Nikhef

Maastricht University

Ignatius caput selectum deeltjesfysica 2023

Computing for (astro)particle physics at Nikhef and in the world

David Groep March 2023

Data at the Large Hadron Collider at CERN

1964

PHYSICAL REVIEW LETTERS BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSON Peter W. Higgs Dinhergh, Edinburgh, Scotland Obsecteed 31 August 1964 In a recent note¹ it was shown that the Goldabout the "vacuum" solution $\phi_1(x) = 0$, $\phi_2(x) = \phi_0$: tone theorem," that Lorentz $\delta^{\mu}[\partial_{\mu}(\Delta \psi_1) - e \psi_0 A_{\mu}] = 0,$ wametry under an internal Lie group occur ontain zero-mass particles, fails if and only i $\{t^{\alpha}{=}4\psi_{\alpha}{}^{\alpha}T^{\alpha\alpha}(\psi_{\alpha}{}^{\alpha})\}(\Delta\psi_{\alpha})=0,$ (26) $\partial_{\mu}F^{\mu\nu} = e \varphi_0 \{\partial^{\mu}(\Delta \varphi_1) - e \varphi_0 A_{\mu}\}.$ (2c) s a consequence of this coupling, the spin-o Equation (2b) describes waves whose quanta have (bare) mass $2\phi_0[v^{-1}(\phi_0^2)]^{1/4}$; Eqs. (2a) and (2c) may be transformed, by the introduction of new anta of some of the masse fields acquire mass loaritudinal degrees of freedom of these par les [which would be absent if their mass were e bosons when th pling tends to zero. This phenomenon is just $B_{\mu} = A_{\mu} = (e \varphi_0)^{-1} \partial_{\mu} (\Delta \varphi_1),$ relativistic analog of the plasmon phenom in to which Anderson² has drawn attention: $G_{\mu\nu} = \partial_{\mu} \frac{B}{\nu} - \partial_{\nu} \frac{B}{\mu} = F_{\mu\nu},$ durting neutral Fermi gas become longitud into the form in modes of finite mass when the gas $\delta_{-}B^{\mu} = 0, \quad \delta_{-}G^{\mu\nu} + e^{2}\varphi_{\alpha}^{-2}B^{\mu} = 0.$ (4) charged. The simplest theory which exhibits this beavior is a gauge-invariant version of a model and by Goldstone² himself: Two real⁴ scalar Equation (4) describes vector waves whose quarts fields ϕ_i , ϕ_i and a real vector field A_{ij} interact have (bare) mass co... In the absence of the gauge field coupling (c = 0) the situation is quite differ ent: Equations (2a) and (2c) describe zero-mas $L = -4(\nabla \varphi_{-})^{2} - 4(\nabla \varphi_{-})$ stalar and vector bosons, respectively. In pase ng, we note that the right-hand side of (2c) is $V(\varphi, 2 - \varphi, 2) = \frac{1}{4}F - F^{\mu\nu}$ just the linear approximation to the conserver current: It is linear in the vector potential, gauge invariance being maintained by the presconsiders theoretical models in $\nabla_{\mu} \varphi_1 - \partial_{\mu} \varphi_1 - \epsilon A_{\mu} \varphi_2$ which spontaneous breakdown of symmetry unde a semisimple group occurs, one encounters a ${}^{\nabla_{\mu}\varphi_2}{}^{\circ}{}^{*}{}^{\mu}{}^{\varphi_2}{}^{*eA}{}_{\mu}\varphi_1,$ aristy of possible situations corresponding to the various distinct (rreducible representations o which the scalar fields may belong; the gauge ield always belongs to the adjoint representa- $F_{\mu\nu} = \delta_{\mu}A_{\nu} - \delta_{\nu}A_{\mu},$ r is a dimensionless coupling constant, and the metric is taken as -+++, L is invariant under est is that in which the scalar fields form an ctet under SU(3): Here one finds the possibi ecos cauge transformations of the first ity of two nonvanishing vacuum expectation val kind on w, a /w, and of the second kind on A which may be chosen to be the two Y=0. Let us suppose that $V^{\gamma}(\phi_{0}^{-1}) = 0$, $V^{\alpha}(\phi_{0}^{-1}) > 0$; then spontaneous breakdown of U(1) symmetry occur. Consider the equations [derived from (1) by $I_0 = 0$ members of the octet.⁷ There are two massive scalar bosons with just these quanti numbers; the remaining six components of the uting $\Delta \varphi_i$, $\Delta \varphi_2$, and A_{ji} as small quantit scalar octet combine with the corresponding ents of the gauge-field octet to describe

P. Higgs, Phys. Rev. Lett. 13, 508 16823 characters, 165kByte PDF

2

'Big Science' needs some computing ...

