
Improving a Local Learning Technique for Queue Wait Time Predictions

Hui Li∗ Juan Chen∗ Ying Tao∗ David Groep† Lex Wolters∗

∗Leiden Institute of Advanced Computer †National Institute for Nuclear and High
Science (LIACS), Leiden University Energy Physics (NIKHEF)

PO Box 9512, 2333 CA PO Box 41882, 1009 DB
Leiden, The Netherlands Amsterdam, The Netherlands

Abstract

Local learning has been proposed as a common frame-
work to predict both application run times and queue wait
times based on workload traces. The queue wait time is
shown to be more difficult and expensive to predict because
its distance calculations typically involve not only job at-
tributes but also resource states. In this paper methods and
algorithms are investigated to improve prediction accuracy
and prediction performance for queue wait times. Firstly,
the so-called “local tuning” is adopted to tune parame-
ters for each training subset divided by a pivot attribute
(e.g., group or queue name). Bias-variance analysis of er-
ror is conducted on local tuning and its global counterparts
- tuning parameters on the whole training set. A method is
then developed to select tuning type adaptively based on the
generalization error and bias-variance decomposition. Sec-
ondly, an efficient search tree structure called “M-Tree” is
integrated into our algorithm to speed up k-nearest neigh-
bor search. Experimental studies are conducted to evalu-
ate the proposed methods and algorithms using real-world
workload traces, which are collected from the NIKHEF pro-
duction cluster on the LHC Computer Grid and Blue Hori-
zon in the San Diego Supercomputer Center (SDSC). The
results show that adaptive tuning can reduce the average
prediction error by 3 to 10 percents compared to global tun-
ing, and that the M-Tree nearest neighbor search is up to 8
times faster than the original sequential search.

1 Introduction

Job response times on computing resources are impor-
tant information for supporting metascheduling decisions in
large-scale Grids. In [8] local learning, or instance based
learning, has been proposed to predict both application run
times and queue wait times, from which response times can
be derived. On one hand, the basic local learning technique
proves to be quite effective in predicting run times, where

good prediction accuracy and performance can be achieved.
On the other hand, however, it is shown that the queue wait
times are more difficult and expensive to predict. This is be-
cause the distance calculations of queue wait times involve
not only job attributes but also resource state attributes. Re-
source state is defined as the pool of running and queued
jobs on the resource at the time to make a prediction. Sev-
eral attributes are defined to represent a resource state from
different views, such as the sum of run time multiplied by
the number of CPUs of queued jobs. Policy attributes are
further introduced to categorize resource state attributes in
a more fined-grained level for similarity comparison. The
complexity brought by the resource states makes it much
more challenging for queue wait time predictions.

Nevertheless, the queue wait time is the key component
in the response time and the local learning technique can
be called effective only when it also performs well for wait
times. In this paper solutions are proposed to improve the
queue wait time predictions under the local learning frame-
work. Firstly, we investigate methods that can improve pre-
diction accuracy. A “local tuning” method is introduced to
tune parameters for each training subset divided by a pivot
attribute. For instance, group is a good candidate to par-
tition the whole training data into subsets. Bias-variance
analysis of error is then conducted for both global and local
tuning to gain insights on how each tuning type performs.
Based on this we further develop a method that can select
the tuning type adaptively. Secondly, we adopt a search tree
structure called “M-Tree” for k nearest neighbor search.
Compared with the original sequential search in our algo-
rithm, the “M-Tree” is intrinsically much more efficient in
searching neighbors for predictions. Finally, we evaluate
the proposed methods and algorithms on real-world work-
load traces from NIKHEF and SDSC.

The contributions of this paper are three-folds. Firstly,
we conduct bias-variance analysis of error for global and
local tuning and develop an adaptive selection method that
can effectively detect overfitting by local tuning while keep
its advantages. Secondly, the “M-Tree” structure is success-

fully integrated in our prediction algorithm to improve per-
formance of nearest neighbor search. Compared with previ-
ous search optimization methods like caching and instance
editing [5], to our best knowledge this is the first time that
a tree-structured access method is investigated in the Grid
performance predictions context. Thirdly, compared with
our previous paper [8], we conduct a more extensive empir-
ical study using different workloads with diverse character-
istics to validating our algorithm.

