
Mining Performance Data for Metascheduling Decision Support in the Grid
Hui Lia ∗, David Groepb, and Lex Woltersa

aLeiden Institute of Advanced Computer Science (LIACS), Leiden University, PO Box 9512, 2333 CA, Leiden,
The Netherlands

bNational Institute for Nuclear and High Energy Physics (NIKHEF), PO Box 41882, 1009 DB, Amsterdam, The
Netherlands

Abstract: Metaschedulers in the Grid needs dynamic information to support their scheduling decisions. Job response time
on computing resources, for instance, is such a performance metric.In this paper, we propose an Instance Based Learning
technique to predict response times by mining historical performance data. The novelty of our approach is to introduce policy
attributes in representing and comparing resource states, which are defined as the pools of running and queued jobs on the
resources at the time of making predictions. The policy attributes reflect the local scheduling policies and they can be auto-
matically discovered using genetic search. An extensive empirical evaluation is conducted to validate our technique using real
workload traces, which are collected from the NIKHEF production clusteron the LHC Computing Grid and Blue Horizon in the
San Diego Supercomputer Center (SDSC). The experimental results show that acceptable prediction accuracy can be achieved,
where the normalized average prediction errors for response times are ranging from 0.57 to 0.79.

Keywords: Response Time Predictions, Instance Based Learning, Metascheduling, Grid

1. Introduction

Large scale Grids typically consist of many hetero-
geneous and geographically distributed resources. As
an example, the LHC Computing Grid (LCG) cur-
rently has approximately 140 sites in 34 countries
with a total number of 12,516 CPUs and 5 petabytes
storage. Metascheduling in such an environment
raises a serious challenge and many scheduling al-
gorithms, architectures and systems have been pro-
posed [1,3,16]. Scheduling at the meta level differs
from local scheduling in that metaschedulers do not
have control over the resources. Instead, metasched-
ulers make decisions on behalf of users and hand jobs
over to the local resource management systems. There
is one common aspect in this process despite the diver-
sity of Grid scheduling isntances, namely, the good-
ness of scheduling decisions depends heavily on the
quality of information available about the resources.
There is relatively static information such as machine
types, number of CPUs and storage capacity. This

∗Corresponding author (hui.li@computer.org).

can be obtained by monitoring tools via Grid informa-
tion services. There is also more dynamic information
such as job response times. This type of information
is very important to support the metascheduling deci-
sions, but is not available by only monitoring. It must
be predicted based on historical data recorded on the
resources.

The main theme of this paper is about job response
time predictions on computing resources, and our ap-
proach is based on mining the historical performance
data. We believe that knowledge about local schedul-
ing policies can be discovered in the data and this
knowledge can be utilized in predictions. Techniques
from statistical data mining can help us getting there.
Specifically, we investigate how an Instance Based
Learning technique is applied in predictions, how a
genetic algorithm is used for parameter optimization,
and elaborate our design choices. We focus on re-
sources such as space-shared parallel supercomputers,
clusters, and study workload traces recorded on them.

The rest of the paper is organized as follows: Sec-
tion 2 introduces job response time predictions and

1

discusses the related work in this area. Section 3
defines job similarity and resource state similarity,
which are the two key concepts in our technique.
Section 4 elaborates the IBL-based prediction algo-
rithm, including the distance function and the induc-
tion models. Section 5 describes the design and con-
struction of the genetic algorithm for parameter opti-
mization. Section 6 presents the empirical evaluation
and analysis using real workload traces. Conclusions
and future work are discussed in Section 7.

2. Response Time Predictions

Response time of a job is defined as the time
elapsed from its submission till completion on a re-
source. Two metrics need to be estimated for the re-
sponse time: one is how long a job executes on the
resource (application run time), the other is how long
the job waits in the queue before starting (queue wait
time). A popular approach is to derive predictions
from similar observations in the past, and the histor-
ical data available in site workload traces naturally
serves as the basis for such study.

