey

c
Bz 0 −Bx

−Ez

c
−By Bx 0





















In other words, F00 = 0, F0ν =
Eν

c
for ν = 1, 2, 3, and Fij = −ǫijkBk for i, j, k = 1, 2, 3, where ǫ

denotes the Levi-Civita tensor.

We shall use as metric tensor gµν and its inverse gµν for special relativity the one with sign convention
g0ν = δ0ν and gij = −δij , for i, j = 1, 2, 3. Then the full contravariant form Fµν is

Fµν = gµρgµρFρσ =





















0 −Ex

c
−Ey

c
−Ez

c
Ex

c
0 −Bz By

Ey

c
Bz 0 −Bx

Ez

c
−By Bx 0





















Write the expression FµνFµν and ǫµνρσF
µνF ρσ, which are invariant under Lorentz transformations,

in terms of the electric field E and magnetic field B.

We work out the expression by expansion of the indices µ, ν, ρ, and σ into 0, i, 0, j, 0, k, and 0, l,
respectively. The indices i, j, k, l run from 1 to 3. Hereafter we use the definitions of the field tensors.

Dimension 3;

CFunctions F(antisymmetric), Ft, L, U, eps(antisymmetric);

Vector E,B;

Symbol c;

Indices mu, nu, rho, sigma, i, j, k, l;

Local expr1 = F(U(mu),U(nu)) * F(L(mu),L(nu));

Local expr2 = eps(L(mu),L(nu),L(rho),L(sigma)) *

125

F(U(mu),U(nu)) * F(U(rho),U(sigma));

*

* expand mu,nu,rho,sigma into 0,i and 0,j, and 0,k, and 0,l, respectively

*

sum mu 0,1;

sum nu 0,2;

sum rho 0,3;

sum sigma 0,4;

argument;

id L?(1) = L(i);

id L?(2) = L(j);

id L?(3) = L(k);

id L?(4) = L(l);

endargument;

repeat;

id eps(?a,L(i?),?b) = eps(?a,i,?b);

endrepeat;

id eps(0,?a) = e_(?a);

id eps(?a) = 0;

Format 65;

Print;

.sort

expr1 =

F(L(i),L(0))*F(U(i),U(0)) + F(L(j),L(i))*F(U(j),U(i)) + F(

L(j),L(0))*F(U(j),U(0));

expr2 =

F(U(i),U(0))*F(U(l),U(k))*e_(i,k,l) + F(U(j),U(i))*F(U(k),

U(0))*e_(i,j,k) + F(U(j),U(i))*F(U(l),U(0))*e_(i,j,l) + F(

U(j),U(0))*F(U(l),U(k))*e_(j,k,l);

*

* Apply definitions

*

id F(U(0),U(j?)) = - E(j)/c;

id F(U(i?),U(j?)) = - e_(i,j,B);

id F(L(0),L(j?)) = E(j)/c;

id F(L(i?),L(j?)) = - e_(i,j,B);

contract;

Print;

.end

expr1 =

- 2*E.E*c^-2 + 2*B.B;

expr2 =

8*E.B*c^-1;

So, the invariants can be written as 2(B2 − E2

c2
) and

8

c
E · B.

126

5.5 Conditions on Wildcards and Replacements

1. Implement the rule J(−n, z) = (−1)nJ(n, z), if n is a natural number. Apply your rule for n = 3,
n = 4, and general n.

Symbols z,n;

Function J;

Local [J(-3,z)] = J(-3,z);

Local [J(-4,z)] = J(-4,z);

Local [J(-n,z)] = J(-n,z);

Local [J(4,z)] = J(4,z);

id J(n?neg_, ?z) = (-1)^(-n) * J(-n, ?z);

Print;

.end

[J(-3,z)] =

- J(3,z);

[J(-4,z)] =

J(4,z);

[J(-n,z)] =

J(- n,z);

[J(4,z)] =

J(4,z);

2. For an invertible matrix M holds the equation

dM−1

dt
= −M−1

(

dM

dt

)

M−1.

Write a FORM program that computes the derivative of M−3.

Functions M, [dM/dt], dt;

FunPowers allfunpowers;

Local F = 1/M * 1/M * 1/M;

multiply left dt;

repeat;

id dt*1/M = -1/M*[dM/dt]*1/M + 1/M*dt;

endrepeat;

id dt=0;

Print;

.end

F =

- 1/(M)^3*[dM/dt]/(M) - 1/(M)^2*[dM/dt]/(M)^2 - 1/(M)*[dM/dt]/(M)^3;

3. Write a FORM program that computes the derivative of x4 ln2 x.

Symbols x,y,n;

CFunctions log,g;

Functions [log],[1/x],f,dx;

Set commuting:log;

127

Set noncommuting:[log];

Set derivative:[1/x];

*

Local expr = x^4*log(x)^2;

id g?commuting?noncommuting(x) = g(x);

Multiply left dx;

repeat;

id dx*g?noncommuting[n](x) = derivative[n](x)+g(x)*dx;

endrepeat;

id dx*x^n? = n*x^(n-1);

id [1/x](x) = 1/x;

id f?noncommuting?commuting(x) = f(x);

*

Print;

.end

expr =

2*log(x)*x^3 + 4*log(x)^2*x^3;

4. Write a FORM program that computes the integrals

∫

x4 cosxdx and

∫

x4 sinxdx.

