
Efficient Response Time Predictions by Exploiting Application and Resource
State Similarities

Hui Li∗ David Groep† Lex Wolters∗

∗Leiden Institute of Advanced Computer †National Institute for Nuclear and High
Science (LIACS), Leiden University Energy Physics (NIKHEF)

PO Box 9512, 2333 CA PO Box 41882, 1009 DB
Leiden, The Netherlands Amsterdam, The Netherlands

E-mail: hli@liacs.nl davidg@nikhef.nl llexx@liacs.nl

Abstract

In large-scale Grids with many possible resources (clus-
ters of computing elements) to run applications, it is use-
ful that the resources can provide predictions of job re-
sponse times so users or resource brokers can make bet-
ter scheduling decisions. Two metrics need to be estimated
for response time predictions: one is how long a job exe-
cutes on the resource (application run time), the other is
how long the job waits in the queue before starting (queue
wait time). In this paper we propose an Instance Based
Learning technique to predict these two metrics by mining
historical workloads. The novelty of our approach is to in-
troduce policy attributes in representing and comparing re-
source states, which is defined as the pool of running and
queued jobs on the resource at the time to make a predic-
tion. The policy attributes reflect the local resource schedul-
ing policies and they can be automatically discovered us-
ing a genetic search algorithm. The main advantages of
this approach compared with scheduler simulation are two-
folds: Firstly, it has a better performance to meet the real
time requirement of Grid resource brokering; secondly, it is
more general because the scheduling policies are learned
from past observations. Our experimental results on the
NIKHEF LCG production cluster show that acceptable pre-
diction accuracy can be obtained, where the relative predic-
tion errors for response times are between 0.35 and 0.70.

1 Introduction

Large-scale Grids typically consist of many geographi-
cally distributed resources. As an example, the LHC Com-
puting Grid (LCG) [5] testbed currently has approximately
140 sites in 34 countries with a total number of 12,516
CPUs and 5 Petabytes storage. Resource brokering or su-

perscheduling in such an environment is a challenging task,
where dynamic information about the sites are crucial in
the scheduling cycle. Response time of a job, defined as the
time elapsed from its submission till completion, is such
a dynamic metric that needs to be estimated and provided
by the resources. In this paper we address the problems of
predicting application response times on resources such as
space-shared parallel supercomputers and clusters.

Response time is composed of two main components:
application run time and queue wait time. The basic idea
of our approach is to derive predictions from similar obser-
vations in the past. The key problem here is how to define
similarity to compare jobs. For the application run time, job
attributes are naturally used for similarity definition. For in-
stance, group name, application name, etc. For the queue
wait time, however, new attributes need to be introduced as
waiting time of a job is typically the result of interactions
of the job, other running and queued jobs, and the schedul-
ing system. We define a resource state as the pool of run-
ning and queued jobs on the resource at the time to make a
prediction. Several new attributes are introduced to repre-
sent a resource state, such as the sum of run time multiply-
ing with the number of CPUs (“processor*time”) of queued
jobs. We further introduce policy attributes to categorize
resource state attributes in a more fine-grained level. For
example, if group name is used as policy attribute, the “pro-
cessor*time” of queued jobs will be categorized by groups.
An Instance Based Learning (IBL) technique with an ex-
tended distance function is adopted to measure job as well
as resource state similarity and make predictions. Attributes
are selected and other IBL parameters are optimized using
a genetic search algorithm.

The rest of the paper is organized as follows. Section 2
summarizes the related work in response time predictions.
Section 3 introduces our definitions for job similarity and
resource state similarity. New attributes defined for re-

source states are discussed in detail. Section 4 describes
the prediction algorithm. The distance function, induction
models, and the genetic algorithm are elaborated. Section 5
presents the experimental results and analysis using work-
load on the NIKHEF LCG production cluster. Conclusions
and future work are discussed in the final section.