Techniques have been proposed for predicting
application run times using historical information.
In [13] “templates of attributes” are defined for cate-
gorizing historical jobs and statistical techniques like
mean or linear regression are applied to generate pre-
dictions. In [6] Instance Based Learning (IBL) tech-
niques are investigated for run time predictions. IBL
uses historical data “near” the query point to build
a local model for approximation. A proper distance
metric has to be defined to measure the distances be-
tween data instances. In fact the IBL algorithm is a
generalization of the template approach, in which dis-
tances are simplified to binary values (belong or not
belong to a specific category).

For queue wait times, the basic idea of most tech-
niques is based on scheduler simulation. In [15]
scheduling algorithms like FCFS, LWF, and backfill-
ing are simulated for predicting queue wait times,
where application run times are estimated using the
template approach. In [7] simulation is also used to
predict queue wait times for a policy-based sched-
uler called Maui. Although relatively better predic-
tion accuracy can be achieved, several major draw-
backs remain for the simulation approach. Firstly, it
cannot meet the real-time requirements in the Grid

brokering process. Secondly, it is not scalable since
there are different types of local scheduling systems
deployed on different Grid sites. Some sites have
schedulers with combinations of basic scheduling al-
gorithms, and most sites enforce different kinds of
policies in their own fashion.

As an alternative, we are trying to derive queue
wait times also from historical observations. Our as-
sumption is that “similar” jobs under “similar” re-
source states would most likely have similar waiting
times, given that the scheduling algorithm and poli-
cies remain unchanged for a reasonable amount of
time. Similar ideas has been studied in [14], in which
summary statistics about the resource state (e.g. free
CPUs, number of running jobs) is used as attributes
for defining templates. The template approach to esti-
mate application run times as described above can be
applied similarly for waiting times. Our work distin-
guishes from it in two aspects: Firstly, we introduce
attributes that reflect scheduling policies to represent
resource states in a more fine-grained level for simi-
larity comparison, and these policies can be automati-
cally discovered via genetic search. Secondly, we use
Instance Based Learning as the common framework
for both application run times and queue wait times.
We elaborate our approach in the following sections.

3. Similarity Definition

The key problem is how to define similarity to com-
pare jobs. Table 1 shows the representative job at-
tributes recorded in workload traces. For job run
times, some of these attributes can be naturally used
for similarity definition. For queue wait times, how-
ever, new attributes need to be defined as the wait-
ing time of a job is typically resulted by interactions
among the job, other jobs on the resource, and the
local scheduler. We introduce the definitions for job
similarity and resource state similarity as follows.

3.1. Job Similarity
Seven recorded attributes are considered to define

job similarity. They are “group name” (g), “user
name” (u), “queue name” (q), “job name” (e), “num-
ber of CPUs” (n), “requested run times” (r), and “ar-
rival time of day” (tod). Depending on the avail-
ability, Any potentially useful attribute such as node
speed and executable arguments can be added to

Abbr. Job Attribute Type Abbr. Job Attribute Type Abbr. Job Attribute Type
g group name nominal n #CPUs numeric m used memory numeric
u user name nominal r req. run time numeric rm req. memory numeric
q queue name nominal tod arrival time numeric rt run time numeric
e job name nominal s exit status numeric qt queue wait time numeric

Table 1
Representative job attributes recorded in workload traces.

Abbreviation State Attribute Value Calculation
VRunJobs Vector of categorized number of running jobs Vi = Nri

VQueueJobs Vector of categorized number of queuing jobs Vi = Nqi

VAlreadyRun Vector of categorized sum of past run time multi-
plied by #CPUs of running jobs

Vi =
∑Nri

j=1 alrunt(j) × cpu(j)

VRunRemain Vector of categorized sum of estimated remaining
run time multiplied by #CPUs of running jobs

Vi =
∑Nri

j=1 remaint(j) × cpu(j)

VAlreadyQueue Vector of categorized sum of past queue time mul-
tiplied by #CPUs of queued jobs

Vi =
∑Nqi

j=1 alrquet(j) × cpu(j)