The rest of the paper is organized as follows. Section 2
briefly describes our basic prediction algorithm. Section 3
introduces global tuning and local tuning, bias-variance
analysis, and the adaptive method for tuning selection. Sec-
tion 4 describes the M-Tree nearest neighbor search algo-
rithm. Section 5 presents the experimental results and anal-
ysis using NIKHEF and SDSC traces. Conclusions and fu-
ture work are discussed in the final section.

2 The Basic Prediction Algorithm

The basic idea of our approach is to derive queue wait
time predictions from similar historical observations in
workload traces. From this perspective, we assume that
“similar” jobs under “similar” resource states would most
likely have similar waiting times, given that the scheduling
algorithm and policies remain unchanged for a reasonable
amount of time. The key problem here is how to properly
define similarity to compare jobs as well as resource states.
Job comparisons can be done via their attributes recorded
in the traces. For instance, “user name”, “number of CPUs”
and “application name” are some important attributes that
characterize a job. For resource states we define the follow-
ing new attributes: RunJobs (the number of running jobs),
QueueJobs (the number of queued jobs), AlreadyRun (the
sum of already past run times multiplied by #CPUs of run-
ning jobs), RunRemain (the sum of remaining run times
multiplied by #CPUs of running jobs), AlreadyQueue (the
sum of already past queue times multiplied with #CPUs
of queued jobs), and QueueDemand (the sum of run times
multiplied by #CPUs of queue jobs). These derived at-
tributes characterize a resource state from different angles.
Furthermore, we introduce policy attributes that reflect local
scheduling policies to categorize resource state attributes.
Therefore the resource state comparisons can be done on a
more fine-grained level. Once the attributes are defined, the
local learning technique can be applied for predictions [1].
We employ an extended Heterogeneous Euclidean-Overlap
Metric (HEOM) as the distance function to handle both job
and resource state attributes. Weighted Average (WA) and
Locally Weighted Linear Regression (LLWR) are used as
the candidate induction models for predictions. We refer
to [9] for details and formulations of the basic prediction
algorithm.

3 Parameter Tuning

There are quite a lot parameters to be tuned for the ba-
sic local learning technique. For instance, it is important
to select only relevant attributes in the distance function for
better “nearness” measurement. In other words, attribute
weights have to be determined. The policy attribute set
has to be discovered to reflect the local scheduling policies.
The induction model, history size, neighbor size, and ker-
nel bandwidth have to be set for a practically useful algo-
rithm. We designed a genetic algorithm to optimize these
parameters by minimizing the average prediction error on
the training data set. Here we refer it as “global tuning”
since the evaluation is done on the whole training data. The
optimized parameters are then used for predictions on the
test data set.

One observation based on many Grid sites is that re-
sources typically have one major attribute defined for
scheduling policy expression. On many clusters in the
LHC Computing Grid (such as NIKHEF) this attribute is
group (or Virtual Organization). On supercomputers such
as Blue Horizon at SDSC the priority factor in the sched-
uler is based on queue. Of course sites may have multi-
ple attributes combined to define scheduling rules, however,
there is usually one which has a dominant impact. More
interestingly, the number of values for this attribute is typi-
cally quite small. This is because policies are made by site
administrators or investors and it is natural to keep it in a
manageable fashion. For example, on Blue Horizon there
are six function or policy queues defined, namely interac-
tive, express, high, normal, low and diagnosis. On NIKHEF
there are around fifteen groups, of which five or six are reg-
ularly active and contribute to a major fraction of jobs. One
idea based on this observation is to introduce the policy at-
tribute as a pivot to partition training data into subsets and
tune parameters for each subset. This so-called “local tun-
ing” method may improve the prediction accuracy as the
parameters are optimized for every targeted policy group.
Moreover, as the number of subspaces is small, we are quite
confident that there is enough data in each set for training
separate learners.

However, the problem of local tuning is that it has a
higher probability of suffering from overfitting because of
less data. It is useful to examine the prediction error under
the framework of bias-variance decomposition, which will
be discussed in the following section.

