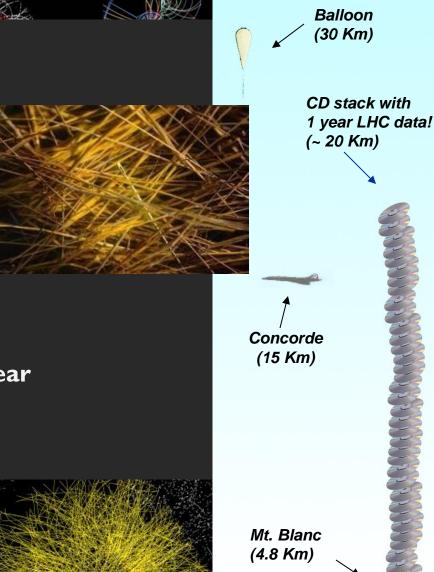
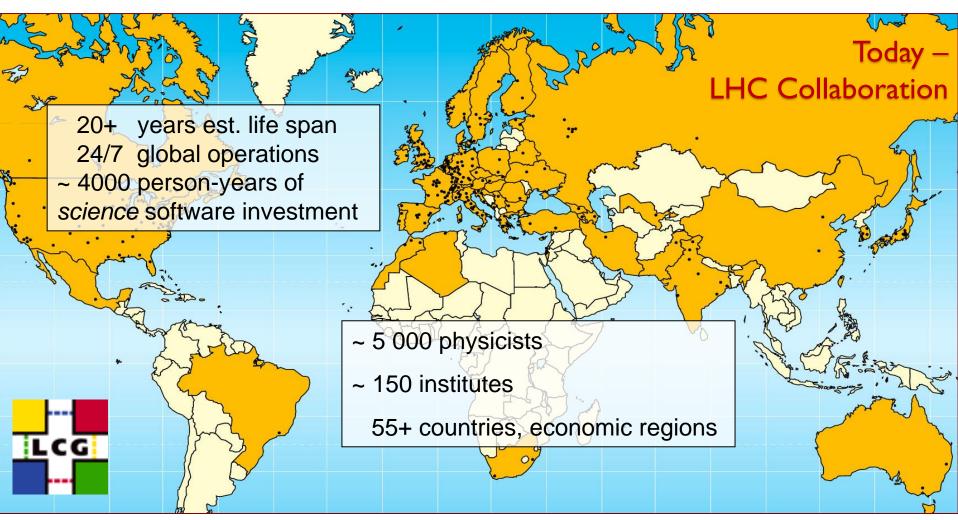