2 Related Work

Techniques have been proposed in the literature for pre-
dicting application run times using historical information.
In [10] “templates of attributes” are defined for categorizing
historical jobs and statistical techniques like mean or linear
regression are applied to generate predictions. Templates
can be automatically discovered using a genetic search.
In [4] Instance Based Learning (IBL) techniques are inves-
tigated for run time predictions. IBL uses historical data
“near” the query point to build a local model for approxi-
mation. A proper distance metric has to be defined to mea-
sure the distances between data instances. In fact the IBL
algorithm is a generalization of the template approach, in
which distances are simplified to binary values (belong or
not belong to a specific category).

For queue wait times, the basic idea of most proposed
techniques is based on scheduler simulation. In [11]
and [12] scheduling algorithms like FCFS, LWF, and back-
fill are simulated for predicting queue wait times, where
application run times are estimated using the template ap-
proach [11], or by IBL algorithms [12]. In [6] simulation is
also adopted to predict queue wait times for a policy-based
scheduler “Maui”. Although relatively better prediction ac-
curacy can be achieved using simulation, several major dis-
advantages remain for this approach. Firstly, it has a seri-
ous performance problem to meet the real-time requirement
in the Grid brokering process. Secondly, it is not a gen-
eral solution as there are different types of local schedul-
ing systems deployed on different Grid sites. Some sites
have schedulers with combinations of basic scheduling al-
gorithms, most sites enforce different kinds of policies in
their own fashion.

As an alternative solution, we are trying to derive queue
wait times also from similar historical observations. From
this perspective, the assumption is that “similar” jobs un-
der “similar” resource states would most likely have simi-
lar waiting times, given that the scheduling algorithm and
policies remain unchanged. Similar approach has been pro-
posed in [9], in which summary statistics about the resource
state (e.g. free CPUs, number of running jobs) is used as at-
tributes in template definition. The template approach to
estimate application run times as described above can be
applied similarly to predict waiting times. Our work dis-
tinguishes from it in two aspects: Firstly we introduce at-
tributes that reflect scheduling policies to represent resource

Abbr. Job Attribute Type
g group name nominal
u user name nominal
e executable name nominal
n number of CPUs nominal
r requested run time numeric-s

tod arrival time of day numeric-s

Table 1. Job attributes used (numeric-s: nu-
meric scalar)

Abbr. Policy Attribute Type
g group name nominal
u user name nominal
q queue name nominal

Table 2. Policy attributes defined

states in a more fine-grained level for similarity comparison,
where these policy attributes can be automatically discov-
ered by a genetic search. Secondly we use Instance Based
Learning as the common framework for both application
run times and queue wait times. We elaborate our approach
with detail in the following sections.

3 Similarity Definition

As mentioned above, the key problem in our approach is
how to properly define similarity. We introduce definitions
of job similarity and resource state similarity as follows.

3.1 Job Similarity

Jobs can be compared by their attributes recorded in the
workload traces. Table 1 shows several main attributes that
identify a job in openPBS accounting logs on the LCG
production cluster at NIKHEF [8]. These attributes are
mostly self-explanatory by their names and they have two
main types, namely, nominal scalar (strings) or numeric
scalar (numbers). In the Instance Based Learning algo-
rithm described later, similarity between jobs are formu-
lated by a distance function made of attributes. Jobs with
smaller distances are considered more similar than others.
For instance, jobs from the same group, say “bioinfo”, and
with same executable name called “proteinmatch” will have
smaller distances than those who have nothing in common,
therefore have a higher chance being used for predictions
of the same kind. To make a good distance function, we
employ a genetic search to select only relevant attributes
according to the target (application run time or queue wait
time). Automatic discovery of relevant attributes enables