VQueueDemand Vector of categorized sum of estimated run time
multiplied by #CPUs of queued jobs

Vi =
∑Nqi

j=1 demandt(j) × cpu(j)

Table 2
Defined resource state attributes.Vi: the value of theith category,Nr: number of running jobs,Nq: number of
queued jobs. The template for categorization is a subset of<group, user, queue>.

this list. The pre-selected attributes are mostly self-
explanatory by their names and they have two main
types, namely, nominal (g, u, q, e) or numeric (n, r,
tod). In the Instance Based Learning algorithm de-
scribed later, similarity between jobs are formulated
by a distance function composed of attributes. Jobs
with smaller distances are considered more similar.
For instance, jobs from the same group, say “bioinfo”,
and with same executable name called “proteinmatch”
will have smaller distances than those who have noth-
ing in common, therefore have a higher chance be-
ing used for predictions of the same kind. To make
a good distance function, we employ a genetic search
to weight attributes according to the metric being pre-
dicted (application run time or queue wait time).

3.2. Resource State Similarity
We define aresource state as the pool of running

and queued jobs on the resource at the time of making
a prediction. More issues arise when measuring sim-
ilarities of resource states and we need attributes to
characterize them. Firstly, since a resource state con-

sists of a set of jobs, attributes have to be defined to
represent the resource states in a way that they can be
compared properly. Secondly, policy attributes that
reflect the scheduling policies have to be embedded
into the state attributes so that local scheduling infor-
mation can be included.

Three attributes are defined as the candidate pol-
icy attributes, namely,group name, user name, and
queue name. These job credential attributes are most
frequently used in defining scheduling policies. For
instance, group, which is also referred to “Virtual Or-
ganization” in the Grid, is a popular choice to make
scheduling policies based on various QoS require-
ments. Administrators may define multiple queues
and assign different resource limits. Other attributes
that may influence scheduling decisions can be poten-
tially added but we restrict to these three policy at-
tributes in our study.

The policy attributes identify a set of categories
to which jobs in a resource state will be assigned.
How to represent and compare categorized resource
state attributes becomes a central issue. We define a

new attribute type called numeric vector (“numeric-
V”), which contains a vector of<key, value> pairs.
The key contains values of selected policy attributes
and represents a specific category. The value is
a numeric scalar variable associated with that cate-
gory. For example, let us assume that the selected
policy attributes are group name and queue name
(written as “group-queue”). They generate categories
such as “bioinfo-qlong” and “astronomy-qshort”. At-
tribute “VRunJobs” contains a vector of pairs like
<“bioinfo-qlong”, 32>, <“astronomy-qshort”, 8>,
etc, where the value in each pair represents the num-
ber of running jobs in the category identified by the
key. The same representation holds for other resource
state attributes: “VQueueJobs” contains categorized
number of queued jobs. “VAlreadyRun” (“VRunRe-
main”) is calculated as the number of CPUs multi-
plied by the elapsed (remaining) run time of the run-
ning jobs. “VAlreadyQueue” and “VQueueDemand”
is computed by multiplying the number of CPUs with
the already queued time or estimated run time, respec-
tively. More formal definitions for resource state at-
tributes are listed in Table 2. As we can see, differ-
ent attributes are different views to describe a resource
state. By introducing policy attributes we partition the
resource states into a more fine grained level. Dis-
tances between these attributes are calculated using
the distance function described in the next section.

4. The IBL-Based Prediction Algorithm

Instance Based Learning [2] techniques typically
store training data in a historical database, and make
predictions for a particular query by applying an in-
duction model on its “nearby” data entries. Two
main components of IBL techniques, namely the dis-
tance function to measure “nearness” and the induc-
tion models, are defined for our algorithm.