3.1 Bias-Variance Analysis

In many real-life learning problems it is somewhat
counter intuitive that simple methods are often competitive
and sometimes superior to more complex ones for estima-
tion. This is because the bias and variance components of

the estimation error have impacts in a different way and usu-
ally there is so called bias/variance dilemma [4]. In our case
the locally tuned learner may be less biased, but it can in-
troduce more variance during generalization. Therefore it is
important to decompose the bias and variance components
of error and analyze their individual influence.

The following is a paraphrase of Geman et al. [4]
on bias/variance decomposition of the mean-squared er-
ror. Suppose the regression problem is to construct
a function f(x;D) based on a training set D =
{(x1, y1), ..., (xN , yN)}. The mean-squared error of f as
an estimator of the regression E[y|x] can be written as

ED[(f(x;D)− E[y|x])2] =
(ED[(f(x;D)]− E[y|x])2

+ ED[(f(x;D)− ED[f(x;D)])2]

The first component on the right of the equation is “bias”
and the second one is “variance”. As we can see, both bias
and variance can contribute to the mean-squared error. An
unbiased estimator may still have poor performance if the
variance is large. There is often a tradeoff between the bias
and variance contributions to the estimation error. Given
this tradeoff, we develop a method that can adaptively de-
termine when it make sense to use locally tuned models as
compared with the global model.

3.2 Adaptive Selection

There are several design principles for the adaptive
method. Firstly, there must be enough data in the train-
ing subset for obtaining statistically significant results. Sec-
ondly, local tuning must have comparable or smaller bias
than global tuning otherwise we are most likely fitting
noise rather than signal. Thirdly, local tuning must produce
smaller or comparable average prediction error on the train-
ing set and the last observed generalization set. Based on
these principles, our adaptive method combines the gener-
alization error, training data size and bias/variance analysis
to make an educated selection of tuning.

Algorithm 3.2 shows the pseudo-code of the adaptive se-
lection method. In essence the algorithm consists of a set
of “filters” that implement the design principles. We de-
fine Error as the average prediction error normalized by the
average real value. Line 3 of Algorithm 3.2 says that the
training subset size (Ntrain) must be large enough and lo-
cal tuning should perform better or comparable on the train-
ing subset. Line 4 indicates that local tuning should have a
comparable or smaller bias on the previous generalization
set. εerr, εnum, and εbias are threshold values for compar-
ing error, data size and bias. If the above conditions are met,
we proceed to examine the errors on the previous general-
ization set. If local tuning has a smaller generalization error

Algorithm 1 Adaptive Selection of Tuning

1: set the pivot attribute
2: for each training subset divided by the pivot attribute

do
3: if TrainErrorlocal − TrainErrorglobal < εerr

and Ntrain > εnum then
4: if GenBiaslocal/GenBiasglobal < εbias then
5: if GenErrorglobal − GenErrorlocal > εerr

then
6: return LOCAL
7: end if
8: if |GenErrorglobal − GenErrorlocal| < εerr

then
9: if (GenV arlocal + GenBiaslocal) <

(GenV arglobal + GenBiasglobal) then
10: return LOCAL
11: end if
12: end if
13: end if
14: end if
15: return GLOBAL
16: end for

(line 5), we use locally tuned estimators. If the generaliza-
tion error is comparable for global and local tuning (line 8),
we select local tuning only when it also has a smaller mean-
squared error (bias + variance). In other situations we use
the globally tuned model. As we will see in the experimen-
tal studies this method is effective in detecting overfitting
caused by local models and combining the advantages of
both global and local tuning.

4 Nearest Neighbor Search

The nearest neighbor predictor is practically useful and
fast compared to the scheduler simulation counterparts [7].
However, the learning process (optimizing parameters) is
shown to be very slow if the data size becomes large. In
the basic prediction algorithm we implement the k near-
est neighbor search sequentially with some small improve-
ments. The sequential search is relatively slow as it has to
calculate distances with all entries in the history base. Since
it involves resource state attributes, the distance calculations
for queue wait times are much more expensive and it can-
not employ caching like run times without compromising
accuracy [9]. To improve performance a different access
structure is needed and we investigate M-Tree in this con-
text.