Abbr. State Attribute Value Calculation Type
freeCPUs number of free CPUs numeric-s
VRunJobs categorized number of running

jobs
Vi = NRi numeric-V

VQueueJobs categorized number of queue jobs Vi = NQi numeric-V
VAlreadyRun categorized sum of elapsed proces-

sor*time of running jobs
Vi =

∑NRi

j=1 alrunt(j)× cpu(j) numeric-V

VRunRemain categorized sum of remaining pro-
cessor*time of running jobs

Vi =
∑NRi

j=1 remaint(j)× cpu(j) numeric-V

VAlreadyQueue categorized sum of already queued
processor*time of queue jobs

Vi =
∑NQi

j=1 alrquet(j)× cpu(j) numeric-V

VQueueDemand categorized sum of demand pro-
cessor*time of queue jobs

Vi =
∑NQi

j=1 demandt(j)× cpu(j) numeric-V

Table 3. Resource state attributes (numeric-s: numeric scalar, numeric-V: numeric vector, Vi: the
value of the ith category, NR: number of running jobs, NQ: number of queueing jobs, alrunt(j):
already run time for the jth job in the category, remaint(j): remaining run time for the jth job in the
category, alrquet(j): already queued time for the jth job in the category, demandt(j): run time for the
jth job in the category, cpu(j): number of CPUs for the jth job in the category)

the technique to apply when more information is available,
such as executable arguments.

3.2 Resource State Similarity

More issues arise when measuring similarities of re-
source states. Firstly, since a resource state consists of run-
ning and queued jobs at a particular time, attributes have
to be defined to represent the resource states in a way that
they can be compared properly. Secondly, policy attributes
that reflect the scheduling policies have to be embedded into
the state attributes so that local scheduling information can
be included. Table 2 and Table 3 lists the policy attributes
and the resource state attributes, respectively. They are ex-
plained extensively as follows.

Three attributes are defined as the candidate policy at-
tributes for resource states, namely, group name, user name,
and queue name. These job credential information are fre-
quently used in defining local scheduling policies. For in-
stance, group name, which is also referred to “Virtual Orga-
nization” in the Grid, is a popular choice to make schedul-
ing policies based on various QoS requirements of differ-
ent stakeholders. Site administrators may define multiple
queues and make different rules for them. Other attributes
that may influence scheduling decisions can also be poten-
tially added to this list. Useful policy attributes will be au-
tomatically selected in the genetic search.

The policy attributes identify a set of categories to which
jobs in a resource state will be assigned. How to repre-
sent and compare categorized resource state attributes be-
comes a central problem to address. We define a new at-

tribute type called “numeric-V”, which contains a vector
of <key, value> pairs. The key is the values of selected
policy attributes and represents a specific category. The
value is a numeric scalar variable associated with that cate-
gory. As is shown in Table 3, most of the resource state at-
tributes (except “freeCPUs”) are of the type “numeric-V”.
For example, assuming that the selected policy attributes
are group and queue name (written as “group-queue”), they
generate categories such as “bioinfo-qlong”, “hep-dque”,
and “astronomy-qshort”. Attribute “VRunJobs” contains a
vector of pairs like <“bioinfo-qlong”, 32>, <“hep-dque”,
8>, etc, where the value in each pair represents the num-
ber of running jobs in the category identified by the key.
The same representation holds for other resource state at-
tributes. “VQueueJobs” contains policy-categorized num-
ber of queueing jobs. “VAlreadyRun” (“VRunRemain”) is
the elapsed (the remaining) processor*time of the running
jobs, which is calculated as the sum of number of CPUs
multiply with the already run time (the remaining run time).
“VAlreadyQueue” and “VQueueDemand” represent the al-
ready queued and the demand processor*time, respectively.
Mathematical forms for value calculation are listed in Ta-
ble 3. Distances between “num-V” type of attributes are
calculated using the distance function described in the next
section.

4 The Prediction Algorithm

Statistically application run times in the workload traces
are distributed with heavy tails and show a high level of
self-similarity [2]. This means that run times vary signif-

icantly across all time scales and global models such as
non-parametric regression or multi-layer sigmoidal neural
networks are not likely to work well. Same characteristics
apply for queue wait times. For predictions in these situa-
tions, Instance Based Learning (IBL) [1] that exploits local
models on relevant data become a more viable solution. We
introduce our IBL-based technique and the genetic search
algorithm as follows.