CERN CC B513, image: https://cds.cern.ch/record/2127440; tape library: CC-IN2P3 with LHC and LSST data; cabinets: Nikhef H234b

Larger scales for both facilities and computing

Sources: CERN https://wlcg.web.cern.ch/; HADDOCK, WeNMR, @Bonvinlab https://wenmr.science.uu.nl/; Virgo, Pisa, IT; SKAO: the SKA-Low observatory, Australia https://www.skatelescope.org/

More data is coming!

Computing on lots of data – 40 Mevents/sec

~ 10 seconds to compute a single event at ATLAS for 'jets' containing ~30 collisions

Display of a proton-proton collision event recorded by ATLAS on 3 June 2015, with the first LHC stable beams at a collision energy of 13 TeV; Event processing time: v19.0.1.1 as per Jovan Mitrevski and 2015 J. Phys.: Conf. Ser. 664 072034 (CHEP2015)

Detector to doctor workflow

diagram adapted from Frank Linde; images: ATLAS collaboration, Nikhef. ... and sorry for the GDPR-blur

WLCG: when we met a global trust scaling issue

170 sites ~60 countries & regions ~20000 users just *how* many interactions

people photo: a small part of the CMS collaboration in 2017, Credit: CMS-PHO-PUBLIC-2017-004-3; site map: WLCG sites from Maarten Litmaath (CERN) 2021

Example: the worldwide LHC Computing Grid

- ~ 1.4 million CPU cores
- ~ 1500 Petabyte disk + archival

170+ institutes 40+ countries 13 'Tier-1 sites' NL-T1: SURF & Nikhef

e-Infrastructures EGI PRACE-RI EuroHPC OpenScienceGrid XSEDE (ACCESS)

Earth background: Google Earth; Data and compute animation: STFC RAL for WLCG and EGI.eu; Data: https://home.cern/science/computing/grid For the LHC Computing Grid: wlcg.web.cern.ch, for EGI: www.egi.eu; ACCESS (XSEDE): https://access-ci.org/, for the NL-T1 and FuSE: fuse-infra.nl, https://www.surf.nl/en/research-it

Global distribution of computing and data placement

WLCG and EGI Advanced Computing for Research

WLCG NL-T1 and the Dutch National Infrastructure

Joint SURF & Nikhef collective service – part of EGI, WLCG and FuSE hosts WLCG, but also LOFAR radio telescope data, and ~100 other projects 59 PByte near-line storage (tape), 42.5 PByte on-line (disk), 27.6 k cores (cpu)

DNI and NL-T1 capacity from 2023 DNI NWO, LOFAR, and WLCG; see https://www.surf.nl/onderzoek-ict/toegang-tot-rekendiensten-aanvragen; fuse-infra.nl SURF tape total: ~80 PByte by end 2022; image library at Schiphol Rijk from Sara Ramezani; NikhefHousing: https://www.nikhef.nl/housing/datacenter/floorplan/

11

Single CPU scaling stopped around 2004

limitation is power, not circuit size

and clock frequency is most 'power-hungry' still some packages now @ TDP of 400W

multiple cores on the same die helped

AMD EPYC Genoa (Zen 4) has 96 cores on die Intel Cascade Lake AP looked like a cludge but now Sapphire Rapids appears better again

CPU design-level performance gains left

predictive execution out-of-order execution on-die parallelism (multi-core) pre-fetching and multi-tier caching execution unit sharing ('SMT') *but at increased risk for security/integrity*

Image: Herb Sutter, *Dr.Dobbs Journal* 2004, updated 2009, see http://www.gotw.ca/publications/concurrency-ddj.htm

Fix the thing that didn't scale well, CPU frequency??

LCO2 cooling of an AMD Ryzen Threadripper 3970X [56.38 °C] at 4600.1MHz processor (~1.5x nominal speed) sustained, using the Nikhef LCO2 test bench system (https://hwbot.org/submission/4539341) - (Krista de Roo en Tristan Suerink)

... since you then need this around it ...

Nikhef 2PA LCO2 cooling setup. Image from Bart Verlaat, Auke-Pieter Colijn CO2 Cooling Developments for HEP Detectors https://doi.org/10.22323/1.095.0031

Accelerators – general purpose GPUs

precision (even 4-bit precision is used) quite power hungry!