The M-Tree [3] is a search tree structure to organize
and access large data sets from a generic metric space. In
the metric space object proximity is only defined by a dis-

tance function satisfying positivity, symmetry, and triangle
inequality postulates [2], on which our distance function for
queue wait times hold. M-Tree is a tree where a set of repre-
sentatives are chosen at each node and the elements closer
to each representative are organized into a subtree. Each
representative stores its covering radius r and all objects in
the subtree are within the distance r from the representative.
At query time, the query is compared against all the repre-
sentatives of the node and enters recursively into all those
that cannot be discarded using the covering radius criterion.
The k nearest neighbor search in the M-Tree uses a branch-
and-bound technique. The query radius is firstly assumed
positive infinite and it is dynamiclly decreased to the dis-
tance to the k-th nearest neighbor. The M-Tree structure is
intrinsically much more effective in reducing the number of
distance calculations compared with the sequential search.
Comprehensive descriptions and formulations of the algo-
rithm are out of scope of this paper and we refer to [3] for
details. We implement the M-Tree k nearest neighbor query
based on the XXL library [12].

5 Empirical Evaluation

We empirically evaluate the proposed methods using
workload traces with diverse characteristics. The NIKHEF
production cluster is a representative site in the LHC Com-
puting Grid [6], which is primarily used for physics data
processing. It consists of around 300 Intel and AMD CPUs,
up to 4GB memory per node, and Ethernet connections
among nodes. The cluster runs Maui as the local scheduling
engine. Firstfit backfilling is employed in the scheduling
algorithm and policies are enforced for groups and users
according to their QoS requirements. The SDSC Blue
Horizon is a terascale IBM SP supercomputer with 1152
CPUs [11]. The scheduler on this machine, Catalina, uses
one priority execution queue, performs backfilling, and sup-
ports reservations. Multiple submission queues are defined
with different priorities. The selected traces are suitable for
experimental study because of the diversities in application
types, machine architecture, and scheduling policies.

Prediction accuracy and prediction time naturally are the
two metrics for measuring the performance of our methods.
Prediction accuracy is measured by the average absolute
prediction error and the relative error, which is the average
absolute error divided by the average real value. Prediction
time is measured as the average execution time in millisec-
onds per prediction/query. The evaluation is carried out on
multiple Intel Xeon machines with four 2.8 GHz CPUs and
3 GB shared memory. The workload dataset is divided into
training and test sets. On NIKHEF, we test the performance
on trace data of one month of consecutive months, with pa-
rameters trained on the preceding two-month traces. On the
SDSC traces, testing is done on data of every three months

because of less jobs. The parameters are optimized using
the preceding six-month traces. This evaluation process is
considered more objective as it resembles how learning and
prediction would be performed in practice.

Our experimental study is conducted to answer the fol-
lowing questions:

1. How does local tuning perform compared to its global
counterparts?

2. How effective is the proposed adaptive method in de-
tecting overfitting and reducing the generalization er-
ror?

3. How much performance gain can be obtained by M-
Tree compared with the sequential search?

Figure 1 illustrates the performance of global and local
tuning on the training and generalization sets, respectively.
The comparison is done on a per group/queue basis. The
first two columns of each period in the subfigures are the
relative absolute prediction errors on the training set. As
we can see, local tuning achieves comparable or better ac-
curacy than global tuning in most cases during training. It
is intuitive that locally optimized parameters for one subset
generally fit that dataset better than global parameters. The
relative generalization errors are shown as the third/fourth
columns in each period and the results are diverse from pe-
riod to period. On some groups/queues like group dzero
and queue express, local tuning is able to produce smaller
prediction errors than global tuning in consecutive months.
However, local tuning performs even worse on periods like
December, 2004 of group lhcb and October to December,
2001 of queue high, despite that it is superior on the training
set. This is commonly due to overfitting and it indicates that
we cannot make decisions on whether to use local models
only based on the training error. More sophisticated analy-
sis like bias-variance decomposition is needed for a sound
selection of tuning methods.

