NikThef

Nikhef Jamboree 2020

Quantum Computing

 both ready and not ready for us all at the very same timeDavid Groep
Physics Data Processing

Image: IBM

What's in it ... for the machine ...

- 0

Classical Bit
Qubit

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

$|\alpha|^{2}+|\beta|^{2}=1$
and a rotation over π is immaterial
a classical bit can be either 0 or 1
typical implementation:
a charge in a MOS capacitor
a 'qubit' does have two basis states |0才 typically a ground state and also |1) (maybe higher-energy) state typical implementations: Josephson junction, spin, photon polarization, a hole,
and you can manipulate a qubit through unitary transformation of its state ('gates') although in fact there are only 2 free parameters

Things to do with a qubit when you're bored

you can make it a superposition

you can entangle it

you can interfere with it
Image credits Bloch sphere: https://prateekvjoshi.com/ Quantum Computing - both there and not there for us at the same time
gates: wikipedia.org
Nik【hef

More fun with more qubits ... and a bunch of gates

create maximal-
mix initial state
'function' acts on $A B C$
processing needed to determine 'action of the oracle' (function) enhancing the real solution - suppressing FAKE answers

'if A is $|1\rangle$, only keep it there is either B xor C is $|1\rangle$ '

'a general purpose Quantum Computer feels a bit like programming an FPGA ... that has a bad hair day'

What's in it ... for us?

Published: 19 October 2017
 Solving a Higgs optimization problem with quantum annealing for machine learning

Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar \& Maria Spiropulu \square
Nature 550, 375-379(2017) | Cite this article
2461 Accesses | 183 Altmetric | Metrics

Abstract

The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods ${ }^{1,2}$. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect
simulations of the physical processes involved, often resulting in incorrect labelling of
hackground nrocesses or signals (lahel noise) and svstematic errors. Here we use

'an annealing Quantum Computer can do one thing (minimization) well, with lots of qubits, but is more like an ASIC ...

so can we also scale a general purpose QC like IBM's to our problem sizes?

What's in it ... for us

now if we could only obtain quantum supremacy ... to make sense of this, for example

‘just a few steps to take?’

- work on potential algorithms
- it's a minimization challenge with many inputs ... but you need a lot of qubits
- and a way to boost the desired result, and suppress fake news
- quantify its efficiency in finding the right tracks

and it would be jolly nice if

- our quantum computer did not suffer from amnesia all the time
- not suffer that many errors
so: don't hold your breath, it may take quite a while yet!

So now, be both convinced and confused ...

 ... at the same timeNik/hef
David Groep
davidg@nikhef.nl
https://www.nikhef.nl/~davidg/presentations/
(D) https://orcid.org/0000-0003-1026-6606
go and watch the CERN QC lecture series by Elías F. Combarro at https://indico.cern.ch/event/970903/

Nature always interferes slightly with our desires ...

example gate:
a "controlled NOT"

rotates $|y\rangle$ over π around x-axis if $|x\rangle=|1\rangle$

create superposition $\frac{|0\rangle+|1\rangle}{\sqrt{2}}$ ("H") and have it control a $|0\rangle$ qubit

what you expect:
what you really get is: (and what the simulator gives)

Image source: https://www.sciencenews.org/article/new-light-based-quantum-computer-juzhang-supremacy

Quantum Computing - both there and not there for us at the same time