4.1. The Distance Function
We employ the Heterogeneous Euclidean-Overlap

Metric (HEOM) [17] as the distance function. This
distance function can be used on nominal and nu-
meric scalar attributes, and we extend it so that it can
also be used for numeric vector attributes. The ex-
tended HEOM distance function defines distance be-

tween two valuesx andy of a given attributea as

da(x, y) =

overlap(x, y), if a is nominal,
ns diff a(x, y), if a is numeric,
nv diff a(x, y), if a is numeric-V,
1, otherwise.

(1)

The functionoverlap for nominal values is

overlap(x, y) =

{

0 if x = y,
1 otherwise.

(2)

The functionns diff for numeric values is

ns diff a(x, y) =
|x − y|

maxa − mina
, (3)

wheremaxa andmina are the maximum and mini-
mum observed value for attributea.

The functionnv diff for numeric vector values is

nv diff a(x, y) =

∑Na

i=1 |xi − yi|

range(a)
, (4)

wherei is theith category andNa is the total number
of categories ofx andy. range(a) is the maximum dif-
ference of all categories observed in the training data
for attributea.

The above definition forda returns a value in the
range from 0 to 1. Unknown attribute values are
handled by returning a distance of 1, i.e., the maxi-
mal distance. The distance between two input vector
of attributesx and y is given by the Heterogeneous
Euclidean-Overlap Metric functionD(x,y)

D(x,y) =

√

∑m
a=1 wa × da(xa, ya)2

∑m
a=1 wa

, (5)

wherewa enables weighting for attributes.

4.2. The Induction Models
Two induction models, namely Weighted Average

(n-WA) and Linear Locally Weighted Regression (n-
LLWR) are considered in our algorithm.

n-WA: Weighted Average makes predictions using
the weighted average of the nearestn neighbors

P (q) =

∑n
i=1 Wi × Val(ei)

∑n
i=1 Wi

, (6)

whereWi = K(D(q, ei)), K(d) = e−(d/k)2 , q is a
query,P (q) is the value to be predicted,ei is theith
nearest neighbors andVal(ei) is its target value,D is
the distance function mentioned above,K is the Gaus-
sian kernel function andk is the kernel bandwidth.

n-LLWR: A weighted linear model is fitted to the
nearestn neighbors. Follow the formula in [2], the
regressor is of the form

P (q) = qT (ZT Z)−1ZT v, (7)

whereZ = WX, andv = Wy. The weights are the
squared root of the kernel function used in Equation
(6), namely,wi =

√

K(D(xi, ei)). W is a diagonal
matrix with diagonal elementsWii = wi and zeros
elsewhere.X is the matrix form of attribute vectors
of nearest neighbors andy is the target values. For
details about this model we refer to [2].

5. Genetic Search

There are many parameters to be tuned in the
basic IBL prediction algorithm. For instance, at-
tribute weights have to be determined. The policy at-
tributes have to be discovered for representing the lo-
cal scheduling policies. The induction model, history
database size, and the kernel bandwidth have to be set
for a practically useful algorithm. We exploit a ge-
netic search to optimize these parameters by minimiz-
ing the average prediction error on the training data.
Our genetic algorithm uses real value encoding and
it is designed using standard operators such as selec-
tion, mutation, and crossover [5]. Chromosomes are
structured to match the different objectives, namely,
application run time or queue wait time.

For application run times, the chromosome is struc-
tured as follows:
{ (wg, wu, wq, we, wn, wr, wtod), (#CPUs),

(method), (neighbor size), (history size),
(bandwidth type), (bandwidth) }

The first block is the weights for job attributes,
ranging from 0 to 1. The second block consists of
attributes used for regression, in which the number
of CPUs is the selected attribute. The third block
is the induction model with two choices available:
WA or LLWR. Other parameters are mostly self-
explanatory. We evaluate two types of bandwidth
selection, namely, “global” and “nearest neighbor”.
If global bandwidth is enabled, the value of the last

block is used as the fixed bandwidth in the algorithm.
In nearest neighbor bandwidth selection, bandwidthk
is set to be the distance to thenth nearest data entry.
The crossover operator cuts between blocks so good
patterns inside one block (like attribute weights) are
not deconstructed. The genetic search is performed
on the training set and attempts to minimize the av-
erage prediction error for application run times. The
optimized parameters are then used for predictions on
the test set.