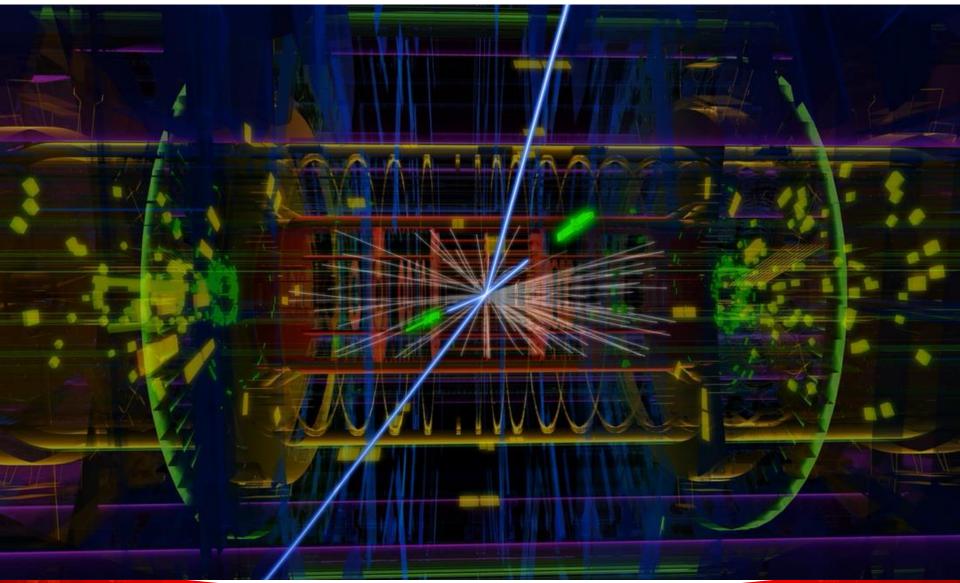
Showing Real Big Data

Towards visualisation of data transfers with 'Big Data' analytics techniques

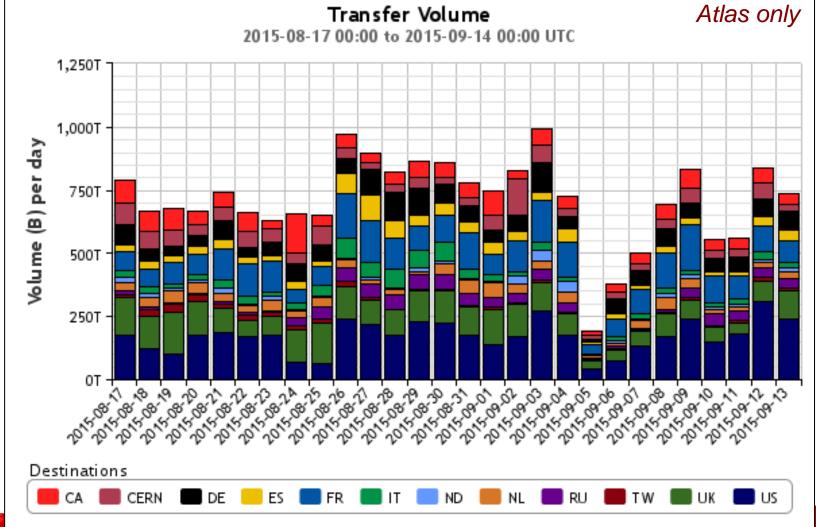

HvA induction session september 2015 David Groep, Nikhef


David Groep Nikhef Amsterdam PDP programme

- Signal/Background 10-9
- Data volume
 - (high rate) X
 (large number of channels) X
 (4 experiments)
 - → 30+ PetaBytes of new data each year
- Compute power
 - (event complexity) X
 (number of events) X
 (thousands of users)
 - → 60'000 of (today's) fastest CPUs



David Groep Nikhef Amsterdam PDP programme


Atlas: ~50 TByte/day raw data to tape; 1000 TByte/day processed data transfers

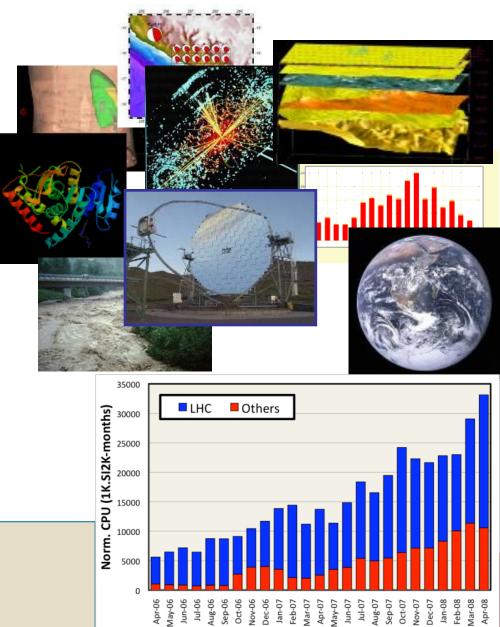
Big 'as in Large' Data

David Groep Nikhef Amsterdam PDP programme

0

Nikhef

http://dashb-atlas-ddm.cern.ch/ddm2


Shared e-Infrastructure

- >270 communities
 from many different domains
 - Astronomy & Astrophysics
 - Civil Protection
 - Computational Chemistry
 - Comp. Fluid Dynamics
 - Computer Science/Tools
 - Condensed Matter Physics
 - Earth Sciences
 - Fusion
 - High Energy Physics
 - Life Sciences

David Groep Nikhef Amsterdam

0

Applications have moved from testing to routine and daily usage ~80-95% efficiency

Global data flows

 \bigcirc°

~150GByte, 12hrs per (human) genome per sequencer

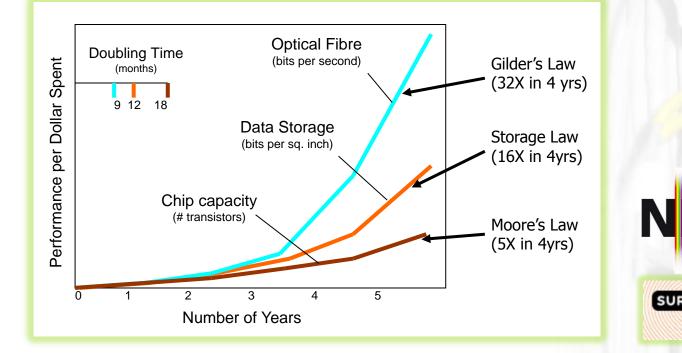
But 1000+ sequencers...

