Nikhef

Maastricht University

Introduction to Nikhef, Computing and Networking

Welcome to Nikhef

Verleggen van de grenzen van onze kennis

Accelerator-based particle physics

Experiments studying interactions in particle collision processes at particle accelerators, in particular at CERN;

Astroparticle physics

Experiments studying interactions of particles and radiation emanating from the Universe.

8 SEPTEMBER 2015

ORIENTATIE NIKHEF

Nikhefs neutrino-detector: KM3NeT

0000000000000

IMAGE SOURCES: LNGS/INFN, XENON COLLABORATION; PIERRE AUGER COLLABORATION; NIKHEF

Nikhef collaboration – underpinning programmes

Detector R&D

Theoretical Physics

Physics Data Processing

Introduction to Nikhef Computing & Data

PDP 'Physics Data Processing' activities and action lines

Scalable Computing & Algorithms

- algorithms for highperformance software
- data organisation
- accelerator throughput
- rethinking code: at small scale and on large scales

Research Infrastructure & Future Technologies

- NDPF processing facility
- National e-Infrastructure coordinated by SURF
- experimental next-gen systems engineering
- cross-tier global networks
- stressing & public/private collaborative design

Infrastructure for Secure Collaboration

- authentication and authorization protocols
- multi-domain federation
- global trust and identity
- access provisioning
- operational security

Data at the Large Hadron Collider at CERN

~ 50 PiB/year

primary data

1964

PHYSICAL REVIEW LETTERS 12 Octown 1964 BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSON Peter W. Higgs of Edinburgh, Edinburgh, Scotland In a recent note¹ it was shown that the Goldabout the "vacuum" solution $\phi_1(x) = 0$, $\phi_2(x) = \phi_0$: tone theorem," that Lorentz $\delta^{\mu}[\partial_{\mu}(\Delta \psi_1) - e \psi_0 A_{\mu}] = 0,$ wametry under an internal Lie group occur ontain zero-mass particles, fails if and only if $\{t^{\alpha}{=}4\psi_{\theta}{}^{\alpha}V^{\nu\nu}(\psi_{\theta}{}^{\theta})\big\}(\Delta\psi_{\theta})=0,$ (2b) $\partial_{\mu}F^{\mu\nu} = e \varphi_0 \{\partial^{\mu}(\Delta \varphi_1) - e \varphi_0 A_{\mu}\}.$ (2c) s a consequence of this coupling, the spin-o Equation (2b) describes waves whose quanta have (bare) mass $2\phi_0[v^{-1}(\phi_0^2)]^{1/4}$; Eqs. (2a) and (2c) may be transformed, by the introduction of new anta of some of the sauce fields acquire mass loaritudinal degrees of freedom of these par les [which would be absent if their mass were e bosons when th pling tends to zero. This phenomenon is ju- $B_{\mu} - A_{\mu} - (e \varphi_0)^{-1} a_{\mu} (\Delta \varphi_1),$ relativistic analog of the plasmon phenome in to which Anderson² has drawn attention: $G_{\mu\nu} = \partial_{\mu} \frac{B}{\nu} - \partial_{\nu} \frac{B}{\mu} = F_{\mu\nu},$ durting neutral Fermi gas become longitud into the form in modes of finite mass when the gas $\delta_{-}B^{\mu} = 0, \quad \delta_{-}G^{\mu\nu} + e^{2}\varphi_{\alpha}^{-2}B^{\mu} = 0.$ (4) charged. The simplest theory which exhibits this beavior is a gauge-invariant version of a model and by Goldstone² himself: Two real⁴ scalar Equation (4) describes vector waves whose quarts fields ϕ_i , ϕ_i and a real vector field A_{ij} interact have (bare) mass co... In the absence of the gauge field coupling (c = 0) the situation is quite differ ent: Equations (2a) and (2c) describe zero-mas $L = -4(\nabla \varphi_{-})^{2} - 4(\nabla \varphi_{-})$ stalar and vector bosons, respectively. In pase ng, we note that the right-hand side of (2c) is $V(\varphi, 2 - \varphi, 2) = \frac{1}{4}F - F^{\mu\nu}$ just the linear approximation to the conserver current: It is linear in the vector potential, gauge invariance being maintained by the pres-When one considers theoretical models in $\nabla_{\mu} \varphi_1 - \partial_{\mu} \varphi_1 - \epsilon A_{\mu} \varphi_2$ which spontaneous breakdown of symmetry unde a semisimple group occurs, one encounters a ${}^{\nabla_{\mu}\varphi_2}{}^{\circ}{}^{*}{}^{\mu}{}^{\varphi_2}{}^{*eA}{}_{\mu}\varphi_1,$ aristy of possible situations corresponding to the various distinct (rreducible representations a which the scalar fields may belong; the gauge $F_{\mu\nu} = \delta_{\mu}A_{\nu} - \delta_{\nu}A_{\mu},$ gs to the adjoint a r is a dimensionless coupling constant, and the metric is taken as -+++, L is invariant under est is that in which the scalar fields form an octet under SU(3): Here one finds the possibi ecos cauge transformations of the first ity of two nonvanishing vacuum expectation val kind on w, a /w, and of the second kind on A which may be chosen to be the two Y=0. Let us suppose that $V^{\gamma}(\phi_{0}^{-1}) = 0$, $V^{\alpha}(\phi_{0}^{-1}) > 0$; then spontaneous breakdown of U(1) symmetry occur. Consider the equations [derived from (1) by $I_0 = 0$ members of the octet.⁷ There are two massive scalar bosons with just these quanti numbers; the remaining six components of the uting $\Delta \varphi_i$, $\Delta \varphi_2$, and A_{ji} as small quantiti scalar octet combine with the corresponding ng the propagation of small oscillat ents of the gauge-field octet to describe