4.1 Instance Based Learning

IBL techniques typically store training data in a histor-
ical database, and make predictions for a particular query
by applying an induction model on its “nearby” data en-
tries. Two main components of IBL techniques, namely the
distance function to measure “nearness” and the induction
models, are defined for our algorithm.

4.1.1 The Distance Function

We employ the Heterogeneous Euclidean-Overlap Metric
(HEOM) [13] as the distance function. This distance func-
tion can be used on nominal and numeric scalar attributes,
and we extend it so that it can also be used for numeric
vector attributes. The extended HEOM distance function
defines distance between two values x and y of a given at-
tribute a as:

da(x, y) =

overlap(x, y), if a is nominal,
ns diff a(x, y), if a is numeric-s,
nv diff a(x, y), if a is numeric-V,
1, otherwise.

The function overlap for nominal scalar values is defined
as:

overlap(x, y) =
{

0 if x = y,
1 otherwise.

The function ns diff for numeric scalar values is defined
as:

ns diff a(x, y) =
|x− y|

maxa −mina
,

where maxa and mina are the maximum and minimum
values observed in the training data for attribute a.

The function nv diff a(x, y) for numeric vector value is
defined as:

nv diff a(x, y) =
∑Na

i=1(xi − yi)∑Na

i=1(xi + yi)
,

where i is the ith category and Na is the total number of
categories of x and y. This numeric vector distance is the

ratio of sum of per-category differences to the total amount
of values in all categories.

Unknown attribute values are handled by returning an at-
tribute distance of 1, i.e., the maximal distance. The above
definition for da returns a value in the range 0..1. The
overal distance between two input vector of attributes x and
y is given by the Heterogeneous Euclidean-Overlap Metric
function D(x,y):

D(x,y) =

√∑m
a=1 wa ∗ da(xa, ya)2∑m

a=1 wa
,

where attribute weights wa (of binary values 0 or 1) enables
attribute selection in the genetic search.

4.1.2 The Induction Models

Two induction models, namely 1-Nearest-Neighbor (1-NN)
and n-Weighted-Average (n-WA) are considered in our al-
gorithm.

1-NN: 1-Nearest-Neighbor predicts the target value of
the query point using that of the nearest neighbor according
to the distances.

n-WA: n-Weighted-Average makes predictions using the
weighted average of the nearest n neighbors. It is defined
as:

P (q) =
∑n

i=1 Wi ∗ V al(ei)∑n
i=1 Wi

,

Wi = K(D(q, ei)), and K(d) = e−d2
,

where q is the query point, P (q) is the target value to be
predicted, ei is the ith nearest neighbors and V al(ei) is its
target value, K is the kernel function and D is the distance
function mentioned above.

4.2 Genetic Search

There are many parameters to be tuned for the basic IBL
algorithm. For instance, it is important to select only rele-
vant attributes in the distance function for better “nearness”
measurement. In other words, attribute weights wa have to
be determined. The best policy attribute set has to be dis-
covered for reflecting the local scheduling policies. Proper
induction models as well as history database size have to
be set for a practically useful algorithm. We exploit a ge-
netic search to optimize these parameters by minimizing the
average prediction error on the training data set. Our ge-
netic algorithm is designed using standard operators such
as selection, mutation, and crossover [3]. Chromosomes are
structured to match the different objectives (application run
time or queue wait time).

4.2.1 Application Run Time

For predicting application run times the job attributes listed
in Table 1 are used in the distance function. The chromo-
some is encoded in binary bit format and it is structured in
three building blocks as follows:

{(w1, w2, ..., wNa), (m1,m2, ...,mNm), (h1, h2, ..., hNh
)},

where Na is the number of job attributes, Nm is the num-
ber of bits used for representing induction models, and Nh

is the number of bits used for representing history database
size. In our experiment we set Nm = 3 and select 8 can-
didate induction models for evaluation (1-NN, 3-WA, 5-
WA, 10-WA, 15-WA, 20-WA, 30-WA, 50-WA). We set Nh

also to 3 so 8 possible history database sizes are evaluated
(1000, 2000, ..., 8000). Larger history size than this set re-
sults in significantly longer lookup time while not much im-
provement in prediction accuracy is gained. The genetic
search is performed on the training set and attempts to min-
imize the average prediction error for application run times.
The optimized parameters after evaluation are used for run
time predictions on the test set.