We compute the integrals by recursion. The select option in the id statements makes that these rules
are only applied if after matching of the left-hand side of an expression no elements of the set fromx

are left. So, the first to rules are only applied if no power of x comes in front of the trigonometric
function.

Symbols x, y, [sin(x)], [cos(x)], n, dx;

Set fromx: x, [sin(x)], [cos(x)];

*

Local exprcos = x^4*[cos(x)];

Local exprsin = x^4*[sin(x)];

Multiply dx;

repeat;

id select fromx dx*[sin(x)] = - [cos(x)];

id select fromx dx*[cos(x)] = [sin(x)];

id select fromx dx*x^n?*[sin(x)] =

- x^n*[cos(x)] + dx*n*x^(n-1)*[cos(x)];

id select fromx dx*x^n?*[cos(x)] =

x^n*[sin(x)] - dx*n*x^(n-1)*[sin(x)];

endrepeat;

*

Format 60;

Print;

.end

exprcos =

- 24*x*[cos(x)] - 12*x^2*[sin(x)] + 4*x^3*[cos(x)] + x^4*[sin(x)]

+ 24*[sin(x)];

exprsin =

- 24*x*[sin(x)] + 12*x^2*[cos(x)] + 4*x^3*[sin(x)] - x^4*[cos(x)]

- 24*[cos(x)];

5. Let T =
(

T ij
klm

)

denote a tensor of order and type indicated by the indices.

128

Prove with FORM that S = (Tk) =
(

T ij
kij

)

is a covariant vector.

The tensor T =
(

T ij
klm

)

in a coordinate system (x1, x2, . . . , xN) is related to the tensor T =
(

T
ij

klm

)

in a coordinate system (x1, x2, . . . , xN) by the transformation equation

(

T
ij

klm

)

=
∂xi

∂xp

∂xj

∂xq

∂xk

∂xr

∂xl

∂xs

∂xm

∂xt

In the following FORM program we shall denote
∂xa

∂xb
and

∂xa

∂xb
by xbar(a,up,od,b,low) and

x(a,up,odbar,b,low), respectively.

Tensors [T^ij_ij], T, x, xbar;

Indices i, j, k, l, m, p, q, r, s, t, low, up, od, odbar;

Indices k1,...,k5;

set orig: i, j, k;

Local [Tbar^ij_ij](k) = T(i,up,j,up,k,low,i,low,j,low);

*

* Create the transformed expression

*

id T(?a, i?orig, low, ?b) = x(t, up, odbar, i, low) * T(?a, t, low, ?b);

id T(?a, i?orig, low, ?b) = x(s, up, odbar, i, low) * T(?a, s, low, ?b);

id T(?a, i?orig, low, ?b) = x(r, up, odbar, i, low) * T(?a, r, low, ?b);

id T(?a, i?orig, up, ?b) = xbar(i, up, od, q, low) * T(?a, q, up, ?b);

id T(?a, i?orig, up, ?b) = xbar(i, up, od, p, low) * T(?a, p, up, ?b);

*

Print;

.sort

[Tbar^ij_ij](k) =

T(p,up,q,up,r,low,s,low,t,low)*x(r,up,odbar,k,low)*x(s,up,odbar,i,low)*

x(t,up,odbar,j,low)*xbar(i,up,od,p,low)*xbar(j,up,od,q,low);

*

* Apply transformation rules

*

repeat;

id x(i?, up, odbar, j?, low) * xbar(j?, up, od, k?, low) = d_(i,k);

endrepeat;

id T(i?, up, j?, up, k?, low, i?, low, j?, low) = [T^ij_ij](k);

*

Print;

.end

[Tbar^ij_ij](k) =

[T^ij_ij](r)*x(r,up,odbar,k,low);

You see that the quantity transforms like a covariant vector.

6. From the contravariant tensor S = (Sij) and the covariant tensor T = (Tkl), both of order two, form
the inner product U = (U i

l) = (SijTjl). Show with FORM that U is a mixed tensor of order two.

We use the same notation as in the previous exercise.

Tensors U, S, T, x, xbar;

129

Indices i, j, k, l, m, p, q, r, s, low, up, od, odbar;

set orig: i, j, l;

Local Ubar(i,up,l,low) = S(i,up,j,up) * T(j,low,l,low);

*

* Create the transformed expression

*

id T(?a, i?orig, low, ?b) = x(s, up, odbar, i, low) * T(?a, s, low, ?b);

id T(?a, i?orig, low, ?b) = x(r, up, odbar, i, low) * T(?a, r, low, ?b);

id S(?a, i?orig, up, ?b) = xbar(i, up, od, q, low) * S(?a, q, up, ?b);

id S(?a, i?orig, up, ?b) = xbar(i, up, od, p, low) * S(?a, p, up, ?b);

*

* Apply transformation rules

*

repeat;

id x(i?, up, odbar, j?, low) * xbar(j?, up, od, k?, low) = d_(i,k);

endrepeat;

id S(i?, up, j?, up) * T(j?, low, l?, low) = U(i, up, l, low);

Print;

.end

Ubar(i,up,l,low) =

U(p,up,s,low)*x(s,up,odbar,l,low)*xbar(i,up,od,p,low);

You see that the quantity transforms like a mixed tensor of order two.