P. Higgs, Phys. Rev. Lett. 13, 508 16823 characters, 165kByte PDF

11

Computing on lots of data – 40 Mevents/sec

~ 10 seconds to compute a single event at ATLAS for 'jets' containing ~30 collisions

Display of a proton-proton collision event recorded by ATLAS on 3 June 2015, with the first LHC stable beams at a collision energy of 13 TeV; Event processing time: v19.0.1.1 as per Jovan Mitrevski and 2015 J. Phys.: Conf. Ser. 664 072034 (CHEP2015)

'Big Science' needs some computing ...

CERN CC B513, image: https://cds.cern.ch/record/2127440; tape library: CC-IN2P3 with LHC and LSST data; cabinets: Nikhef H234b

Detector to doctor workflow

diagram adapted from Frank Linde; images: ATLAS collaboration, Nikhef. ... and sorry for the GDPR-blur

14

Single CPU scaling stopped around 2004

limitation is power, not circuit size

and clock frequency is most 'power-hungry' still some packages now @ TDP of 400W

multiple cores on the same die helped

AMD EPYC Genoa (Zen 4) has 96 cores on die Intel Cascade Lake AP looked like a cludge but now Sapphire Rapids appears better again

CPU design-performance gains left

predictive execution out-of-order execution on-die parallelism (multi-core) pre-fetching and multi-tier caching execution unit sharing ('SMT') *but at increased risk for security/integrity*

50 Years of Microprocessor Trend Data

New plot and data collected for 2010-2021 by K. Rupp

Image: K Rupp, https://github.com/karlrupp/microprocessor-trend-data

Fix the thing that didn't scale well, CPU frequency??

LCO2 cooling of an AMD Ryzen Threadripper 3970X [56.38 °C] at 4600.1MHz processor (~1.5x nominal speed) sustained, using the Nikhef LCO2 test bench system (https://hwbot.org/submission/4539341) - (Krista de Roo en Tristan Suerink)

... since you then need this around it ...

Nikhef 2PA LCO2 cooling setup. Image from Bart Verlaat, Auke-Pieter Colijn CO2 Cooling Developments for HEP Detectors https://doi.org/10.22323/1.095.0031

With 20 000+ users, you need something global: WLCG!