4.2.2 Queue Wait Time

For queue wait time predictions the chromosome is struc-
tured as follows:

{(wp1, wp2, ..., wpNp
), (ws1, ws2, ..., wsNs

),

(wa1, wa2, ..., waNa
), (WA1,WA2),

(m1,m2, ...,mNm
), (h1, h2, ..., hNh

)},
where wp, ws, and wa are weights for job, policy, and
resource state attributes, Np, Ns, and Na are their num-
bers, respectively. Induction models and history database
size share the same structure as for application run times.
Since both resource state and application similarities are
concerned in queue wait times, we introduce a new build-
ing block (WA1,WA2) (binary values) to describe the rel-
ative significance of application similarity against resource
state similarity. The distance function for queue wait times
can be formulated by combining application distance and
resource state distance:

D′(x,y) = WA ∗ Da(x,y) + (1−WA) ∗ Ds(x,y),

where Da(x,y) and Ds(x,y) are distances of applica-
tions and resource states, respectively.WA is one of the four
values (0.25, 0.5, 0.75, 1) with respect to WA1 and WA2.
WA defines the proportion of application and resource state
in the overall distance function for queue wait times. For
example, different jobs under similar states may have to-
tally different waiting times. One may consider that appli-
cation distance is more important than resource state by set-
ting WA = 0.75, or vise versa using WA = 0.25. During

the test stage, two resource state attributes, namely VRun-
Remain and VQueueDemand, are calculated using the esti-
mated application run times. Predictions for response times
is obtained by combining application run time and queue
wait time estimates.

5 Experimental Results

We empirically evaluate our algorithm using eight-
month (from June 2004 to January 2005) workload traces
on the LCG production cluster at NIKHEF. This resource
has the following characteristics:

1. Architecture The NIKHEF cluster is built using popu-
lar COTS (Commodity Of The Shelf) components and
it consists of a mix of Intel and AMD CPUs, 512MB to
1GB memory, and Gigabit Ethernet connections. The
total number of CPUs change in the range of 244 and
288 as nodes are added or removed.

2. Workloads The workload traces are recorded in the
openPBS accounting logs. The cluster is heavily used
in production as there are more than 130,000 job en-
tries within eight-month time. Most of the jobs come
from Virtual Organizations on the LCG testbed.

3. Scheduling Policies The cluster is running Maui [7]
as the local scheduling engine. Firstfit backfilling
is employed in the scheduling algorithm. Prior-
ity/fairshare/throttling policies are enforced for differ-
ent groups and users according to their QoS require-
ments. Multiple queues are defined for jobs with dif-
ferent requested run times.

Two kinds of metrics are used for measuring the perfor-
mance of our algorithm. Prediction accuracy is measured
by the average absolute prediction error as well as by two
types of relative prediction errors. The first type (referred as
“absolute relative error”) is calculated by the average abso-
lute prediction error divided by the average run time (or wait
time, or response time), as is used in Table 4, 5, and 6. The
second type (referred as “relative error”) is the ratio of dif-
ferences between prediction and actual values against their
sums. It is formulated as re = (test − treal)/(test + treal),
where test and treal are predicted and actual values, respec-
tively. Figure 1 illustrates the relative errors for application
run time and queue wait time predictions.