Table 1 and 2 shows the comparisons of global, lo-
cal, and adaptive tuning on SDSC and NIKHEF, respec-
tively. On each trace, the results for the most representative
groups or queues are listed. The generalization error and
its bias/variance decomposition are shown for consecutive
periods for each group/queue. The training period of the
first generalization is also listed since the adaptive method
is applied on the training set if no previous generalization
is available. The three parameters for adaptive selection are
set as εerr = 0.05, εnum = 1000, and εbias = 2. In other
words, the relative error is considered comparable if the ab-
solute difference is below 5 percent. The training set is large
enough if there are more than 1000 jobs. The bias for local
tuning is considered comparable or smaller than the global
bias if the local bias is smaller than two times of the global
bias. Firstly we examine the results on SDSC. We can see

Aug Sep Oct Nov Dec
0

0.2

0.4

0.6

0.8

1
dzero

R
el

. A
bs

. E
rr

or

Aug Sep Oct Nov Dec
0

0.5

1

1.5

2
lhcb

Aug Sep Oct Nov Dec
0

0.5

1

1.5

2
atlas

Jul01 Oct01 Jul02 Oct02
0

0.5

1

1.5
express

R
el

. A
bs

. E
rr

or

Jul01 Oct01 Jul02 Oct02
0

0.5

1

1.5
high

Jul01 Oct01 Jul02 Oct02
0

0.2

0.4

0.6

0.8

1
normal

Figure 1. Comparisons of training (column 1, 2) and generalization errors (column 3, 4) of global
(dark color) and local models (light color) for selected groups (NIKHEF) and queues (SDSC).

Queue Metric Jan-Jun-01 Jul-Sep-01 Oct-Dec-01 Overall Jul-Sep-02 Oct-Dec-02 Overall
express global err 1.0 | 44.8 1.0 | 72.4 0.98 | 176 0.99 | 127 1.1 | 91 1.1 | 114 1.06 | 103

global var 3.6× 107 1.0× 108 9.2× 107 1.8× 108 1.3× 108

global bias 6.3× 105 2.0× 106 3.0× 106 3.5× 106 1.3× 107

local err 0.98 | 42.3 0.96 | 67.2 0.94 | 169 0.94 | 121 0.99 | 83 0.96 | 105 0.97 | 94
local var 3.4× 106 7.4× 106 2.0× 107 5.8× 107 1.4× 108

local bias 4.0× 106 1.2× 107 7.8× 107 2.8× 106 1.2× 107

adaptive global global 0.99 | 127 local local 0.97 | 94
size 7366 8308 15674 9205 9707 18912

high global err 0.81 | 387 1.1 | 720 0.73 | 829 0.95 | 750 0.71 | 1138 0.69 | 1439 0.70 | 1294
global var 2.0× 109 4.5× 109 3.0× 109 1.1× 1010 3.5× 1010

global bias 4.9× 107 1.7× 108 7.0× 108 5.6× 108 2.0× 109

local err 0.78 | 373 0.95 | 629 0.82 | 930 0.90 | 711 0.60 | 970 0.73 | 1530 0.68 | 1262
local var 1.5× 109 1.4× 109 3.6× 109 7.5× 109 1.7× 1010

local bias 5.4× 107 3.9× 108 1.7× 109 9.4× 107 2.1× 109

adaptive local global 0.86 | 683 local local 0.68 | 1262
size 1910 706 2616 1062 1152 2214

normal global err 0.82 | 745 0.95 | 955 0.77 | 1008 0.86 | 977 0.64 | 2370 0.76 | 1221 0.67 | 1876
global var 8.5× 109 1.3× 1010 6.7× 109 3.4× 1010 1.7× 1010

global bias 2.1× 108 3.3× 108 5.7× 108 1.1× 1010 1.5× 109

local err 0.77 | 703 0.92 | 923 0.79 | 1036 0.86 | 970 0.62 | 2284 0.68 | 1098 0.64 | 1774
local var 6.0× 109 1.3× 1010 1.4× 1010 6.5× 1010 2.0× 1010

local bias 5.0× 108 5.5× 108 8.7× 108 6.5× 109 5.0× 108

adaptive global global 0.86 | 977 local global 0.65 | 1827
size 5147 3657 8804 4778 3607 8385

Table 1. Comparisons of three tuning methods for selected queues on SDSC. Error: relative error |
absolute error (minutes). Adaptive tuning parameters: εerr = 0.05, εnum = 1000, εbias = 2.