7. Carry out in FORM the following trace calculation published in [Veltman 89]: Compute

trace(γµ1
γµ2

· · · γµ10
γµ1γµ2 · · ·γµ10)

and replace the dimension d by d− 4. The answer should be equal to

−31023169536+ 38971179008d− 21328977920d2 + 6679521280d3 − 1320732160d4 +

171464832d5 − 14710080d6 + 816960d7 − 27840d8 + 520d9 − 4d10 .

Symbol d;

Dimension d;

Indices m1, ..., m10;

On statistics;

Local F1 = g_(1,m1,m2,...,m10,m1,m2,...,m10);

tracen,1;

.sort

Time = 3.51 sec Generated terms = 20000

F1 1 Terms left = 9

Bytes used = 138

Time = 6.97 sec Generated terms = 40000

F1 1 Terms left = 18

Bytes used = 276

Time = 10.44 sec Generated terms = 60000

F1 1 Terms left = 28

Bytes used = 430

Time = 12.59 sec Generated terms = 72379

130

F1 1 Terms left = 37

Bytes used = 568

Time = 12.59 sec Generated terms = 72379

F1 Terms in output = 10

Bytes used = 154

id d = d-4;

Print;

.end

Time = 12.62 sec Generated terms = 65

F1 Terms in output = 11

Bytes used = 182

F1 =

- 31023169536 + 38971179008*d - 21328977920*d^2 + 6679521280*d^3 -

1320732160*d^4 + 171464832*d^5 - 14710080*d^6 + 816960*d^7 - 27840*d^8

+ 520*d^9 - 4*d^10;

8. Repeat the following calculation in high energy physics, which is also described in the REDUCE
manual: the computation of the Compton scattering cross-section as given in Bjorken and Drell Eqs.
(7.72) through (7.74). Requested is the trace of

α2

2

(

k′

k

)2 (6 pf +m

2m

) (6 pf +m

2m

) (6 e′ 6 e 6 ki

2k · pi
+

6 e 6 e′ 6 kf

2k′ · pi

) (6 pi +m

2m

) (6 ki 6 e 6 e′
2k · pi

+
6 kf 6 e′ 6 e
2k′ · pi

)

where ki and kf are the four-momenta of incoming and outgoing photons, with polarization vectors
e and e′ and laboratory energies k and k′, respectively, and where pi and pf are incident and final
electron four-momenta. It is necessary to put the particles “on the mass shell” in the calculation:

k2
i = 0, k2

f = 0, p2
i = m2, p2

f = m2 .

For the polarization vectors hold

pi ·e = 0, pi ·e′ = 0, ki ·e = 0, kf ·e′ = 0, pf ·e = −kf ·e, pf ·e′ = ki ·e′, e2 = −1, e′2 = −1 .

Furthermore,

pi ·pf = m2+ki ·kf , pi ·ki = mk, pi ·kf = mk′, pf ·ki = mk′, pf ·kf = mk, ki ·kf = m(k−k′) .

With these relations you should readily get the following Compton scattering cross-section:

α2

2m2

(

k′

k

)2 (

k′

2k
+

k

2k′
+ 2(e · e′)2 − 1

)

V pi, pf, ki, kf, e, ep;

S k, kp, [alpha^2/(2*m^2) * (kp/k)^2], m;

Local C = [alpha^2/(2*m^2) * (kp/k)^2] / 16

* (g_(1,pf) + m)

* (g_(1,ep,e,ki)/ki.pi + g_(1,e,ep,kf)/kf.pi)

* (g_(1,pi) + m)

* (g_(1,ki,e,ep)/ki.pi + g_(1,kf,ep,e)/kf.pi)

;

trace4,1;

.sort

*

131

repeat;

id ki.ki = 0;

id kf.kf = 0;

id pi.pi = m^2;

id pf.pf = m^2;

id pi.e = 0;

id pi.ep = 0;

id pi.pf = m^2 + ki.kf;

id pi.ki = m*k;

id 1/(pi.ki)=1/(m*k);

id pi.kf = m*kp;

id 1/(pi.kf)=1/(m*kp);

id pf.e = -kf.e;

id pf.ep = ki.ep;

id pf.ki = m*kp;

id pf.kf = m*k;

id ki.e = 0;

id ki.kf = m*(k-kp);

id kf.ep = 0;

id e.e = -1;

id ep.ep = -1;

endrepeat;

*

Bracket [alpha^2/(2*m^2) * (kp/k)^2];

Format 60;

Print;

.end

C =

+ [alpha^2/(2*m^2)*(kp/k)^2] * (- 1 + 1/2*k^-1*kp

+ 1/2*k*kp^-1 + 2*e.ep^2);

5.6 Limitations in Wildcarding

1. Implement the trigonometric identities

sin(x+ y) = sinx cos y + cosx sin y,

cos(x+ y) = cosx cos y + sinx sin y,

and apply them to sin(a+ b) and sin(a+ b+ c).