M1250X NVM X/ HCS4 Proceduariemtor and Node Architectures | Hot Chips 34 August 22, 202

1#0

In-packag

Scale Out

100 GB/S

PCIE Gen4 ESM

Image: 'Massively Parallel Computing with CUDA', Antonino Tumeo Politecnico di Milano, https://www.ogf.org/OGF25/materials/1605/CUDA_Programming.pdf Floorplan image of die: AMD MI250 GPU, slide source: AMD

Scale Up

External Infinity Fabric

AMD

If large-scale IT does not quite fit ... ahum ...

Image source: https://lambdalabs.com/products/blade

SuperMicro (branded as 'Lambda Blade') 4U chassis, supporting 10 consumer-grade GPUs with a bump

Scaling up – beyond one lone motherboard

Physical farms: selecting the 'worker nodes'

For HTC applications – like WLCG, SKA, WeNMR – typically

balanced features for node throughput (CPU, storage, memory bandwidth, network)

single-socket multicore systems are fine, typical: 64-128 cores per system network: 2x25Gbps (+ 'out of band' management like IPMI) memory: 8 GiB/core local disk: 4TB NVME PCIe Gen4 x4

space (physical + power) to add GPU

Image: Cluster 'Lotenfeest' at the Nikhef NDPF, acquired March 2020. Lenovo SR655 with AMD EPYC 7702P 64-Core single-socket

WLCG computing - conveniently parallel

		HEEL HEEL	
NU		- 2021) - 2021)	

5.0 k 4.0 k 3.0 k 2.0 k 1.0 k 0.0 Week 34	Week 35 Week 36	what the states	38 Week 39	atlb httpjl virgo alicesgm pxenon ligo biome biome other	
1e+05 1e+02	AGARAMANA A	MANA ANA	RAMP.	atlb hcbpil virgo aticesgm pxenon ligo biome	DEF=lhcalice DEF=lhcalice DEF=lhcalice
Week 34	Week 35 Week 36	Week 37 Week	38 Week 39		
	GROUPCFG[auger] GROUPCFG[augsgm] QOSCFG[augerbig]	FSTARGET=3 FSTARGET=1 FSTARGET=3	PRIORITY=200 PRIORITY=300	MAXPROC=500 MAXPROC=2	QDEF=augerbig QDEF=augerbig

if these are queued, they will generally be of highest priority. # limit their MAXIOBS ... we really want two non-ATLAS VOS to be # of rank higher than ATLAS before we drain the multicore pool.

GROUPCFG[virgo]	FSTARGET=25 PRIORITY=2		MAXPROC=2700	MAXIJOB=10 QDB	
GROUPCFG[ligo] =biggrid	FSTARGET=23	PRIORITY=200	MAXPROC=2700	MAXIJOB=10	QDEF
# local groups					

GROUPCFG[atlas] FSTARGET=10 PRIORITY=200 MAXPROC=2200 QDEF=niklocal

'like milking cows' (if you feed them lots of power first) parallel access to data comes at a cost of high IOPS

NDPF 'WLCG and Dutch National Infra' cluster

Running jobs:

period: March 2021 .. October 2022

Nik hef

drainage event on Sept 27 are nodes being moved to the LIGO-VIRGO specific cluster; Source: NDPF Statistics overview, https://www.nikhef.nl/pdp/doc/stats/ 'other' waiting jobs are almost all for the Auger experiment - GRISview images: Jeff Templon for NDPF and STBC

More of more than one ...

Fancy an interactive console install?

1234bC30,jpg H234bC31,jpg H234bC31,jpg H234bC35,jpg H234bC33,jpg H234bC34,jpg H234bC35,jpg H234bC

Nikhef

Computing at Nikhef and in the world

Global computing and workload management

High throughput computing is also about data

source: https://monit-grafana.cern.ch/d/000000420/fts-transfers-30-day; data: November 2020; CERN FTS instance WLCG: daily transfer volume ATLAS+LHCb

DEC 1969

4 NODES

Image source: Alex McKenzie and "Casting the Net", page 56. See https://personalpages.manchester.ac.uk/staff/m.dodge/cybergeography/atlas/arpanet2.gif ; acoustocoupler: Wikimedia

How does 100, or now 400 Gigabit per second look?

Thuis 'FttH' ~1Gbps BX single strand, SC

Nikhef Data Processing Facility router 'deel'

een KPN FttH PoP in de wijk

vergelijk: VDSL BR straatkast voor als je nog op xDSL koper zit

'Elephant streams in a packet-switched internet'

Moving stuff around

wheelbarrows work fine in your garden want to send it to different places? Use waggons on a train, or ships, going always from A-to-B anyway?

A conveyer belt will do much better!

... although you still need a hole to dump it in ...