Prediction time (Time per Prediction) is the average ex-
ecution time in milliseconds (ms) per prediction. Our eval-
uation is carried out on a Intel Xeon machine with four
2.8GHz CPUs and 3GB shared memory. The workload
dataset is divided into training and test sets throughout the
evaluation. Performance are evaluated on the test trace data

Period # Jobs Best Parameters by GS Abs. Error Rel. Error Time per Prediction
Aug ’04 16,917 (1, 1, 0, 0, 1, 0) (15-WA) (3000) 468.5 min 0.67 11.5 ms
Sep ’04 21,297 (0, 1, 0, 0, 1, 1) (10-WA) (5000) 253.4 min 0.63 19.8 ms
Oct ’04 18,167 (1, 0, 1, 0, 1, 1) (10-WA) (6000) 409.5 min 0.73 24.9 ms

Nov ’04 18,020 (0, 1, 0, 0, 1, 0) (10-WA) (5000) 210.5 min 0.43 17.1 ms
Dec ’04 11,598 (1, 0, 1, 0, 1, 0) (15-WA) (5000) 577.1 min 0.63 18.1 ms
Jan ’05 7,561 (0, 1, 0, 1, 1, 0) (15-WA) (6000) 542.1 min 0.72 17.7 ms

Table 4. Performance of the IBL algorithm in predicting application run times. Parameters: (g, u, e,
n, r, TOD) (model) (history size).

Period Best Parameters by GS Wait Time Response Time
Abs. Error Rel. Error T. p. P. Abs. Error Rel. Error

Aug ’04 (1, 1, 0) (1, 1, 1, 0, 1, 0, 0) (0, 1, 1, 0,
0, 1) (0.5) (5-WA) (8000)

294.7 min 0.82 236 ms 659.0 min 0.62

Sep ’04 (1, 0, 1) (0, 1, 1, 0, 1, 1, 1) (1, 0, 1, 1,
0, 1) (0.5) (10-WA) (5000)

184.0 min 0.83 141 ms 366.0 min 0.61

Oct ’04 (0, 1, 0) (1, 0, 0, 1, 0, 0, 1) (1, 1, 1, 1,
1, 1) (0.75) (1-NN) (5000)

619.4 min 0.81 94 ms 946.6 min 0.70

Nov ’04 (1, 0, 0) (0, 1, 0, 1, 0, 0, 1) (1, 1, 1, 1,
1, 0) (0.5) (10-WA) (5000)

192.4 min 0.39 112 ms 327.5 min 0.35

Dec ’04 (1, 1, 1) (0, 0, 0, 1, 0, 0, 1) (1, 1, 0, 0,
0, 1) (0.5) (1-NN) (5000)

132.3 min 0.80 42 ms 716.4 min 0.64

Jan ’05 (1, 0, 0) (0, 1, 0, 1, 0, 0, 1) (1, 1, 0, 0,
0, 0) (0.5) (10-WA) (6000)

54.4 min 0.99 56 ms 583.4 min 0.69

Table 5. Performance of the IBL algorithm in predicting queue wait times and response times. Pa-
rameters: (g, u, q) (freeCPUs, VRunJobs, VQueueJobs, VAlreadyRun, VRunRemain, VAlreadyQueue,
VQueueDemand) (g, u, e, n, r, TOD) (WA) (model) (history size).

of every one month, with the parameters found by the ge-
netic search on the preceding two-month traces. The use
of independent test sets enables a more objective evaluation
process and a more accurate reflection of how search and
prediction would be performed in practice.

Table 4 shows the performance of application run time
predictions in consecutive months. The absolute average
errors range from 210.5 to 577.1 minutes, and the absolute
relative errors are between 0.43 and 0.73. As is shown in
Figure 1(a), we can see that the relative errors are centered
at zero and a majority of jobs fall in between −0.5 and 0.5.
this means the algorithm performs quite well for run time
predictions. In Figure 1(c), we observe that more than 70%
of underestimation (r < 0) comes from long-running jobs
(with runtime larger than 104 seconds), which contribute
largely in the above absolute error measurements. The al-
gorithm suffers also from the “lagging” problem. Since a
lot of long production jobs are submitted in “bags” (many
almost identical jobs in very short time interval), the same
instances in history are selected by IBL for predictions for
all jobs in the bag. If the selected instances turn out to be

“bad”, large prediction errors are made for every job in the
bag. In situations where short test jobs (appears similar in
terms of features) exist between long production jobs the al-
gorithm performs poorly. Possible improvements which are
not investigated in this paper include adding more useful
job attributes (such as executable arguments), applying lo-
cally weighted regression as the induction model, or taking
application age (already elapsed run time) into account.