Indices mu,nu;

Vectors a,b;

CFunction sin,cos;

Local expr1 = sin(a+b);

id sin(nu?)=sin(nu)*cos(nu);

id sin?(?x)*cos?(?x)=0;

Print;

.sort

expr1 =

sin(a)*cos(b) + sin(b)*cos(a);

Local expr2 = cos(a+b);

132

id cos(nu?)=1/2*cos(nu)*cos(nu)+1/2*sin(nu)*sin(nu);

id sin?(?x)*sin?(?x)=0;

id cos?(?x)*cos?(?x)=0;

Print expr2;

.end

expr2 =

sin(a)*sin(b) + cos(a)*cos(b);

2. Implement the rule sin(2x) → 2 sinx cosx, and apply it to sin(2a), sin(3a), and sin(4a).

CFunctions sin,cos,f;

Symbols a,b,x;

Local expr1 = sin(2*a);

Local expr2 = sin(3*a);

Local expr3 = sin(4*a);

repeat;

id sin(2*x?)=2*sin(x)*cos(x);

id sin(4*x?)=2*sin(2*x)*cos(2*x);

endrepeat;

Print;

.end

expr1 =

2*sin(a)*cos(a);

expr2 =

sin(3*a);

expr3 =

4*sin(a)*cos(a)*cos(2*a);

133

Chapter 6

Answers to Problem of Chapter 3

6.1 Introduction

1. Let the Fibonacci polynomial Fn(x) be given by F1(x) = 1, F2(x) = x, and Fn(x) = xFn−1(x) +
Fn−2(x), for n > 2. Write a program that computes the Fibonacci polynomial. Can your program
compute F50(x)?

#procedure Fibonacci(F,n,x)

repeat;

id ‘F’(1,‘x’?) = 1;

id ‘F’(2,‘x’?) = ‘x’;

id ‘F’(‘n’?,‘x’?)=‘x’*‘F’(‘n’-1,‘x’) + ‘F’(‘n’-2,‘x’);

endrepeat;

#endprocedure

Symbol x,y,n;

CFunction F;

Local F3 = F(3,y);

Local F20 = F(20,y);

#call Fibonacci(F,n,y)

Print;

.end

F3 =

1 + y^2;

F20 =

10*y + 165*y^3 + 792*y^5 + 1716*y^7 + 2002*y^9 + 1365*y^11 + 560*y^13 +

136*y^15 + 18*y^17 + y^19;

The above program computes Fibonacci polynomials, but it would take a long time to compute F50.
The next FORM program performs better.

#define MAX "50"

Symbols x;

Local F1 = 1;

Local F2 = x;

#do i = 3, ‘MAX’

.sort

drop F{‘i’-2};

Local F‘i’= x*F{‘i’-1} + F{‘i’-2};

134

#enddo

print F‘MAX’;

.end

F50 =

25*x + 2600*x^3 + 80730*x^5 + 1184040*x^7 + 10015005*x^9 + 54627300*x^11

+ 206253075*x^13 + 565722720*x^15 + 1166803110*x^17 + 1855967520*x^19

+ 2319959400*x^21 + 2310789600*x^23 + 1852482996*x^25 + 1203322288*x^27

+ 635745396*x^29 + 273438880*x^31 + 95548245*x^33 + 26978328*x^35 +

6096454*x^37 + 1086008*x^39 + 148995*x^41 + 15180*x^43 + 1081*x^45 + 48*

x^47 + x^49;

2. How would you generate in FORM the expression

25
∑

i=0

(−1)iai and change it with identifications into

25
∑

i=0

(−1)ibi?

#define MAX "25"

AutoDeclare Symbol a, b;

Local expr = a0 - ... + a‘MAX’;

Print;

.sort

expr =

a0 - a1 + a2 - a3 + a4 - a5 + a6 - a7 + a8 - a9 + a10 - a11 + a12 - a13

+ a14 - a15 + a16 - a17 + a18 - a19 + a20 - a21 + a22 - a23 + a24 - a25

;

#do i = 0, ‘MAX’

id a‘i’ = b‘i’;

#enddo

Print;

.end

expr =

b0 - b1 + b2 - b3 + b4 - b5 + b6 - b7 + b8 - b9 + b10 - b11 + b12 - b13

+ b14 - b15 + b16 - b17 + b18 - b19 + b20 - b21 + b22 - b23 + b24 - b25

;

3. Write a FORM procedure that allows you to work out contracted expressions like dot products of
vectors and FORM expressions of type a(p, q), where a is a matrix, and p, q are vectors.

Set mat: ;

Set vec: ;

#procedure workout(mat,vec,dim)

id p?‘vec’.q?‘vec’ = <p(1)*q(1)> + ... + <p(‘dim’)*q(‘dim’)>;

id t?‘mat’(?a,p?‘vec’,?b) =

<p(1)*t(?a,1,?b)> + ... + <p(‘dim’)*t(?a,‘dim’,?b)>;

#endprocedure

Vectors p,q,u,v,w;

Indices i,j,k;

Tensor t,a,b;

135

Local F1 = u.v;

Local F2 = u.v+u.w;

Local F3 = a(i,j)*v(j);

Local F4 = a(i,j)*u(i);

Local F5 = a(i,j)*u(i)*v(j);

Local F6 = b(i,j,k)*u(i)*v(j)*w(k);

Print;

.sort

F1 =

u.v;

F2 =

u.v + u.w;

F3 =

a(i,v);

F4 =

a(u,j);

F5 =

a(u,v);

F6 =

b(u,v,w);

Set matrices: a,b;

Set vectors: u,v,w;

repeat;