Group Metric Jun-Jul Aug Sep Oct Nov Dec Overall
dzero global err 0.56 | 506 0.93 | 1332 0.76 | 220 0.59 | 348 0.39 | 196 0.72 | 243 0.59 | 302

global var 1.2× 109 3.0× 109 1.9× 108 5.0× 108 5.0× 108 1.0× 108

global bias 3.9× 108 2.0× 109 5.6× 107 1.0× 108 1.6× 107 2.0× 108

local err 0.54 | 490 0.77 | 1099 0.62 | 180 0.59 | 349 0.38 | 193 0.64 | 216 0.55 | 282
local var 1.0× 109 7.2× 108 2.5× 108 8.3× 108 4.3× 108 1.4× 108

local bias 2.9× 108 2.8× 109 3.5× 107 7.2× 107 2.0× 107 1.6× 108

adaptive local local local global local 0.55 | 283
size 1099 7535 10056 8743 691 28124

lhcb global err 1.0 | 208 0.64 | 156 0.92 | 3.5 1.5 | 9.6 1.1 | 25 0.65 | 133 0.65 | 91
global var 8.4× 107 2.5× 108 7.7× 104 8.8× 105 1.5× 106 1.3× 108

global bias 1.2× 108 1.9× 107 1.2× 104 1.3× 104 6.7× 105 7.0× 106

local err 1.0 | 210 0.67 | 163 0.96 | 3.6 1.3 | 8.6 0.96 | 21 0.68 | 141 0.68 | 96
local var 1.7× 108 2.4× 108 1.6× 105 1.4× 106 1.4× 105 1.3× 108

local bias 1.0× 108 4.2× 107 9.7× 103 3.9× 103 1.4× 106 1.3× 107

adaptive global global global local global 0.65 | 91
size 2498 3122 703 471 4753 11551

atlas global err 1.8 | 0.56 0.82 | 35 0.88 | 12 1.0 | 25 1.5 | 14 0.63 | 57 0.78 | 32
global var 8.0× 103 7.0× 106 1.6× 105 4.9× 105 4.7× 107 3.3× 107

global bias 8.8× 101 1.3× 106 2.4× 105 6.0× 105 3.3× 102 6.6× 106

local err 1.8 | 0.55 1.3 | 55 0.84 | 11 0.94 | 23 1.0 | 9 0.71 | 64 0.90 | 37
local var 8.6× 103 2.0× 107 7.4× 104 6.8× 105 7.9× 105 2.2× 107

local bias 1.5× 102 1.3× 103 2.6× 105 7.3× 105 6.7× 104 8.9× 106

adaptive global global local local global 0.73 | 29
size 1927 260 658 2813 1049 7707

theory global err 0.74 | 1346 0.86 | 2634 0.98 | 1577 1.3 | 3477 1.14 | 2685
global var 1.8× 109 4.4× 108 6.0× 106 3.9× 1010

global bias 4.5× 109 2.5× 1010 9.0× 109 4.0× 109

local err 0.83 | 1515 0.95 | 2925 1.0 | 1643 0.86 | 2382 0.91 | 2145
local var 7.9× 108 1.5× 109 9.5× 108 5.0× 1010

local bias 5.4× 109 1.9× 1010 6.7× 109 3.2× 109

adaptive global global local 0.89 | 2096
size 255 1187 1675 no data no data 3117

Table 2. Comparisons of three tuning methods for selected groups on NIKHEF. Error: relative error |
absolute error (minutes). Adaptive tuning parameters: εerr = 0.05, εnum = 1000, εbias = 2.

Trace Size Method Rel. Error Abs. Error Variance Bias
NIKHEF 62129 global 0.77 294 min 2.0× 109 5.0× 107

local 0.68 259 min 3.3× 109 2.0× 107

adaptive 0.67 255 min 3.3× 109 2.0× 107

SDSC01 40295 global 0.89 379 min 3.5× 109 5.6× 107

local 0.87 370 min 3.8× 109 1.3× 108

adaptive 0.86 368 min 3.1× 109 7.8× 107

SDSC02 29511 global 0.70 696 min 1.1× 1010 7.0× 108

local 0.66 659 min 1.7× 1010 3.8× 108

adaptive 0.67 674 min 1.6× 109 4.7× 108

Table 3. Comparisons of overall generalization errors and bias/variance for global, local, and adaptive
tuning on NIKHEF and SDSC.