~ 1.4 million CPU cores

~ 1500 Petabyte disk + archival

170+ institutes 40+ countries 13 'Tier-1 sites' NL-T1: SURF & Nikhef

e-Infrastructures EGI PRACE-RI EuroHPC OpenScienceGrid XSEDE (ACCESS)

Earth background: Google Earth; Data and compute animation: STFC RAL for WLCG and EGI.eu; Data: https://home.cern/science/computing/grid For the LHC Computing Grid: wlcg.web.cern.ch, for EGI: www.egi.eu; ACCESS (XSEDE): https://access-ci.org/, for the NL-T1 and FuSE: fuse-infra.nl, https://www.surf.nl/en/research-it

Global distribution of computing and data placement

WLCG and EGI Advanced Computing for Research

More of more than one ... @Nikhef

E-INFRASTRUCTURES: EGI, EUDAT, GEANT, PRACE, ...

imagery: EGI.eu

Policy-bridged global federations for research computing

Image: Interoperable Global Trust Federation IGTF, https://igtf.net/; REFEDS Assurance Framework RAF: http://refeds.org/assurance, https://refeds.org/profile/mfa

Maastricht University | DACS

Large-scale IT: the worldwide LHC Computing Grid and beyond 22

OpenID Connect Federation

OIDC endpoints + trust policy data for registration can be federated in a meta-data feed

- makes OIDC 'federatable' (plain oidc is single OP)
- as for PKIX, can be technical or policy bridge

DACS

 delegated metadata makes 'OIDC-fed' scale in webscale scenarios

Maastricht University

Image: Roland Hedberg, University of Umeå OpenID Connect Fedrration: https://openid.net/specs/openid-connect-federation-1 0.html

Large-scale IT: the worldwide LHC Computing Grid and beyond 23

AARC Blueprint Architecture (2019) AARC-G045 https://aarc-community.org/guidelines/aarc-g045/; stacked proxies: EOSC AAI Architecture EOSC Authentication and Authorization Infrastructure (AAI), ISBN 978-92-76-28113-9, <u>http://doi.org/10.2777/8702</u>

Maastricht University | DACS

Large-scale IT: the worldwide LHC Computing Grid and beyond 24

EOSC AAI Federation

user identity comes 'with the user' from outside, mediated by the research community, ORCID, or from the home member state involved

Image: EOSC AAI for the EOSC Core and Exchange Federation for the EOSC European Node by Christos Kanellopoulos, Nicolas Liampotis, David Groep (June 2023)

Maastricht University | DACS

Identity assurance brings the true value: authenticators are aplenty, and 'MFA' far less interesting than vetted identities. But HEI home IdPs seem reluctant to provide it ...

25

Bridges: token translation example 'SAML' to PKIX

user facing

hidden back-end

With a single, yet fully compliant, 'Heath Robinson' CA

A single-site locally-highly-available RCauth at Nikhef Amsterdam

- Most 'fault-prone' components are
 - Intel NUC (single power supply)
 - HSM (can lock itself down, and the USB connection is prone to oxidation)
 - DS front-end servers (physical hardware, albeit with redundant disks and powersupplies)

A *transparent* multi-site setup is needed for the user

User

- connects to HA proxy at **{wayf,pilot-ica-g1}.rcauth.eu**
- HA proxy sends users to "closest" working service
- primarily **forward to its own DS** when available

Straightforward proven solution is IP anycast

wherever the user is, the service is at

- 2a07:8504:01a0::1
- or for legacy IP users at 145.116.216.1

selected imagery: Mischa Sallé, Jens Jensen, Nicolas Liampotis

route maps: bgp.tools for 2a07:8504:1a0::/48 – IPv4 for 145.116.216.0/24 is similar – imagery from November 2022

And you get reasonable load balancing in Europe for free

< 10 ms: 29 < 20 ms: 46 < 30 ms: 59 < 40 ms: 54 < 50 ms: 64 < 100 ms: 113 < 200 ms: 91 < 300 ms: 26 > 300 ms: 5

map: RIPE NCC RIPE Atlas - 500 probes, distributed across Europe (https://atlas.ripe.net/measurements/50949024/)

Maastricht University | DACS

MANY PARTIES, SHARED SECURITY CHALLENGES

Incident Response Communication, communication blocks

Challenges

- IdP appears outside the service's security mandate
- Lack of contact or lack of trust in the IdP which to the SP is an unknown party
- IdP fails to inform other affected SPs, for fear of leaking data, of reputation, or just lack of interest and knowledge
- No established channels of communication, esp. not to federations themselves!