50TByte from Shenzhen to NL is (still) done by rucksack

David Groep Nikhef Amsterdam PDP programme

Nikhef

Genome sequencing at the Beijing Genomics Institute BGI Photo: Scotted400, CC-BY-3.0


Distributed analysis – 'Atlas neighbours'

0 %	100 % SOURCES											Display	ing 12 of :	12 sources	and 12 of 12
	TRANSFER-	STAGING-	DELETION-	CA+	CERN+	DE+	ES+	FR+	+11	ND+	NL+	RU+	TW+	UK+	US+
TOTAL-	97 % 98 мв/s	97 % 27 мв/з	100 % 256 мв/s	92 % 6 MB/s	95 % 726 kB/s	99 % 4 MB/s	100 % 8 мв/s	100 % 13 MB/s	99 % 6 MB/s	100 % 833 kB/s	100 % 9 MB/s	99 % 8 MB/s	100 % 12 MB/s	96 % 14 MB/s	93 % 18 MB/s
NL AM-04-YERPHI+	100 % 0 kB/s	100 % 0 kB/s	100 % 15 kB/s												
NL IL-TAU-HEP+	92 % 12 MB/s	0 % 0 kB/s	100 % 14 мв/з	100 % З мв/s	100 % 3 kB/s	95 % 29 kB/s	100 % 2 kB/s	100 % 2 MB/s	100 % 3 MB/s	100 % 1 kB/s	96 % 279 kB/s	90 % 301 kB/s	97 % 3 мв/s	97 % 939 kB/s	8 % 2 kB/s
NL ITEP+	92 % 1 мв/s	100 % 0 kB/s	99 % 11 MB/s	61 % 2 kB/s		100 % 1 kB/s	100 % 2 kB/s	100 % 2 kB/s		100 % 1 kB/s	100 % 1 мв/s		100 % 2 kB/s		100 % 2 kB/s
NL JINR-LCG2+	99 % 15 мв/s	100 % 0 kB/s	100 % 11 MB/s	93 % 3 kB/s	100 % 330 kB/s	100 % 313 kB/s	100 % 182 kB/s	100 % 601 kB/s	100 % 686 kB/s	100 % 764 kB/s	100 % 248 kB/s	100 % 6 kB/s	100 % 5 kB/s	100 % 2 мв/s	100 % 10 MB/s
NL NIKHEF-ELPROD+	95 % 29 мв/s	25 % 57 kB/s	100 % 26 мв/s	100 % 92 kB/s	87 % 77 kB/s	99 % 2 мв/s	100 % 7 MB/s	100 % 3 MB/s	100 % 2 мв/s	100 % 36 kB/s	100 % З мв/з	100 % 2 мв/s	100 % 6 MB/s	100 % 1 MB/s	94 % 4 MB/s
NL RRC-KI+	97 % З мв/s	0 % 0 kB/s	100 % 19 MB/s	100 % 307 kB/s		100 % 0 kB/s	0 % 0 kB/s	98 % 3 kB/s	50 % 0 kB/s	100 % 1 kB/s	100 % 1 MB/s	100 % 218 kB/s	100 % 2 kB/s	33 % 531 kB/s	67 % 454 kB/s
NL RU-MOSCOW-FIAN-LCG2+	56 % 1 мв/s	100 % 0 kB/s	100 % 11 MB/s	0 % 0 kB/s							100 % 1 MB/s	100 % 14 kB/s			
NL RU-PNPI+	96 % 621 kB/s	100 % 0 kB/s	100 % 11 MB/s	86 % 4 kB/s		100 % 1 kB/s	100 % 2 kB/s	100 % 2 kB/s	100 % 0 kB/s	100 % 1 kB/s	100 % 607 kB/s		100 % 2 kB/s		100 % 2 kB/s
NL SARA-MATRIX+	100 % 34 мв/s	99 % 27 мв/з	100 % 122 MB/s	100 % З мв/s	100 % 307 kB/s	100 % 2 мв/s	100 % 1 MB/s	99 % 8 MB/s		100 % 24 kB/s	100 % 2 мв/s	100 % 5 мв/s	100 % 3 MB/s	96 % 9 мв/з	98 % 1 MB/s
NL TECHNION-HEP+	100 % 51 kB/s	100 % 0 kB/s	100 % 11 MB/s	100 % 4 kB/s	100 % 9 kB/s	100 % 6 kB/s	100 % 2 kB/s	100 % 2 kB/s	100 % 0 kB/s	100 % 1 kB/s	100 % 14 kB/s	100 % 1 kB/s	100 % 2 kB/s		100 % 8 kB/s