1 10 20 30 40 50 60 70 80
0

500

1000

1500

Neighbor Size

M
ill

is
ec

on
ds

History Size = 4000

1k 2k 3k 4k 5k 6k 7k 8k
0

500

1000

1500

2000

2500

Neighbor Size = 10

History Size (1k = 1000)

M
ill

is
ec

on
ds

SDSC seq.
SDSC MTree
NIKHEF seq.
NIKHEF MTree

SDSC seq.
SDSC MTree
NIKHEF seq.
NIKHEF MTree

Figure 2. Performance comparisons of the sequential search and the M-Tree nearest neighbor search.
Experiments are carried out on a Intel Xeon machine with four 2.8 GHz CPUs and 3 GB shared memory.

that the local models outperform global models for most
queues. The adaptive method is clearly seen in action on
the period from October to December, 2001 on queue high.
On the previous generalization set local tuning is superior to
global tuning in terms of relative error. However, the adap-
tive method detects that there is a considerably larger bias
by local tuning so it switches to global tuning, resulting in
an improved overall accuracy. Nevertheless, there are also
periods on queue express and normal where the strict rules
of the adaptive method filter out local tuning even if it does
perform slightly better during generalization.

We now look at the results on NIKHEF in Table 2. The
overfitting effects by local tuning are clearly observed on
groups lhcb and atlas, for which its overall performance is
noticeably worse than global tuning. The benefits of adap-
tive selection can also be clearly observed, especially on
group atlas. On group theory we can see that the average
absolute errors are significantly larger than others. This is
mainly due to the unpredictability of this particular group.
Lower priority and strict processor throttling policies make
the waiting times for jobs from this group very sensitive to
current and future coming jobs. Bias becomes the dominant
factor in the mean-squared error and locally tuned models
with smaller bias will surely be preferable. On the most ac-
tive group dzero local tuning is constantly producing com-
parable or better results. In its case, large number of train-
ing data and high scheduling priority are the reasons why
locally optimized parameters are better than global ones.

Table 3 shows the overall generalization errors for the
three tuning methods. We can see that local tuning out-
performs global tuning, and the adaptive method can fur-

ther improve the prediction accuracy. Although the over-
all errors are mostly contributed by those with large val-
ues, the benefits of adaptive tuning are evident in the above
detailed analysis. Furthermore, the results shown here are
from those groups or queues whose number of jobs is large
enough for local tuning. For other “smaller” groups global
parameters have to be used so in any case adaption is needed
for better accuracy. Bias and variance are also shown in the
table. We can see that in general our prediction problem
is more about variance than bias therefore we should effec-
tively avoid overfitting caused by local tuning. Based on
the group-wise analysis of queue wait time predictions, an-
other observation is that different groups/queues have very
different scales of errors. For instance, the average absolute
errors increase from less than 100 minutes on queue express
to over 1000 minutes on queue normal. If we associate cor-
responding confidence levels to different queues or groups,
it will be more realistic and useful predictions for use by
Grid level schedulers.

The execution time per prediction is mainly decided by
the search time for nearest neighbors. Figure 2 shows the
performance comparisons of the sequential search and the
M-Tree search for k nearest neighbor queries. During the
experiment we turn on all attributes so the most expensive
distance calculations are anticipated. Firstly we investigate
how the search times of the two methods scale with the
neighbor size given a fixed history size. As we can see in the
left figure in 2, the sequential search time remains roughly
the same for the same history size while the M-Tree search
time increases slowly along with the growing neighbor size.
This is because with a fixed data size more or less the same

amount of distance calculations are performed by the se-
quential search but for M-Tree more comparisons need to
be done for bigger neighbor sizes. Secondly, we study how
search times scale with the history size given a fixed neigh-
bor size. On the right of figure 2, we can see that as ex-
pected the sequential search time increases linearly with the
history size. The M-Tree search, however, scales much bet-
ter than the sequential search because substantially fewer
distance comparisons are required in a tree-based structure.
Overall the M-Tree search is 2 to 8 times faster than the se-
quential search. One observation is that queries on SDSC
take quite a lot more time than on NIKHEF. This is because
the job compositions on SDSC are more diverse than those
on NIKHEF. If the policy attributes are all turned on, the
resource state attributes would be partitioned into many cat-
egories, resulting in a more expensive distance comparison.
We also notice that the performance gain on SDSC is not
as much as that on NIKHEF. One reason is that on SDSC
traces there are many instances with “similar” distances in
one node, which results in slower converge time for query.
This problem can be solved by using “approximate” search
rather than “exact” search, where the full potential of M-
Tree can be exploited.