For queue wait times the chromosome is:
{ (wpg, wpu, wpq), (wag, wau, waq, wae, wan,

war, watod), (wsrj , wsqj , wsalrr, wsalrq, wsrrem,
wsqdem), (#CPUs, queue demand credential,
queue demand total), (method), (neighbor size),
(history size), (bandwidth type), (bandwidth) }

Compared with that of application run times, the
chromosome of queue wait times has two more build-
ing blocks. They are the weights for three policy at-
tributes and six resource state attributes (see Table 2).
Weights for policy attributes are binary to enable pol-
icy selection. Weights for resource state attributes
are real values from 0 to 1. There are also two ele-
ments added to the regression attribute list.queue de-
mand credential is the corresponding category value
of “VQueueDemand” as identified by the query point.
queue demand total is the sum of values in all cate-
gories for “VQueueDemand”. These are potentially
useful attributes that can be used in regression. As a
simple example, the waiting time of a job would have
a linear correlation with the total resource demand in
a FCFS queue. During the test stage, two resource
state attributes of queries, namely VRunRemain and
VQueueDemand, are calculated using the estimated
run times since the real values are not known at the
prediction time. By adding application run time and
queue wait time estimates we obtain predictions for
response times.

6. Empirical Evaluation

We empirically evaluate our algorithm using real
workload traces with different characteristics (Ta-
ble 3). The NIKHEF cluster is a representative site
in the LHC Computing Grid, which is primarily used
for high energy physics data processing. It consists of
a mix of Intel and AMD CPUs with different speeds,
512MB to 1GB memory, and Ethernet connections.

Name Arch. Batch System Scheduler CPUs Period #Jobs
NIKHEF PC cluster openPBS Maui 288 Jun’04 - Dec’04 161666
SDSC01 IBM SP LoadLeveler Catalina 1152 Jan’01 - Dec’01 88694
SDSC02 IBM SP LoadLeveler Catalina 1152 Jan’02 - Dec’02 91751

Table 3
Characteristics of workload traces used in the experimental study. The NIKHEF and the SDSC traces are made
publicly available via [11] and [12], respectively.

Name Run Time Wait Time Response Time
Abs. Error Nor. Error Abs. Error Nor. Error Abs. Error Nor. Error

NIKHEF 324.6 min 0.58 299.3 min 0.73 560.5 min 0.57
SDSC01 35.9 min 0.49 376.7 min 0.89 391.4 min 0.79
SDSC02 50.1 min 0.51 690.2 min 0.70 705.7 min 0.65

Table 4
The overall average absolute errors (Abs. Error) and normalized absolute relative errors (Nor. Error) of the algo-
rithm in predicting run times, wait times, and response times.

The cluster is running Maui [9] as the local scheduling
engine. Firstfit backfilling is employed in the schedul-
ing algorithm. Priority/fairshare/throttling policies are
enforced for different groups and users. Multiple
queues are defined for jobs with different requested
run times. The SDSC Blue Horizon is a terascale
IBM SP supercomputer. The scheduler on this ma-
chine is called Catalina. It uses multiple submission
queues with different QoS requirements, maintains
one priority-based execution queue, performs back-
filling, and supports reservations. Catalina is differ-
ent compared with Maui primarily in that Catalina
does not support fairshare and its policies are based
on queues. The selected traces are suitable for exper-
imental study because of the diversities in application
types, machine architecture, and scheduling policies.

Two kinds of metrics are used for measuring the
performance of our algorithm.Prediction accuracy
is measured by the average absolute prediction error,
defined as

∑N
i=1 |test − treal|/N . test and treal are

predicted and actual values, respectively. We also
show the normalized average absolute errors by di-
viding the average run time (or wait time, or response
time). Moreover, the relative error is formulated as
re = (test − treal)/(test + treal). Prediction time is
measured as the average execution time in millisec-
onds (ms) per prediction.