There's always a network close to you

Light

NET

SURFnet pioneered 'lambda' and hybrid networks in the world

 and likely contributed to the creation of a market for 'dark fibre' in the Netherlands

There's always fibre within 2 miles from you – where ever you are! (it's just that last mile to your home that's missing – and the business model of your telecom provider...)

Interconnecting the Grid – the LHCOPN/LHCOne network

LHC Optical Private Network

10 – 40 Gbps dedicated global networks

Academia Sinica (TW)

Scaled to T0-T1 data transfers (nominally 300 Mbyte/s/T1 systained)

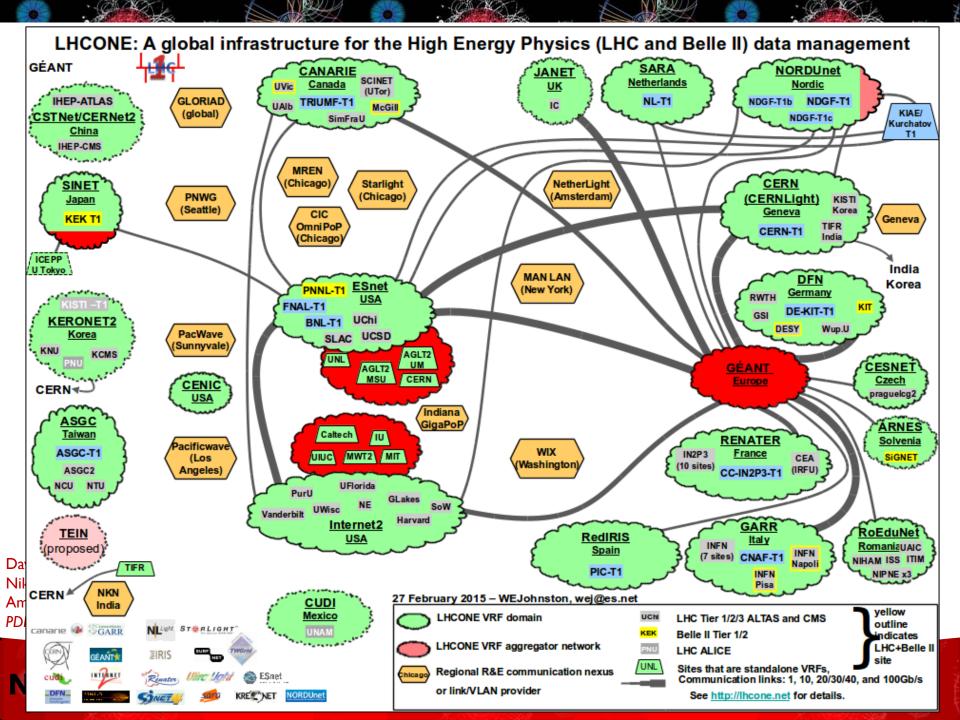
KIT (FZK)