Table 5 shows the performance of the IBL algorithm in
predicting queue wait times as well as response times. For
queue wait times, the absolute average errors range from
54.4 to 619.4 minutes and the absolute relative errors are
between 0.39 and 0.99. The relative error shown in Fig-
ure 1(b) and (d) indicates that the IBL algorithm is less
effective in predicting wait times than run times. The un-
derestimation for longer-waiting jobs still exists, but not
as much as for run times. The algorithm suffers similarly
from the “lagging” problem as mentioned above. The accu-
racy of wait time predictions is also related to the quality of
run time predictions, as resource state attributes “VRunRe-
main” and “VQueueDemand” are calculated using run time

−1 −0.5 0 0.5 1
0

5000

10000

15000

(a) Relative error of run time predictions

N
um

be
r

of
 jo

bs

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

(c) Real run time t (seconds)

C
D

F
 (

Y
 <

 t)

−1 −0.5 0 0.5 1
0

2000

4000

6000

8000

(b) Relative error of wait time predictions

N
um

be
r

of
 jo

bs

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

(d) Real wait time t (seconds)

C
D

F
 (

Y
 <

 t)

r >= 0
r < 0

r >= 0
r < 0

Figure 1. Histograms and cumulative distribution functions (CDFs) for relative errors.

estimates. The policy attributes identified by genetic search
(in Table 5) correctly reflect the local scheduling policies
on the NIKHEF LCG production cluster, in which group
name is the most important attribute for policy expression
(fine-grained policies are also specified for certain users).
In terms of prediction time our algorithm performs well,
with time per prediction less than 300 milliseconds. This is
one major advantage compared with scheduler simulation,
in which the prediction times are in the order of seconds or
even minutes [6]. The prediction performance for response
times are shown in Table 5. The absolute relative errors are
between 0.35 and 0.70.

We further explore the internal workload structure by an-
alyzing group behavior. Table 6 shows the prediction per-
formance for 9 most active groups on the cluster. We can
see that most of the “short” jobs are from group 5 (16.7%),
which has an average running time in the order of minutes.
For this group our prediction algorithm is able to perform
fairly well, with an average absolute error of 12.1 minutes
for response times. As the high priority for this group as
well as backfilling policies are captured by IBL, good es-
timations can be made even in the states which have hun-

dreds of other jobs waiting in the queue. We also notice
that a majority of groups have relatively “long” jobs with
average running times of hundreds of minutes. For these
long-running jobs the prediction performance varies from
group to group. On many groups such as the most active
one - group 2 (36.5%), our algorithm performs relatively
good, with an absolute relative error for response time of
0.45. However, poor performance is observed on groups
such as group 7. One reason is that not enough similar job
instances with similar resource states could be found in the
limited history traces. On the other hand, even if similar
jobs are available, the waiting time itself could not be de-
termined merely by the job’s current resource state. For
instance, future job arrivals may cause queued jobs to wait
longer and it results in more unpredictable wait times for
jobs from groups with a low priority and strict throttling
policies (like group 7). However, this is generally difficult
for most prediction problems. Although our algorithm tends
to underestimate for long-runing or waiting jobs, it is able
to approximate the response time scales for different pol-
icy groups. This will provide useful information for the re-
source brokers to make decisions.