The evaluation is carried out on multiple Intel Xeon

machines with four 2.8GHz CPUs and 3GB shared
memory. The workload dataset is divided into training
and test sets throughout the evaluation. On NIKHEF,
performance is evaluated on the test trace data (from
August to December, 2004) of every one month, with
the IBL parameters found by the genetic search on
the preceding two-month traces. On the two one-
year SDSC traces, testing is done on data from July
to September and from October to December. The
IBL parameters are optimized using the preceding six-
month traces. The use of independent test sets enables
an objective evaluation and a reflection of how search
and predictions would be performed in practice.

Table 4 shows the prediction accuracy of our al-
gorithm in terms of average absolute errors. As we
can see, jobs from NIKHEF have longer run times but
relatively shorter wait times than those from SDSC
traces. Better results are achieved for run time pre-
dictions compared to wait times. If we combine the
two, the response times have normalized average er-
rors ranging from 0.57 to 0.79. Average results may
be dominated for those with large values. For a closer
look of how predictions are related to real values, his-
tograms of relative errorsre are plotted in Figure 1
and 2. As we can see, good accuracy is achieved for
run time predictions in general. A majority of jobs
have relative errors between -0.5 and 0.5, with the
largest percentage centered around zero. The rela-

−1 −0.5 0 0.5 1
0

5000

10000

15000

Relative error

N
um

be
r

of
 jo

bs

NIKHEF

−1 −0.5 0 0.5 1
0

5000

10000

15000
SDSC01

Relative error
−1 −0.5 0 0.5 1
0

2000

4000

6000

8000

10000
SDSC02

Relative error

Figure 1. Histograms of relative errors for predicting application run times on three traces.

−1 −0.5 0 0.5 1
0

2000

4000

6000

8000

Relative error

NIKHEF

N
um

be
r

of
 jo

bs

−1 −0.5 0 0.5 1
0

2000

4000

6000

8000

10000
SDSC01

Relative error
−1 −0.5 0 0.5 1
0

1000

2000

3000

4000

5000
SDSC02

Relative error

Figure 2. Histograms of relative errors for predicting queue wait times on three traces.

0 1000 2000 3000
0

0.5

1

1.5

2
x 10

5

Job Index

W
ai

t T
im

e
(s

)

dzero

real
est

0 200 400
0

1000

2000

3000

4000

5000

Job Index

dteam

real
est

0 500 1000 1500
0

2

4

6
x 10

5

Job Index

theory

real
est

Figure 3. Comparison of real and estimated queue wait times for three representative groups on NIKHEF.

Name Run Time (nocache) Run Time (cache) Wait Time
mean std mean std mean std

NIKHEF 38 ms 28 ms 10 ms 8 ms 313 ms 185 ms
SDSC 30 ms 32 ms 23 ms 17 ms 461 ms 516 ms

Table 5
Mean and standard deviation (std) of average execution times for cached and not cached run time predictions, and
wait time predictions. Caching interval∆t = 100 seconds.

tive errors on NIKHEF are more spreading from the
center area compared to SDSC counterparts. This
is partially because the NIKHEF cluster consists of
heterogeneous nodes with different speeds whereas
SDSC supercomputer has homogeneous processors.
The node information is not known at the prediction
time for queued jobs, resulting in larger errors for run
time predictions. For queue wait times, the distribu-
tions of relative errors shown in Figure 2 are flatter
and percentages of “bad” predictions increase. It indi-
cates that the algorithm is less effective in predicting
wait times than run times. This finding is expected
since queue wait times are generally much more diffi-
cult to predict, involving dynamic resource states and
more uncertain factors.