#call workout(matrices, vectors, 2)

endrepeat;

Print;

.end

F1 =

u(1)*v(1) + u(2)*v(2);

F2 =

u(1)*v(1) + u(1)*w(1) + u(2)*v(2) + u(2)*w(2);

F3 =

a(i,1)*v(1) + a(i,2)*v(2);

F4 =

a(1,j)*u(1) + a(2,j)*u(2);

F5 =

a(1,1)*u(1)*v(1) + a(1,2)*u(1)*v(2) + a(2,1)*u(2)*v(1) + a(2,2)*u(2)*

v(2);

F6 =

b(1,1,1)*u(1)*v(1)*w(1) + b(1,1,2)*u(1)*v(1)*w(2) + b(1,2,1)*u(1)*v(2)*

w(1) + b(1,2,2)*u(1)*v(2)*w(2) + b(2,1,1)*u(2)*v(1)*w(1) + b(2,1,2)*u(2)

136

*v(1)*w(2) + b(2,2,1)*u(2)*v(2)*w(1) + b(2,2,2)*u(2)*v(2)*w(2);

First we introduce two auxiliary sets, viz., mat and vec, to specify that the first two arguments of the
procedure workout are sets. In the main program we specify the sets of matrices and vectors that we
are actually going to work out.

4. Write a FORM procedure that given an integer n and a list of three variables returns the sum of
all monomials that have n as total degree. E.g., #call(monomialsum(2,x,y,z) should return x2 +
xy + y2 + xz + yz + z2. Generalize your program to any number of variables in the sense that
#call(monomialsum(n,m,x) creates the sum of all monomials in m unknowns x1, x2, . . . , xm of total
degree n

#procedure monomialsum3(n,X,Y,Z)

id dummy =

#do i = 0, ‘n’

#do j = 0, {‘n’-‘i’}

+ ‘X’^‘i’ * ‘Y’^‘j’ * ‘Z’^{‘n’-‘i’-‘j’}

#enddo

#enddo

;

#endprocedure

Symbols x,y,z,dummy;

Local expr = dummy;

#call monomialsum3(2,x,y,z)

Print;

.end

expr =

x*y + x*z + x^2 + y*z + y^2 + z^2;

and generally,

#define m "4"

Symbols X1,...,X‘m’;

Set indets: X1,...,X‘m’;

Set s: ;

#procedure monomialsum(n,s)

#do i = 1, ‘m’

id dummy = dummy * (

#do j = 0, ‘n’

+ ‘s’[‘i’]^‘j’

#enddo

);

#enddo

id dummy = 1;

repeat;

id x?‘s’?indets = x;

endrepeat;

if (count(<X1,1>,...,<X‘m’,1>) != ‘n’) discard;

repeat;

id x?indets?‘s’ = x;

endrepeat;

#endprocedure

137

Symbols w,x,y,z,dummy;

Set unknowns: w,x,y,z;

Local expr = dummy;

#call monomialsum(2,unknowns)

Print;

.sort

expr =

w*x + w*y + w*z + w^2 + x*y + x*z + x^2 + y*z + y^2 + z^2;

AutoDeclare Symbol u;

Set UNKNOWNS: u1,...,u‘m’;

Local expr = dummy;

#call monomialsum(3,UNKNOWNS)

Print;

.end

expr =

u1*u2*u3 + u1*u2*u4 + u1*u2^2 + u1*u3*u4 + u1*u3^2 + u1*u4^2 + u1^2*u2

+ u1^2*u3 + u1^2*u4 + u1^3 + u2*u3*u4 + u2*u3^2 + u2*u4^2 + u2^2*u3 +

u2^2*u4 + u2^3 + u3*u4^2 + u3^2*u4 + u3^3 + u4^3;

The general program screams for explanation. First of all, we have defined a procedure with two
arguments:

• The first argument n is used for the total degree in which we are interested.

• The second argument stands for the set of unknowns. We use a set because it allows us easy
use of various names for the unknowns: we can have the indeterminates w, x, y, z as easily as the
unknowns u1, u2, u3, u4.

Actually we introduce another set of unknowns, called indets, for use inside the procedure only. The
reason for this is that the statement

if (count(<‘s’[1],1>,...,<‘s’[‘m’],1>) != ‘n’) discard;,

which one may expect in the above FORM program, does not parse well. The error message that
the argument is not a symbol, function, vector or dot product would appear. With the auxiliary set
indets, we first replace the variables in the given argument set by the variables X1, X2, etc., then we
discard all terms of wrong total degree via the command

if (count(<X1,1>,...,<X‘m’,1>) != ‘n’) discard;,

and finally we backsubstitute the original unknowns.

5. Write a FORM procedure that can integrate multivariate polynomials.

#procedure int(u,du)

multiply ‘du’;

id ‘du’*‘u’^n? = ‘u’^(n+1)/(n+1);

#endprocedure;

Symbols x,y,z,n,dx,dy,dz;

Local F = x^2*y^3 + x*z^2;

138

#call int(x|dx) * integration with respect to x

#call int(y|dy) * integration with respect to y

#call int(z|dz) * integration with respect to z

Print;

.end;

F =

1/6*x^2*y*z^3 + 1/12*x^3*y^4*z;

6. Write a FORM procedure that can integrate integrals of types
∫

xn cosxdx and
∫

xn cosxdx.