CERN

NL-T1 and Netherlight

RAL

CCIN2P3


PIC

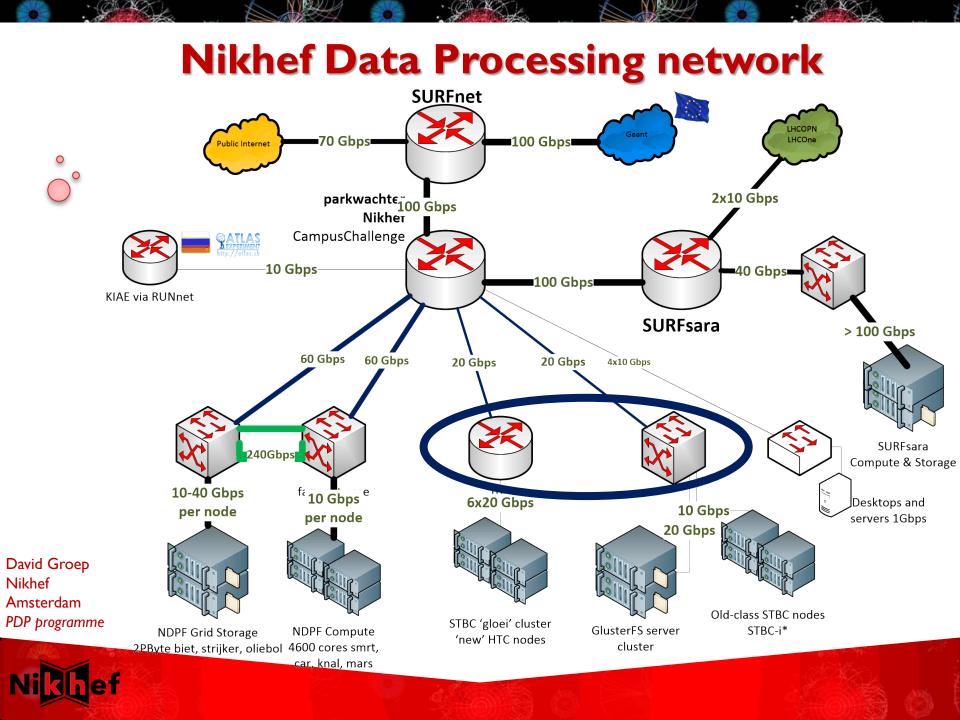
USLHCNET

BNL

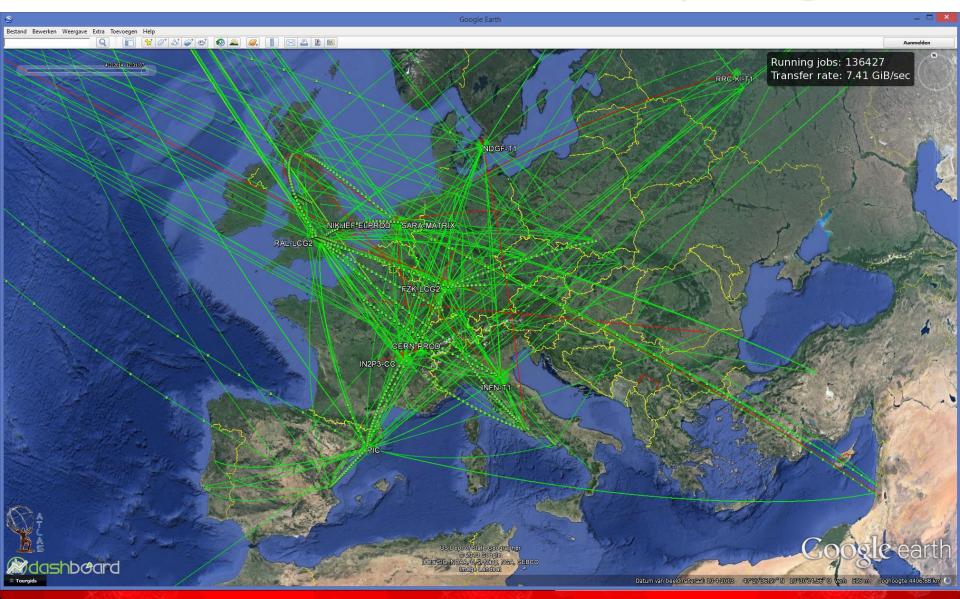
INFN-CNAF

NDGF

The Flow of Data at Nikhef


44 disk servers ~3 PiB (~3000 TByte) 2 control & DB nodes

> Peerings: SURFnet, SURFsara, Kurchatov, AMOLF, CWI, LHCOPN, LHCOne via SARA


10 – 40 Gbps per server

240 Gbps interconnect

>200 Gbps uplinks

Data Flows in the LHC Computing Grid

But that's only a small subset

LCG "FTS" visualisation sees but part of the data

- only shows the centrally managed data transfers
- sees only traffic from Atlas, CMS, and LHCb
- cannot show the quality, nor bandwidth used