Inter-Federation Incident Response Communication

EXERCISES – COMMUNICATIONS AND ACTIONS

parties involved in response challenge

Nikhef

RCAuth

Nikhef

RCAuth

IDEM

INFN

GARR

SSC MONITORING

More than one: Nikhef Science Data Centre ('234b')

Physical farms: selecting the 'worker nodes'

For HTC applications – like WLCG, IGWN, but also SKA, WeNMR – typically

balanced features for node throughput (CPU, storage, memory bandwidth, network)

single-socket multicore systems are fine, typical: 64-128 cores per system network: 2x25Gbps (+ 'out of band' management like IPMI) memory: 8 GiB/core local disk: 4TB NVME PCIe Gen4 x4

space (physical + power) to add GPU

Image: Cluster 'Lotenfeest' at the Nikhef NDPF, acquired March 2020. Lenovo SR655 with AMD EPYC 7702P 64-Core single-socket

NDPF 'WLCG and Dutch National Infra' cluster

Running jobs:

period: March 2021 .. October 2022

Niklhef

drainage event on Sept 27 are nodes being moved to the LIGO-VIRGO specific cluster; Source: NDPF Statistics overview, https://www.nikhef.nl/pdp/doc/stats/ 'other' waiting jobs are almost all for the Auger experiment - GRISview images: Jeff Templon for NDPF and STBC

Global high throughput computing needs moving of data

source: https://monit-grafana.cern.ch/d/000000420/fts-transfers-30-day ; data: November 2020 ; CERN FTS instance WLCG: daily transfer volume ATLAS+LHCb

Typical data traffic to and from the processing cluster

Source: Nikhef cricket graphs period June 2021 – October 2022 – aggregated (research) traffic to external peers from deelqfx – https://cricket.nikhef.nl/

LHCone ("LHC Open Network Environment") - visualization by Bill Johnston, ESnet version: October 2022 - updated with new AS1104 links

Just one random (smallish) autonomous system

Introduction to Nikhef Computing & Data

Exercising the network – sensor data and events

Image: ballenbak.nikhef.nl, Tristan Suerink

Innovation on infrastructure

empowers subatomi physics research with AMD EPYC" CPUs and Radeon Instinct" GPUs ening our understanding of the universe with AMD EPYC CPU-powered and Radeon tinct GPU-accelerated servers

	Many of the latest scientific are as much about the comp	discoveries outing power	Three of those experiments are at CERN: the ATLAS, LHCb, and ALICE experiments. There		
	used to analyze experiment	al data as they	are sever	al astroparticle physics experiments.	
hef	are about the theones benin	d them. At the	Une is tr	e Pierre Auger experiment, covering	
101	ioreiront of delivening the proce	is Million also	Several L	iousand square kilometers of Pampa	
	Tor subatornic physics research	is reacter, the	in vogen	ana. The area is equipped with	
	Dutch National Institute concer	strating on this	Detector	to search for air showers caused by	
	ansa. Nicher has provided comp	bung utat has	from the universe. Then there is the neutrino- obasics amaziment KM2NeT and dak-matter		
	helped with the discovenes of i	gravitational			
	waves in 2016, the higgs boson	t, and the	physics experiment KMONET, and dark-matter		
	tundamental physics in dedwee	in, including	research	Multitle AENON experiment. Finally,	
	contrimation that many of the	neavy elements	there is a	large gravitational waves physics	
	in the universe are produced			group that is a member or the Lico-	
out with higher	in neutron star mergers.	"We were able	to be the	virgo experiment collaboration."	
aun	"The Institute performs	worldwide numb	er one in a	If there's one thing all these	
	blue-sky research to learn	frw public proj	erts like	experiments have in common, it's	
	more about the nature of	Rosetto@hor	ne and	the increasing amounts of data	
	the universe and the	Worldwide Comp	ounity Grid	that the experiments produce.	
and map CPUS	building blocks of matter."	with th	p Contra	"The scientists always want more	
MISU GPUS	evolains Doel Aaii Scientific	AMDEDUT	writer "	data " says Suprink "I think there	
	Staff Member at Nikhef.	reducert. u	MARKET.	are few experimental physics papers	
	"The fundamental goal of	amental goal of Roel Anii, Scientific Stoff uta is to find the Member, Nikhef		that do not end with 'we need more	
	this institute is to find the			data 'And in this field of obasies to	
e admity to	his universal box of building			out more data una halida more	
machine	blacks a southing is made for	m * adds Tristen	and the second	get more data you build a more	
noly expanding	blocks everything is made no	t The more than	sensitive	Education of the case of the Large	
0	suemink, it Architect at Nikhe	r, me mole	madron U	under (Linc) at CERN, the leap in data	
	computing power that the Ins	attute can	produced	will be particularly nuge.	
ANCE	throw at this quest, the more	that can be	"In abou	five years the LHC will increase the	
1. Contract (1. Contract)	discovered. This led the team	TO AMU EPYL	number	of collisions detected by about a	
sors with 32 cores	processors and Radeon Instin	ct upos, which	factor of 10." says Aaii. "This means that the		
sors with 64 cores	delivered the performance Niki	et's workloads	experime	nts will start producing a similarly	
SUGPOS	required and the solution price	e that angred	increasin	amount of data If we look at the	
	with their budget.		errath o	storate snare and compute capacity	
	Data-hungay science		over time	then we do not expect to even out	
	Without is implementing of the	Low and	dece to	factor 10 in increases of performance	
	nuclear is involved in many dif	rerent	for a flat	hudget. We need to deal with that	
10	experiments, out all of them	equire a	horse ou	monored to emprove the data Othermice	
0	Considerable level of computi	power.	occauses	the need to process the data. Otherwise,	
	About 100 scientific staff we	erk at reiknet,	we can't	to science with it. This is where	
	explains Aai. These staff us	uany work on	AMUEP	rc processors and GPU acceleration	
	one (or sometimes more than	one) of the	have off	red the best solutions to satiate the	
	experiments Nikhet is involve	d in.	hunger t	or growing data processing admity.	
				AMD	