#procedure int(x,dx)

#call tosymbols;

multiply ‘dx’;

repeat;

id select fromx dx*[sin(x)] = - [cos(x)];

id select fromx dx*[cos(x)] = [sin(x)];

id select fromx dx*x^n?*[sin(x)] =

- x^n*[cos(x)] + dx*n*x^(n-1)*[cos(x)];

id select fromx dx*x^n?*[cos(x)] =

x^n*[sin(x)] - dx*n*x^(n-1)*[sin(x)];

endrepeat;

#call tofunctions;

#endprocedure;

#procedure tosymbols()

id sin(x) = [sin(x)];

id cos(x) = [cos(x)];

#endprocedure

#procedure tofunctions()

id [sin(x)] = sin(x);

id [cos(x)] = cos(x);

#endprocedure

Symbols x,[sin(x)],[cos(x)],n,dx;

CFunctions sin,cos;

Set fromx:x,[sin(x)],[cos(x)];

Local exprcos = x^6*cos(x);

Local exprsin = x^7*sin(x);

#call int(x|dx);

Print;

.end

exprcos =

- 720*sin(x) + 360*sin(x)*x^2 - 30*sin(x)*x^4 + sin(x)*x^6 + 720*cos(x)

*x - 120*cos(x)*x^3 + 6*cos(x)*x^5;

exprsin =

- 5040*sin(x) + 2520*sin(x)*x^2 - 210*sin(x)*x^4 + 7*sin(x)*x^6 + 5040*

cos(x)*x - 840*cos(x)*x^3 + 42*cos(x)*x^5 - cos(x)*x^7;

7. The Coxeter group of type H3 has Coxeter graph

1◦
5

2◦ 3◦

139

and the following complete rewrite system

s2i → 1 for i = 1, 2, 3
s3s1 → s1s3

s2s1s2s1s2 → s1s2s1s2s1
s3s2s3 → s2s3s2

s3s2s1s2s3s2 → s2s3s2s1s2s3
(s3s2s1s2s1)

2 → s2s3s2s1s2s1s3s2s1s2

Write a FORM program to compute all elements of the Coxeter group and the Poincaré polynomial.

* define a procedure to generate reduction rules

#procedure reduce()

id s?^2 = 1;

id s3*s1 = s1*s3;

id s2*s1*s2*s1*s2 = s1*s2*s1*s2*s1;

id s3*s2*s3 = s2*s3*s2;

id s3*s2*s1*s3 = s1*s3*s2*s1;

id s3*s2*s1*s2*s3*s2 = s2*s3*s2*s1*s2*s3;

id (s3*s2*s1*s2*s1)^2 = s2*s3*s2*s1*s2*s1*s3*s2*s1*s2;

#endprocedure

*

AutoDeclare Functions s;

CFunctions dummy;

Symbol x, t;

* initialize: start with trivial element

Local expr = 1;

Local lastElements = 1;

* create recursively new elements of the group

#do dummyindex = 1,1

.sort

* generate new words with word length raised by one

Drop lastElements;

Skip expr;

Local elements = lastElements * t * (s1+s2+s3);

* generate reduction rules and apply them on the newly created elements

repeat;

#call reduce

endrepeat;

* remove newly created elements that have too small word length

if (count(s1,1,s2,1,s3,1) < count(t,1));

discard;

endif;

.sort (polyfun=dummy);

* make coefficients equal to 1

Skip expr;

id dummy(x?) = 1;

.sort

* terminate loop if no new elements are added anymore

#if (termsin(elements)!=0)

Local lastElements = elements;

Local expr = expr + elements;

redefine dummyindex "0";

#endif

.sort

140

#enddo

* list all group elements; words of length l are tagged by the power t^l

On statistics;

Drop elements;

Bracket t;

Print +s;

.sort

Time = 0.92 sec Generated terms = 120

expr Terms in output = 120

Bytes used = 5380

expr =

+ t * (

+ s1

+ s2

+ s3

)

+ t^2 * (

+ s1*s2

+ s1*s3

+ s2*s1

+ s2*s3

+ s3*s2

)

+

+ t^14 * (

+ s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2

+ s1*s2*s1*s2*s3*s2*s1*s2*s1*s3*s2*s1*s2*s3

+ s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s3

)

+ t^15 * (

+ s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s3

)

+ 1

;

* compute the Poincare polynomial

Off statistics;

id s? = 1;

Format 65;

Print;

.end

expr =

1 + 3*t + 5*t^2 + 7*t^3 + 9*t^4 + 11*t^5 + 12*t^6 + 12*t^7

+ 12*t^8 + 12*t^9 + 11*t^10 + 9*t^11 + 7*t^12 + 5*t^13 +

3*t^14 + t^15;

141

The answer mimics the code of the FORM example about the Coxeter group of type An in this section,
except that there no number n is involved and that only a small system of rewrite rules is needed. By
the way, we have not listed all 120 group elements in the above printout; we manually replaced most
elements by a sequence of dots.

8. Look up the complete rewrite system for the Coxeter group of type Bn.

(i) Write a FORM program that can be used to compute all elements of the Coxeter group of type
Bn and the Poincaré polynomial for n = 2, . . . , 5. By the way, the Poincaré polynomial W (t) is
for a Coxeter group of type Bn given by

W (t) =

n
∏

i=1

(ti + ti−1 + . . .+ t+ 1) =

n
∏

i=1

t2i − 1

t− 1

Make sure that your result is in agreement with this formula.