But each of our nodes sees all its transfers

- server logging is in itself data
- we collect it all

David Groep Nikhef Amsterdam PDP programme

One day worth of logs ... ~12GB/day

- tbn18.nikhef.nl:/var/log/
 - 631M dpm/log.1
 - 1.1G dpns/log.1
 - 639M srmv2.2/log.1

plus 44 disk server nodes @250 Mbyte/day

09/13 00:01:23.588 26/59,79 dpm_srv_proc_put: calling dpm_selectfs 09/13 00:01:23.588 26759,79 dpm_selectfs: selected pool: BIOMED 09/13 00:01:23.588 26759,79 dpm_selectfs: selected file system: oliebol-02.nikhef.nl:/export/data/biomed 09/13 00:01:23.588 26759,79 dpm_selectfs: oliebol-02.nikhef.nl:/export/data/biomed reqsize=0, elemp->free=399976081749, poolp->free=399976081749 09/13 00:01:23.645 26759,79 dpm_srv_proc_put: calling Cns_creatx 09/13 00:01:23.712 26759,19 dpm_srv_getspacetoken: DP092 - getspacetoken request by /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=ddmadmin/CN=53149 09/13 00:01:23.712 26759,19 dpm_srv_getspacetoken: DP098 - getspacetoken ATLASDATADISK 09/13 00:01:23.713 26759,19 dpm_srv_getspacetoken: returns 0, status=DPM_SUCCESS 09/13 00:01:23.755 26759,78 dpm_srv_proc_get: TURL info: gsiftp oliebol-09.nikhef.nl oliebol-09.nikhef.nl:/export/data/atlasprd/atlas/2015-09-12/ 09/13 00:01:23.761 26759,79 dpm_srv_proc_get: returns 0, status=DPM_SUCCESS 09/13 00:01:23.761 26759,79 dpm_srv_proc_get: TURL info: gsiftp oliebol-02.nikhef.nl oliebol-02.nikhef.nl:/export/data/atlasprd/atlas/2015-09-13/j 09/13 00:01:23.763 26759,79 dpm_srv_proc_put: TURL info: gsiftp oliebol-02.nikhef.nl oliebol-02.nikhef.nl:/export/data/biomed/biomed/2015-09-13/j 09/13 00:01:23.763 26759,79 dpm_srv_proc_put: TURL info: gsiftp oliebol-02.nikhef.nl oliebol-02.nikhef.nl:/export/data/biomed/biomed/2015-09-13/j 09/13 00:01:23.763 26759,79 dpm_srv_proc_put: returns 0, status=DPM_SUCCESS 09/13 00:01:23.763 26759,79 dpm_srv_proc_put: returns 0, status=DPM_SUCCESS 09/13 00:01:23.881 26759,18 dpm_updfreespace: oliebol-02.nikhef.nl:/export/data/biomed/biomed/2015-09-13/j 09/13 00:01:23.881 26759,18 dpm_updfreespace: oliebol-02.nikhef.nl:/export/data/biomed incr=0, elemp->free=399976081749, poolp->free=399976081749 09/13 00:01:23.881 26759,18 dpm_srv_putcone: returns 0, status=DPM_SUCCESS

David Groep Nikhef Amsterdam PDP programme

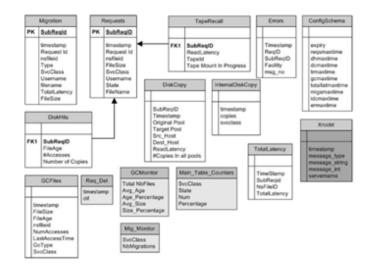
And then our storage manager is still 'decent' ...

CASTOR Logs

- ~2GB/day from the node I showed (highest volume)
- ~30GB/day collected overall
- ~200 source nodes
- ~70,000,000 log events/day

David Groep Nikhef Amsterdam PDP programme

ef


0

Slide by Rob Appleyard, RTFC RAL - at ISGC 2015

The First Solution - DLF

- DLF = 'Distributed Logging Facility'
- CERN-developed monitoring system for CASTOR
- Store all the log information in a big Oracle DB

Source: CASTOR end-to-end monitoring, by T Rekatsinas et al, URL: http://iopscience.iop.org/1742-8596/219/4/042052/pdf/1742-8596_219_4_042052.pdf

David Groep Nikhef Amsterdam PDP programme

0

Slide by Rob Appleyard, RTFC RAL - at ISGC 2015

Running DLF

- Scalability was a killer.
 - By 2013, simple queries were taking >1 hour.
 - Fundamental architecture couldn't cope.

