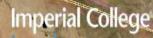


Grid Security, an introduction

Introduction to security issues in grid infrastructures and cross-domain user collaborations



Scheduled = 9740 Running = 11034

Grid Security dealing with user-centric collaborations

V Grid from 10 000 feet

Researchers perform their activities regardless geographical location, interact with colleagues, share and access data

The GRID: networked data processing centres and "middleware" software as the "glue" of resources.

Scientific instruments, libraries and experiments provide huge amounts of data

V Grid: following research collaborations

Some things that may make a grid a bit 'special' compared to other distributed computing efforts

> collaboration of individuals from different organisations

- > most of the scientific grid communities today consist of people literally 'scattered' over many home organisations ... internationally
- > delegation programs and services acting on your behalf are an integral part of the architecture
 - > unattended operation
 - > resource brokering
 - > integrating compute, data access, and databases in the same task

V But ... what is Grid?

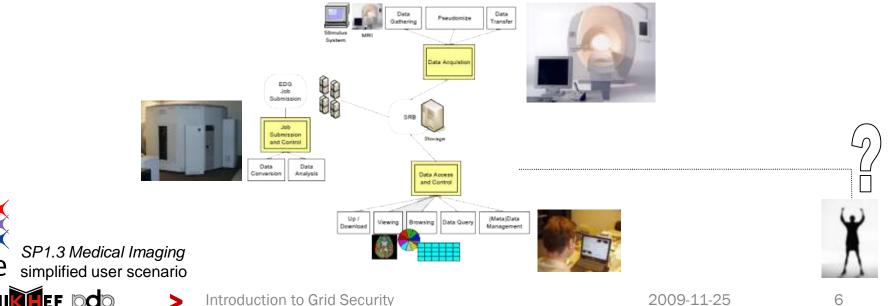
The word 'grid' has been used in many ways

- > cluster computing
- > cycle scavenging
- > cross-domain resource sharing
- > ...

A clear definition for the grid?

- Coordinates resources not subject to centralised control
- Using standard, open and generic protocols & interfaces
- Provides non-trivial qualities of collective service

Definition from Ian Foster in Grid Today, July 22, 2002; Vol. 1 No. 6, see http://www-fp.mcs.anl.gov/~foster/Articles/WhatIstheGrid.pdf


www.ogf.org

2009-11-25

Example: a biomedical imaging project

- On functional MRI studies run from a 'standardized' workflow >
- People and systems involved (the 'vlemed' VO) >
 - medical doctors and the fMRI apparatus: AMC hospital >
 - data storage service: SARA Compute and Network services >
 - Compute services: Nikhef, Philips Research, SARA >
 - algorithm developers: University of Amsterdam >
 - Medical doctors and analysts (MD): AMC >

Typical use case: WISDOM

Wide-area In-Silico Docking On Malaria

- > people and organisations
 - > Bio-informaticians and grid development: IN2P3 (FR)
 - > Service systems (brokers) provided by: RAL (UK), NIKHEF (NL)
 - > algorithms, and results analysed by: SCAI (DE)
 - > Compute resources: provided by over 45 independent organisations in ~15 countries, whose primary mission is usually HE Physics!
 - > VO management hosted by CERN (CERN), and the VO itself is managed by Vincent Breton (FR)

wLCG: implementing LHC computing

20 years est. life span
24/7 global operations
4000 person-years of
science software investment

Fas

LCG

~ 5 000 physicists

~ 150 institutes

53 countries/economic regions

Introduction to Grid Security

2009-11-25

Virtual Organisation

A set of individuals or organisations, **not under single hierarchical control**, (temporarily) **joining forces** to solve a particular problem at hand, bringing to the collaboration a subset of their resources, sharing those **at their discretion** and each **under their own conditions**.

- Users are usually a member of more than one community
- Any "large" VO will have an internal structure, with groups, subgroups, and various roles

Grid Resources

(Computing, Storage, Databases, ...)