Image conveyor belt tunnel near Bluntisham, Cambridgeshire by Hugh Venables, CC-BY-SA-4.0 from https://www.geograph.org.uk/photo/4344525

A quick look at internet routing ...

network paths from various places in Western Europe

towards an IP address at CERN

Data: RIPE NCC Atlas project, TraceMON IPmap, atlas.ripe.net, measurement 9249079

Many paths to Rome ... i.e. to your server

From a home connected to Freedom Internet to spiegel.nikhef.nl

[ro	bot@kwark ~]# traceroute -6 -A -T gierput.nikhef.nl
tra	aceroute to gierput.nikhef.nl (2a07:8500:120:e010::46), 30 hops max, 80 byte packets
1	2al0-3781-17b6.connected.by.freedominter.net (2al0:3781:17b6:1:de39:6fff:fe6b:4558) [AS206238] 0.810 ms 1.052 ms 1.330 ms
2	2a10:3780::234 (2a10:3780::234) [AS206238] 7.460 ms 7.655 ms 7.705 ms
3	2al0:3780:1::21 (2al0:3780:1::21) [AS206238] 8.868 ms 9.054 ms 9.103 ms
4	et-0-0-1-1002.corel.fi001.nl.freedomnet.nl (2a10:3780:1::2d) [AS206238] 10.017 ms 9.934 ms 10.263 ms
5	asll04.frys-ix.net (2001:7f8:10f::450:66) [*] 10.898 ms 11.744 ms 11.797 ms
6	gierput.nikhef.nl (2a07:8500:120:e010::46) [AS1104] 11.502 ms 7.800 ms 7.357 ms

but from Interparts in Lisse, NH:

[root@muis ~]# traceroute -6 -A -I gierput.nikhef.nl traceroute to gierput.nikhef.nl (2a07:8500:120:e010::46), 30 hops max, 80 byte packets 1 2a03:e0c0:1002:6601::2 (2a03:e0c0:1002:6601::2) [AS41960] 1.380 ms 1.371 ms 1.369 ms 2 2a02:690:0:1::b (2a02:690:0:1::b) [AS41960] 1.305 ms 1.312 ms 1.312 ms 3 et-6-1-0-0.asd002a-jnx-01.surf.net (2001:7f8:1::a500:1103:2) [AS1200] 1.957 ms 2.000 ms 2.052 ms 4 ae47.asd001b-jnx-01.surf.net (2001:610:e00:2::49c) [AS1103] 2.443 ms 2.505 ms 2.507 ms 5 irb-4.asd002a-jnx-06.surf.net (2001:610:f00:1120::121) [AS1103] 2.041 ms 2.138 ms 2.138 ms 6 nikhef-router.customer.surf.net (2001:610:f01:9124::126) [AS1103] 8.977 ms 7.957 ms 7.951 ms 7 gierput.nikhef.nl (2a07:8500:120:e010::46) [AS1104] 7.922 ms 8.093 ms 8.081 ms

AS41960: Interparts; AS1200: AMS-IX route reflector; AS1103: SURFnet; AS1104: Nikhef; AS206238: Freedom Internet - on the FrysIX there is direct L2 peering

grey-dash lines for illustration only: may not correspond to actual peerings or transit agreements; red lines: the three existing LHCOPN and R&E fall-back routes; yellow: public internet fall-back (least preferred option)

Nik hef

3Computing at Nikhef and in the world

Typical data traffic to and from the processing cluster

Source: Nikhef cricket graphs period June 2021 – October 2022 – aggregated (research) traffic to external peers from deelqfx – https://cricket.nikhef.nl/

LHCone ("LHC Open Network Environment") - visualization by Bill Johnston, ESnet version: October 2022 - updated with new AS1104 links

Just one random (smallish) autonomous system

AS1104

34

Exercising the network – sensor data and events

Image: ballenbak.nikhef.nl, Tristan Suerink

En ... hoeveel gebruikt dat dan?

Eén server gebruikt zo'n 260W!

en het onderzoeksdatacentrum Nikhef (de 'glazen doos') kan 400kW aan – waar blijft dat dan?

De snelste CPU is voor ons niet altijd de beste (sorry gamers!). Want 5 jaar energie en beheer zijn even kostbaar als de server zelf!

WKO: Warmte Koude Opslag

21% van het vermogen is nodig om te koelen, maar: we mogen 3500GJoule/jaar (~112 kWjaar, ~982 000 kWh) aan studenten tegenover leveren om ze warm te houden !

Let's go on tour!

David Groep

davidg@nikhef.nl https://www.nikhef.nl/~davidg/presentations/ (ip https://orcid.org/0000-0003-1026-6606

(cc) BY

Maastricht University