Group ID Job Percent Run Time Wait Time Response Time
(%) Abs. Error Rel. Error Abs. Error Rel. Error Abs. Error Rel. Error

1 2.7 206.6 min 0.76 82.8 min 1.12 249.9 min 0.72
2 36.5 306.8 min 0.46 316.6 min 0.64 527.3 min 0.45
3 12.1 782.4 min 0.83 53.9 min 1.13 817.5 min 0.82
4 2.6 1218.3 min 0.75 33.1 min 1.51 1221.3 min 0.74
5 16.7 0.77 min 1.22 11.6 min 1.12 12.1 min 1.10
6 3.4 892.2 min 0.74 327.6 min 0.49 1037.1 min 0.55
7 4.0 350.1 min 1.65 2458.4 min 0.98 2625.8 min 0.97
8 2.4 34.3 min 1.75 607.3 min 0.29 601.5 min 0.28
9 17.9 403.3 min 0.59 120.5 min 0.92 471.5 min 0.58

Table 6. Prediction performance for 9 most active groups on the NIKHEF LCG production cluster.

6 Conclusions and Future Work

In this paper we propose an Instance Based Learning
technique to predict application response times using his-
torical workload traces on clusters. We define a new type
of attributes (numeric vector) to represent a resource state,
and introduce a distance function that can measure distances
between these attributes. Local scheduling policies are em-
bedded in the resource state attributes and they can be au-
tomatically discovered using a genetic search on histori-
cal data. Empirical evaluation is conducted using 8 month
traces recorded on the NIKHEF LCG production cluster.
The absolute relative prediction errors for response times
are between 0.35 and 0.70. The average time per predic-
tion is in the order of milliseconds. These yield a practical
solution for response time predictions, which feed useful
information in the resource brokering process.

The solution presented in this paper is our first attempt
in deriving response time predictions using solely histori-
cal information and the results are preliminary rather than
complete. We are evaluating and validating the technique
on more clusters and public domain workload traces. More
comparison study with the scheduler simulation approach
is being conducted. We are also improving our technique
in several directions. Firstly, the basic IBL algorithm can
be further improved. We are experimenting with instance
pruning techniques to reduce irrelevant instances for better
performance. Secondly, we are improving the genetic al-
gorithm to enable a more efficient search and reduce pos-
sibilities to be trapped in local minima. Thirdly, we are
investigating metrics to reflect prediction inaccuracies and
algorithms for resource brokers that can incorporate inaccu-
racies when making decisions.

Acknowledgments

We thank Jeroen Eggermont, Peter v.d. Putten (LIACS),
and Jeff Templon (NIKHEF) for their insightful discus-

sions. We also want to express our gratitude to reviewers
for their suggestions that improved the quality of this paper.

References

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally
weighted learning. Artificial Intelligence Review, 11(1-
5):11–73, 1997.

[2] D. G. Feitelson. Workload modeling for performance evalu-
ation. In Job Scheduling Strategies for Parallel Processing,
pages 114–141. Springer Verlag, 2002.

[3] D. E. Goldenberg. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison-Wesley Inc., 1989.

[4] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive
application-performance modeling in a computational grid
environment. In IEEE International Symposium for High
Performance Distributed Computing (HPDC), 1999.

[5] The lhc computing grid (lcg) project. http://lcg.web.
cern.ch.LCG/.

[6] H. Li, D. Groep, J. Templon, and L. Wolters. Predicting job
start times on clusters. In proceedings of 4th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid,
2004.

[7] Maui scheduler. http://supercluster.org/.
[8] National institute for nuclear and high energy physics

(nikhef), physics data processing and grid. http://www.
nikhef.nl/grid.

[9] W. Smith. Resource Management in Metacomputing Envi-
ronments. PhD thesis, Northwestern University, 1999.

[10] W. Smith, I. Foster, and V. Taylor. Predicting application run
times using historical information. Lecture Notes in Com-
puter Science, 1459:122–136, 1998.

[11] W. Smith, V. Taylor, and I. Foster. Using run-time predic-
tions to estimate queue wait times and improve scheduler
performance. In Job Scheduling Strategies for Parallel Pro-
cessing, pages 202–219. Springer Verlag, 1999.

[12] W. Smith and P. Wong. Resource selection using execution
and queue wait time predictions. Technical Report NAS-02-
003, NASA Ames Research Center, 2002.

[13] D. R. Wilson and T. R. Martinez. Improved heterogeneous
distance functions. Journal of Artificial Intelligence Re-
search, 6:1–34, 1997.