David Groep Nikhef Amsterdam PDP programme

0

0

Slide by Rob Appleyard, RTFC RAL - at ISGC 2015

Big Data Analytics for log analysis

- Analysis of log data is typical 'big data' problem
 - CERN tried Hadoop ('map-reduce')
 - $^\circ\,$ RAL went with $\ldots\,$ ELK*
- For logs specifically, it's mostly efficient search
 - ElasticSearch (<u>www.elastic.co</u>)
 - LogStash (collect and parse logs, import to ES)
 - Kibana analysis based on Apache Lucene + graphing
- David Groep Nikhef Amsterdam PDP programme
- Integrated into a single 'stack': ELK

*Appleyard et al., http://pos.sissa.it/archive/conferences/239/027/ISGC2015_027.pdf

LogStash

0

Data arrives in format A......process B occurs...

...data out in format C

e.g. convert syslog into json

David Groep Nikhef Amsterdam PDP programme

plugin documentation

inputs

- collectd
- drupal dblog
- elasticsearch
- eventlog
- exec file
- ganglia
- gelf
- gemfire
- generator
- graphite
- heroku
- imap
- invalid input
- irc
- imx
- log4j
- lumberjack
- pipe
- puppet facter
- rackspace

- sqlite

codecs

- cloudtrail
- collectd compress spooler
- dots
 - edn
 - edn lines
 - fluent graphite
 - ison
 - json lines json spooler
 - line
 - msgpack
 - multiline
 - netflow
 - noop oldlogstashjson
 - plain
 - rubydebug
- spool
- rabbitmg
- redis
- relp
- s3
- snmptrap

filters

- advisor
- alter
- anonymize
- checksum
- cidr
- cipher
- clone
- collate
- CSV
- date
- dns
- drop
- elapsed
- elasticsearch
- environment
- extractnumbers
- fingerprint
- gelfify
- geoip
- grep
- arok
- grokdiscovery
- i18n
- ison
- json encode
- kv
- metaevent

outputs

- boundary
- circonus
- cloudwatch
- CSV
- datadog
- datadog metrics
- elasticsearch
- elasticsearch http