(ii) Conjecture a general formula for the maximum word length in the Coxeter group of type Bn and
try to find a reduced expression for the longest element.

(iii) Determine the order of the Coxeter element s1s2 . . . sn for n = 2, . . . , 5. Can you guess a general
formula for the order of the Coxeter element?

Below, we only show the results for n = 3, but the program works for general n.

#define n "3"

* define a procedure to generate reduction rules

#procedure reduce()

id s?^2 = 1;

#do i = 3,‘n’

#do j = 1,{‘i’-2}

id s‘i’ * s‘j’ = s‘j’ * s‘i’;

#enddo

#enddo

#do i = 2,{‘n’-1}

#do j = 1,{‘i’-1}

id s‘i’ * ... * s‘j’ * s‘i’ =

s{‘i’-1} * s‘i’ * ... * s‘j’;

#enddo

#enddo

#do i = 1,{‘n’-1}

id (s‘n’ * ... * s‘i’)^2 =

s{‘n’-1} * (s‘n’ * ... * s‘i’) * (s‘n’ * ... * s{‘i’+1});

#enddo

#endprocedure

*

AutoDeclare Functions s;

CFunctions dummy;

Symbol x, t;

* initialize: start with trivial element

Local expr = 1;

Local lastElements = 1;

* create recursively new elements of the group

#do dummyindex = 1,1

.sort

* generate new words with word length raised by one

Drop lastElements;

Skip expr;

142

Local elements = lastElements * t * (s1+...+s‘n’);

* generate reduction rules and apply them on the newly created elements

repeat;

#call reduce

endrepeat;

* remove newly created elements that have too small word length

if (count(<s1,1>,...,<s‘n’,1>) < count(t,1));

discard;

endif;

.sort (polyfun=dummy);

* make coefficients equal to 1

Skip expr;

id dummy(x?) = 1;

.sort

* terminate loop if no new elements are added anymore

#if (termsin(elements)!=0)

Local lastElements = elements;

Local expr = expr + elements;

redefine dummyindex "0";

#endif

.sort

#enddo

* list all group elements; words of length l are tagged by the power t^l

On statistics;

Drop elements;

Bracket t;

Print +s;

.sort

Time = 0.37 sec Generated terms = 48

expr Terms in output = 48

Bytes used = 1588

expr =

+ t * (

+ s1

+ s2

+ s3

)

+ t^2 * (

+ s1*s2

+ s1*s3

+ s2*s1

+ s2*s3

+ s3*s2

)

+ t^3 * (

+ s1*s2*s1

+ s1*s2*s3

+ s1*s3*s2

+ s2*s1*s3

143

+ s2*s3*s2

+ s3*s2*s1

+ s3*s2*s3

)

+ t^4 * (

+ s1*s2*s1*s3

+ s1*s2*s3*s2

+ s1*s3*s2*s1

+ s1*s3*s2*s3

+ s2*s1*s3*s2

+ s2*s3*s2*s1

+ s2*s3*s2*s3

+ s3*s2*s1*s3

)

+ t^5 * (

+ s1*s2*s1*s3*s2

+ s1*s2*s3*s2*s1

+ s1*s2*s3*s2*s3

+ s1*s3*s2*s1*s3

+ s2*s1*s3*s2*s1

+ s2*s1*s3*s2*s3

+ s2*s3*s2*s1*s3

+ s3*s2*s1*s3*s2

)

+ t^6 * (

+ s1*s2*s1*s3*s2*s1

+ s1*s2*s1*s3*s2*s3

+ s1*s2*s3*s2*s1*s3

+ s1*s3*s2*s1*s3*s2

+ s2*s1*s3*s2*s1*s3

+ s2*s3*s2*s1*s3*s2

+ s3*s2*s1*s3*s2*s3

)

+ t^7 * (

+ s1*s2*s1*s3*s2*s1*s3

+ s1*s2*s3*s2*s1*s3*s2

+ s1*s3*s2*s1*s3*s2*s3

+ s2*s1*s3*s2*s1*s3*s2

+ s2*s3*s2*s1*s3*s2*s3

)

+ t^8 * (

+ s1*s2*s1*s3*s2*s1*s3*s2

+ s1*s2*s3*s2*s1*s3*s2*s3

+ s2*s1*s3*s2*s1*s3*s2*s3

)

+ t^9 * (

+ s1*s2*s1*s3*s2*s1*s3*s2*s3

)

144

+ 1

;

* compute the Poincare polynomial

Off statistics;

Drop expr;

id s? = 1;

Format 65;

Print;

.sort

*determine the length of the Coxeter element s1 * s2 * ... * sn

Off statistics;

Local coxeterElement = s1 * ... * s‘n’;

Local order = 1;

#do dummyindex = 1,1

.sort

Local order = order+1;

Local coxeterElement = coxeterElement * s1 * ... * s‘n’;

repeat;

#call reduce

endrepeat;

if (count(<s1,1>,...,<s‘n’,1>) > 0);

redefine dummyindex "0";

endif;

.sort

#enddo

Print order;

.sort

order =

6;

.end

The results of the computations for n = 2, 3, 4, 5 suggest that the maximum word length in the group
of type Bn is equal to n2 and that the order of the Coxeter element s1s2 . . . sn equals 2n.