FUNGIBLE

Companies Double Current Performance Record, Setting the New Bar at 6.55 Million Read IOPS

798.49 Gb/s

AMD + NI

L

Ni

INDUSTRY Subatomic Ph CHALLENCES Increasing dat //O and memory SOLUTION Deploy AND ES and AND Rade RESULTS Faster process harmass CPU-harms (PL) AMD EP/C 750 AM

Image: Minister of Economic Affairs M. Adriaansens launched the Innovation Hub with Nikhef, SURF, Nokia and NL-ix, January 2023. Composite image from https://www.surf.nl/nieuws/minister-adriaansens-lanceert-testomgeving-voor-supersnelle-netwerktechnologie

Introduction to Nikhef Computing & Data

Our science data flows are somebody else's DDoS attack

Image sources: belastingdienst.nl, rws.nl, nu.nl, werkentegennederland.nl

But what about some other digital competences?

We have the network (physical and in terms of expertise) for processing and analysis, but other elements are missing

- accessible analysis preservation for our on-prem experiments and R&D projects
- longer-term 'local' re-use in programmatic research
- complexity of managing ongoing large analyses
- data and software of non-collaboration-based outputs

Now preparing for **analysis preservation** and RDM through managed 'snapshots' as part of the analysis pipelines

• *linking Stoomboot dCache to a new institutional Research Data Management*

		Θ	datasets	
		Θ	authors	
		Θ	collections	
		Θ	bytes	
INSTITUTIONS				
TU Delft	UNIVERSITY OF TWENTE.			Other Institution
SUB IECTS (m)				

Power usage and efficient data centres

Nikhef scientific data centre (the 'glass box') designed for 400kW total use + cooling in 47 racks

De <u>snelste</u> CPU/GPU is voor ons niet altijd de beste (sorry gamers & miners!), want 5 jaar energie en beheer zijn even kostbaar als de server zelf

WKO: Warmte Koude Opslag

21% van het vermogen is nodig om te koelen, maar: we mogen 3500GJoule/jaar (~112 kWjaar, ~982 000 kWh) aan studenten tegenover leveren om ze warm te houden !

nputing & Data

Let's go on tour!

David Groep

davidg@nikhef.nl https://www.nikhef.nl/~davidg/presentations/ (ip https://orcid.org/0000-0003-1026-6606

(cc) BY

Maastricht University