google bigguery

google cloud storage

- elasticsearch river
- email
- exec
- file
- ganglia

graphite

http

• irc

jira

 graphtastic hipchat

juggernaut

lumberiack

librato

loggly

• gelf gemfire

Analyse, for now with Kibana/Lucene

	Sit - Guilent	Status			12	hours ago to a f	ew seconds ag	jo refreshed e	very 5m ▼	C	*	Þ		6
•														
ILTERING 4 ★														
EVENTS OVER	R TIME											(1	• 42	•
View 🕨 🛛 🔍 Zoo	om Out 🔍 * (1252	20374) count p	oer 5m (12520374 h	iits)										
250000														
										lıl	1.11			
200000										-11111				
												l		
150000														
100000														
50000														
. III.														
。	04:00 05:1					09:00 03.10	10:00 03-10	11:00 03-10	12:00 03-10	13:00		14:00		
。	04:00 05:1 03-10 03-				28:00 13-10		10:00 03-10	11:00 03-10	12:00 03-10	13:00 03-10		14:00 03-10		
。													• <i>e</i> 1	
						03-10	03-10	03-10				03-10	• <i>e</i> j	03
all events	03-10 03-					03-10		03-10				03-10	• <i>e</i> i	03
ALL EVENTS Fields 3 All (592) / Current	(122)		03-10 03		03-10	03-10	03-10 of 1000 available	03-10 for paging				03-10	د د د cast	03
ALL EVENTS Fields I all (692) / Current Type to filter.	(122)	.10 @timestam	03-10 03	-10 0)3-10 host ► •	03-10 0 to 200	03-10 of 1000 available	03-10 for paging		03-10		03-10		03
ALL EVENTS Fields I All (592) / Current Type to filter.	(122) iost	.10 @timestam 2015-03-10	03-10 03 1 ₽ ❤ ▶	-10 0 • @source_1 0 lcgcstg03	13-10 host ⊧ •	03-10 0 to 200 syslog_program >	03-10 of 1000 available • • • castor_MSC	03-10 for paging G ► Arrival		03-10		03-10		03
ALL EVENTS Fields © All (592) / current Type to filter. © @source_h © @timestam © @version	(122) iost	@timestam 2015-03-10 2015-03-10	03-10 03 ₩ ₽ ♥ 	-10 0 •@source_1 0 lcgcstg03 0 lcgcstg03	host⊳ r	03-10 0 to 200 (syslog_program) hd	o3-10 of 1000 available • castor_MSC New Request	03-10 for paging 5 • Arrival Arrival		03-10		03-10		03.
ALL EVENTS Fields © All (592) / current Type to filter. © @source_h © @timestam © @version □_id	(122) iost	0 (0) (0) (0) (0) (0) (0) (0) (0) (0) (0	03-10 03 ₩ . T15:23:06.709+00:0 T15:23:06.691+00:0 T15:23:06.671+00:0	-10 0 • @source_1 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03	host▶ 4 r r	03-10 0 to 200 (sysiog_program) hd hd	03-10 of 1000 available • castor_MSC New Request New Request New Request	03-10 for paging a h Arrival Arrival Arrival		03-10		03-10	∢ cast	03
ALL EVENTS Fields © All (592) / Current Type to filter. © @source filter. © @version id index	(122) iost	@timestam 2015-03-10 2015-03-10 2015-03-10 2015-03-10	03-10 03 10 • • • • 1715:23:06.709+00:0 1715:23:06.691+00:0 1715:23:06.671+00:0 1715:23:06.665+00:0	-10 0 •@source_1 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03	host > r r r	03-10 0 to 200 1 syslog_program) hd hd hd	03-10 of 1000 available • • castor_MSC New Request New Request Calling Stager	o3-10 for paging Arrival Arrival		03-10 < castor) <u>*</u> Type ≯	03-10	∢ cast	o3 or_S ser
ALL EVENTS Fields © All (592) / current Type to filter. © @source_h © @timestam © @version □_id	(122) (122) (155) (192)	@timestam 2015-03-10 2015-03-10 2015-03-10 2015-03-10 2015-03-10	03-10 03 T15:23:06.709+00:0 T15:23:06.691+00:0 T15:23:06.665+00:0 T15:23:06.665+00:0	-10 0 • @source_1 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03 0 lcgsrm09 0 lcgsrm09	host ► r r r s	03-10 0 to 200 I syslog_program > hd hd hd irmbed	03-10 of 1000 available • castor_MSC New Request New Request New Request Calling Stager Checking state	os-to for paging Arrival Arrival Arrival e of Request		03-10) <u>*</u> Type ≯	03-10	∢ cast	03 • or_S
ALL EVENTS Fields C All (592) / Current Type to filter. C @source_h C @timestam @wersion index type	(122) (122) most up de ments	@timestam 2015-03-10 2015-03-10 2015-03-10 2015-03-10 2015-03-10	03-10 03 10 • • • • 1715:23:06.709+00:0 1715:23:06.691+00:0 1715:23:06.671+00:0 1715:23:06.665+00:0	-10 0 • @source_1 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03 0 lcgcstg03 0 lcgsrm09 0 lcgsrm09	host ► r r r s	03-10 0 to 200 1 syslog_program) hd hd hd	03-10 of 1000 available • • castor_MSC New Request New Request Calling Stager	os-to for paging Arrival Arrival Arrival e of Request		03-10 < castor) <u>*</u> Type ≯	03-10	∢ cast	or_S

David Groep Nikhef Amsterdam PDP programme

ef

Graphic from Rob Appleyard, RTFC RAL – at ISGC 2015

Challenges ahead!

For now, we have

- 44+ difference data sources, 240 Gbps of traffic
- 150+ different storage partners, 55 countries/regions
- public internet plus the LHCOPN/LHCOne
- 5000+ users, working 24x7
- ... and 'grep' for a tool ... $\ensuremath{\mathfrak{S}}$

Phase I:

- setup of a big data analytics cluster (ELK)
- merge diverse data sources into a single system
 define queries and find some global anomalies ⁽²⁾

David Groep Nikhef Amsterdam PDP programme

Building upon phase I

- As an (optional) addition/extension to phase I
- Discuss if ELK indeed the right tool for this: can it cope with the volume? It the ElasticSearch API suitable for defining new visualisations?
- Add additional data sources: are simple transfer logs enough? Does data flow correlate with computing, and can we see that by adding sources and defining (lucene) queries?

And in phase II (>Feb 2016)

• How can global data flows be presented?

David Groep Nikhef Amsterdam PDP programme

 Can one conceive visualisations for the general public? for users? or for both?