6.2 Control Structures

1. Explain the result of the following program

Symbols x,y;

Local F = 1 + y^2*x^4 + y^3*x^5 + y^4*x^6 + y^5*x^7;

if (count(y,-1,x,2) > 7);

discard;

endif;

Print;

.end

Symbols x,y;

Local F = 1 + y^2*x^4 + y^3*x^5 + y^4*x^6 + y^5*x^7;

if (count(y,-1,x,2) > 7);

discard;

145

endif;

Print;

.end

F =

1 + x^4*y^2 + x^5*y^3;

The variables y and x have weights -1 and 2 respectively. So, the term y3 ∗ x5 has actually degree
3 × (−1) + 5 × 2 = 7 and will not be discarded.

2. Compute the sum

5
∑

i=−5

1

i2
xi and then throw away all terms with positive exponent and those with

coefficient smaller than 1
10 .

Symbols i,x;

Local SUM=sum_(i, 1, 5, 1/i^2*(x^i+x^-i));

Print;

.sort

SUM =

1/25*x^-5 + 1/16*x^-4 + 1/9*x^-3 + 1/4*x^-2 + x^-1 + x + 1/4*x^2 + 1/9*

x^3 + 1/16*x^4 + 1/25*x^5;

if ((count(x,1)>0) || (coefficient<1/10)) discard;

Print;

.end

SUM =

1/9*x^-3 + 1/4*x^-2 + x^-1;

3. Picard’s method for generating an approximate solution of the initial value problem

y′ = f(x, y), y(x0) = y0

is to iterate the formula

yn+1(x) = y0 +

∫ x

x0

f(ξ, yn(ξ)) dξ

starting from y0(x) = y0.

(i) Write a FORM program that for a given polynomial f in x and y and a given number N computes
the approximate solution p(x) that agrees with the exact solution y(x) up to and including degree
N , i.e.,
y(x)−p(x) = O(xN+1). Avoid expression swell by performing computations only up to and includ-
ing
degree N and let the iteration only stop when two successive approximations are equal.

(ii) Compute y5(x) for the initial-value problem

y′ = xy2, y(0) = 1.

(iii) Check if your program can also compute y20.

(iv) Compare the result in part (iii) with the series expansion of the exact solution y(x) =
1

1 − x2
.

It suffices to show the FORM session of part (iii).

146

#define N "20"

#define f "2*x*y^2" * the function f in ODE

#procedure int(u,du) * integration routine

multiply ‘du’;

id ‘du’*‘u’^k? = ‘u’^(k+1)/(k+1);

#endprocedure;

Symbols x(:‘N’), y, dx, k;

Local X0 = 0;

Local Y0 = 1;

Local previous = 1;

#do dummyindex = 1,1

.sort

Skip Y0, X0, previous;

Local approx = ‘f’;

id y = previous;

#call int(x,dx); * compute indefinite integral

.sort;

Skip approx, previous;

Local c = approx; * compute constant

id x = X0;

.sort

Drop c;

Local approx = Y0 + approx - c; * compute next approximation

.sort;

Local difference = approx - previous;

.sort; * compare with previous approximation

#if (termsin(difference)!=0)

Local previous = approx;

redefine dummyindex "0";

#endif

.sort

#enddo

.sort

Print previous;

.end;

previous =

1 + x^2 + x^4 + x^6 + x^8 + x^10 + x^12 + x^14 + x^16 + x^18 + x^20;

This is in perfect agreement with the series approximation of the exact solution y(x) =
1

1 − x2
. You

can easily verify that the program works fine for other intial value problems as well.

147

Bibliography

[Cohen et al 92] Arjeh M. Cohen, James H. Davenport, and André J.P. Heck, An overview of computer

algebra, In: A.M. Cohen (ed.), Computer Algebra for Industry: Problem Solving in Practice,
John Wiley & Sons, 1992, pp. 1-52.

[du Cloux 98] Fokko du Cloux, http://www.desargues.univ-lyon1.fr/home/ducloux/coxeter.html.

[du Cloux 99] Fokko du Cloux, A Transducer Approach to Coxeter Groups, J. Symbolic Computation 27
(1999) 311-324.

[Humprheys 90] James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in ad-
vanced mathematics 29, Cambridge University Press, 1990.

[le Chenadec 86] Philippe Le Chenadec, Canonical Forms in Finitely Presented Algebra, Research Notes in
Theoretical Computer Science, Pitman, London, 1986.

[Oldenborgh 95] Geert Jan van Oldenborgh, An Introduction to FORM,
http://rulilr.leidenuniv.nl/form/form.html (1995).

[Schellekens 97] A.N. Schellekens, Quantum Field Theory, Lectures given at the 1997 Graduate School
of Particle Physics, Monschau, 15-26 September 1997, available via anonymous ftp at
ftp://ftp.nikhef.nl/pub/aio.school/Monschau.ps.gz (1997).

[Veltman 89] M. Veltman, Gammatrica, Nucl. Phys. B319 (1989) 253-270.

[Vermaseren 91] J.A.M. Vermaseren, Symbolic Manipulation with FORM, Tutorial and Reference Manual ,
CAN (1991).

148