It is important that predictions should at least cap-
ture the trends and “categories” of real wait times. To
further investigate the effectiveness of our wait time
predictions, we evaluate three representative groups
on the NIKHEF cluster. It is interesting to study
group behavior on this site since most of the priority,
throttling, and fairshare policies are defined based on
groups. Figure 3 shows the comparisons of real and
predicted values for the three groups. Groupdzero
has relatively high priority and usually submits mas-
sive similar data-parallel jobs in bags. We can see
its waiting patterns is repetitive and quite predictable.
Our technique is able to perform quite well for these
jobs. We observe that the algorithm cannot follow the
peak in the middle and this is because it is a new pat-
tern never seen before. For groupdteam which has
many short-running test jobs, the waiting times may
still be small even when the system is heavy-loaded
and has a long queue. This is because of the backfill-
ing and throttling policies. Our technique works well
in this case while load-based predictors would most
likely fail. For grouptheory, however, the predictions
are not able to match the real values. The reasons are

three-folds: firstly,theory jobs are highly irregular and
have large variances in run time predictions, which in
turn result in big errors in estimating resource state at-
tributes. Secondly, grouptheory has a relatively low
priority and strict resource limits, whose waiting times
are more easily affected by later coming jobs. Thirdly,
there is not enough similar jobs to learn from in the
history for grouptheory. An interesting observation
in the plot of grouptheory is that predictions repro-
duce the previous pattern as the best effort, which fails
to match the current trend. This reflects the poor per-
formance of nearest neighbor learning when patterns
shift. To sum up, although groups liketheory may
contribute considerably to the absolute average pre-
diction error, they only represent a small fraction of
all jobs. Our algorithm is able to perform for the most
active groups thus also for a majority of jobs.

We now focus on the execution time of our algo-
rithm. As mentioned above, jobs on NIKHEF typ-
ically arrive in “bags”. Namely, many similar jobs
are submitted within short time intervals. On SDSC
same patterns occur, although more distributed and
less frequently. In this case caching can be adopted
to reduce execution times. The estimation for a given
attribute vector at timet is cached for another∆t sec-
onds so jobs arrive beforet + ∆t can use the same
prediction. The caching mechanism is not used for
wait time predictions as the resource state attributes
may change quickly over time. Table 5 lists the aver-
age execution times for run time and wait time pre-
dictions. We can see that with caching the perfor-
mance for run time predictions is improved signifi-
cantly. The average execution time reduces almost
75% on NIKHEF. On SDSC, however, performance
is improved only marginally. These are the results ex-
pected from their different arrival patterns. For wait
times, SDSC also has longer and more spreading ex-
ecution times. This is because the queue composition

on SDSC is more diverse than on NIKHEF, which re-
sults in more computationally expensive distance cal-
culations. A large number of nearest neighbors and a
big history size could also lead to worse performance.
Nevertheless, with an average execution time of less
than half a second, our algorithm performs much bet-
ter than the simulation approach [7]. This is one of the
main advantages of the IBL algorithm which makes it
practically useful in a production Grid environment.

7. Conclusions and Future Work

Metascheduling in the Grid needs dynamic infor-
mation about the resources. In this paper we pro-
posed an Instance Based Learning technique to pre-
dict job response times using historical workload data.
We define a new type of attributes (numeric vector)
to represent a resource state, and introduce a distance
function that can measure distances between these at-
tributes. Local scheduling policies are embedded in
the resource state attributes and they can be automat-
ically discovered using the genetic search. This is an
important step towards a more general solution.

An extensive empirical evaluation is conducted us-
ing traces with diverse characteristics. Generally
speaking, our algorithm achieves acceptable predic-
tion accuracy. The absolute relative errors for re-
sponse time predictions range from 0.57 to 0.79.
Detailed analysis based on representative groups on
NIKHEF shows both the strength and weakness of our
technique, and for a majority of jobs the technique
is able to work quite well. With the average execu-
tion time in the order of milliseconds, the algorithm
performs much better than the scheduler simulation
counterparts. This yields a practical solution towards
response time predictions, which serves as real-time
information to support metascheduling decisions.