6 Conclusions and Future Work

In this paper we propose and evaluate several methods
that improve a local learning technique for queue wait time
predictions, both in terms of prediction accuracy and predic-
tion performance. We introduce a pivot attribute that parti-
tions the training set into subsets and tune parameters for
each subset. Bias-variance analysis of error is carried out
for both global and local tuning and a method is developed
to select the tuning type adaptively based on the generaliza-
tion error and bias-variance decomposition. Experimental
results on two real-world traces show that with adaptive tun-
ing the average prediction error can be reduced by 3 to 10
percents compared with the global model. We also employ
an efficient tree-based structure called M-Tree that speeds
up k nearest neighbor search 2 to 8 times compared with
the original sequential search. With these improvements our
prediction algorithm based on local learning stands as an ef-
fective and practically useful technique in predicting queue
wait times on clusters and space-shared supercomputers.

The improvements come with limitations and prices as
well. Firstly a good pivot attribute is essential for success-
ful local tuning, in which expert knowledge plays a central
role. We are investigating automatic techniques that manip-
ulate the training space, where ensemble methods in ma-
chine learning point out an interesting direction. The M-
Tree structure excels in search but involves extra costs in
maintaining and updating the tree. Therefore more studies
are needed for examining its dynamic properties and work-

ing on a deployable version. We are developing a toolkit
called PDM (Performance Data Miner), which implements
all the ideas and algorithms in this paper and is made avail-
able in [10]. Finally, future work also includes research on
how effective the predictions would be for Grid scheduling
in a real environment.

Acknowledgments

We thank Peter v.d. Putten (LIACS) for his many in-
sightful suggestions and discussions on topics in data min-
ing. We are grateful to Jeff Templon (NIKHEF) for his help
in experimental studies. We also want to express our grat-
itude to the Parallel Workload Archive through which the
SDSC traces are made publicly available.

References

[1] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally
weighted learning. Artificial Intelligence Review, 11(1-
5):11–73, 1997.

[2] E. Chavez, G. Navarro, R. Baeza-Yates, and J. L. Marro-
quin. Searching in metric spaces. ACM Computing Surveys,
33(3):273–321, 2001.

[3] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In Pro-
ceedings of the 23rd International Conference on Very Large
Data Bases (VLDB’97), pages 426–435. Morgan Kaufmann
Publishers, Inc., 1997.

[4] S. Geman, E. Bienenstock, and R. Doursat. Neural networks
and the bias/variance dilemma. Neural Computation, 4:1–
58, 1992.

[5] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive
application-performance modeling in a computational grid
environment. In IEEE International Symposium for High
Performance Distributed Computing (HPDC), 1999.

[6] The lhc computing grid (lcg) project. http://lcg.web.
cern.ch.LCG/.

[7] H. Li, D. Groep, J. Templon, and L. Wolters. Predicting job
start times on clusters. In proceedings of 4th IEEE/ACM In-
ternational Symposium on Cluster Computing and the Grid
(CCGrid’04), 2004.

[8] H. Li, D. Groep, and L. Wolters. Efficient response time pre-
diction by exploiting application and resource state similar-
ities. In proceedings of 4th IEEE/ACM International Work-
shop on Grid Computing (Grid’05), 2005.

[9] H. Li, D. Groep, and L. Wolters. Mining performance data
for metascheduling decision support in the grid. Technical
Report LIACS-2005-07, Leiden Institute of Advanced Com-
puter Science, Leiden University, 2005.

[10] Pdm: A toolkit for mining performance data in the grid.
http://www.liacs.nl/home/hli/pdm/.

[11] Parallel workload archive. http://www.cs.huji.ac.
il/labs/parallel/workload/.

[12] The extensible and flexible library. http:
//dbs.mathematik.uni-marburg.de/
research/projects/xxl/xxl.html.