Our technique has its limitations as well. A reason-
able amount of data is needed by the genetic algorithm
for optimizing parameters. The evaluation process
could take a long time if the execution time per predic-
tion increases. Predictions for certain jobs are being
highly inaccurate. Therefore, we are improving our
technique in several directions. Firstly, we are investi-
gating a local tuning method that tunes parameters for
each policy group. The evaluation phase can be accel-
erated by parallelizing tuning processes. The predic-
tion accuracy can also be potentially improved as pa-

rameters are fitted for each target group. Secondly, the
nearest neighbor search in the current algorithm is se-
quential, which leaves much space for improvement.
We are experimenting different search tree structures
to speed up searching process [4]. Thirdly, we are
developing a toolkit called PDM (Performance Data
Miner [11]), which includes implementations of al-
gorithms proposed in this paper. We are also inves-
tigating metrics to reflect prediction inaccuracies and
algorithms for resource brokers that can incorporate
inaccuracies when making decisions.

Acknowledgments

We thank Jeff Templon (NIKHEF) for his help and
discussions. We also want to express our gratitude
to the Parallel Workload Archive through which the
SDSC traces are made publicly available. We are
grateful to the reviewers for their many valuable sug-
gestions that improved the quality of this paper.

REFERENCES

1. D. Abramson, R. Buyya and J. Giddy. A
computational economy for grid computing and
its implementation in the Nimrod-G resource
broker. Future Generation Computer Systems,
18(8):1061–1074, 2002.

2. C. G. Atkeson, A. W. Moore, and S. Schaal. Lo-
cally weighted learning. Artificial Intelligence
Review, 11(1-5):11–73, 1997.

3. J. Cao, D. P. Spooner, S. A. Jarvis and G. R. Nudd.
Grid load balancing using intelligent agents.Fu-
ture Generation Computer Systems, 21(1):135-
149, 2005.

4. E. Chavez, G. Navarro, R. Baeza-Yates, and J.L.
Marroquin. Searching in Metric Spaces.ACM
Computing Surveys, 33(3):273–321, 2001.

5. D. E. Goldenberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley Inc., 1989.

6. N. H. Kapadia, J. A. B. Fortes, and C. E. Brod-
ley. Predictive application-performance model-
ing in a computational grid environment. In pro-
ceedings ofthe Eighth IEEE International Sym-
posium on High Performance Distributed Com-
puting (HPDC-8), IEEE Press, 1999.

7. Hui Li, David Groep, Jeff Templon, and Lex

Wolters. Predicting job start times on clusters. In
proceedings of4th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, IEEE
Press, 2004.

8. Hui Li, David Groep, and Lex Wolters. Effi-
cient Response Time Predictions by Exploiting
Application and Resource State Similarities. In
proceedings ofthe sixth IEEE/ACM International
Workshop on Grid Computing, IEEE Press, 2005.

9. The Maui Scheduler. http://www.
supercluster.org/maui/.

10. Jarek Nabrzyski, Jennifer M. Schopf, and Jan
Weglarz (Editors). Grid Resource Manage-
ment: State of the Art and Future Trends. ISBN:
1402075758, Springer, 2003.

11. PDM - A Performance Data Miner.http://
www.liacs.nl/home/hli/pdm/.

12. Parallel Workload Archive.http://www.
cs.huji.ac.il/labs/parallel/
workload/.

13. W. Smith, I. Foster, and V. Taylor. Predicting ap-
plication run times using historical information.
Lecture Notes in Computer Science, 1459:122–
136, 1998.

14. W. Smith. Resource Management in Metacom-
puting Environments. PhD thesis, Northwestern
University, 1999.

15. W. Smith, V. Taylor, and I. Foster. Using run-
time predictions to estimate queue wait times and
improve scheduler performance.Lecture Notes in
Computer Science, 1659:202–219, 1999.

16. C. Weng and X. Lu. Heuristic scheduling for bag-
of-tasks applications in combination with QoS in
the computational grid.Future Generation Com-
puter Systems, 21(2):271-280, 2005.

17. D. R. Wilson and T. R. Martinez. Improved het-
erogeneous distance functions. Journal of Artifi-
cial Intelligence Research, 6:1–34, 1997.