Virtual Organisations

Virtual vs. Organic structure

- > Virtual communities ("virtual organisations") are many
- > An person will typically be part of many communities
 - > has different roles in different VOs (distinct from organisational role)
 - > all at the same time, at the same set of resources, with SSO

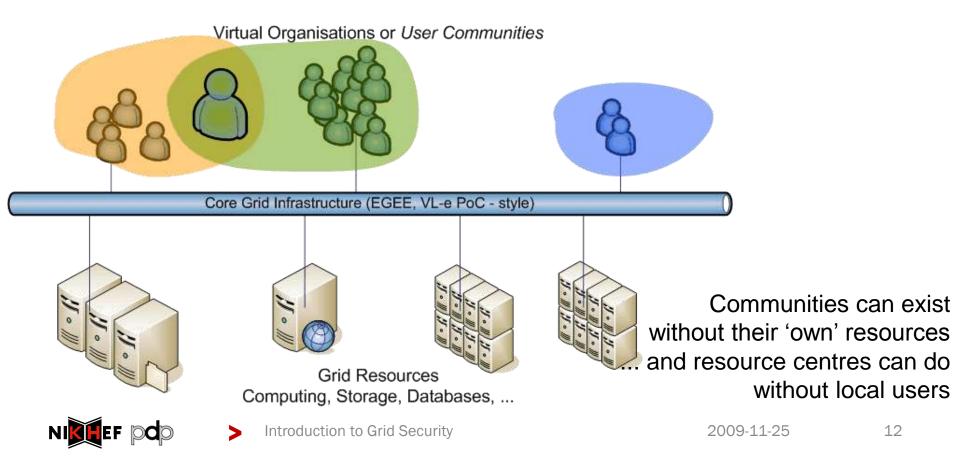
graphic: OGSA Architecture 1.0, OGF GFD-I.030

>

V Before and parallel to the Grid ...

Each user in a collaboration gets *individual* access to many or most of the ICT resources of all participating groups

8


- > Shared group accounts
- > Individual accounts with the same name (and password)
- > Permissive password sharing

> Characteristics

- > Gets more access than needed
- > No centralized management
- > Easy 'hopping' between sites, also for attackers ... !

Grid 'VOs': structuring communities on a sustainable infrastructure

- > Virtual Organisations as groupings of users
 - > E-infrastructures (EGI, BiG Grid) provide persistent infrastructure with a "bus-like" view for VOs: essentially user communities

V

Granting Access

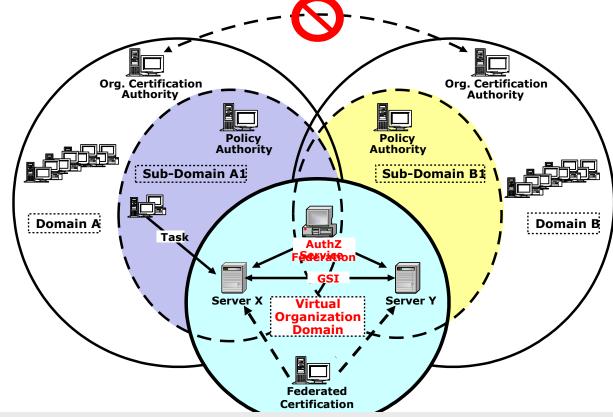
Policy framework

Authentication

Authorization and Virtual Organisation membership

GRID SECURITY MECHANISMS

V Access and Allocation

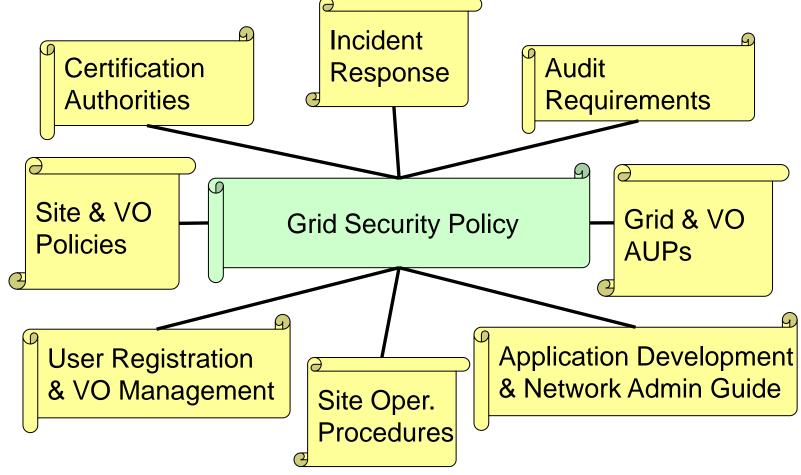

- > But: why grant access to a user or community?
 - > Joint research programme
 - > Joint funding in projects
 - > Economic models, either virtual 'pot money' or proper billing & settlement
- Not too different from 'conventional' models
 - > 'Get an account because we work together'
 - > Allocations on supercomputers or large clusters
 - > Pay-per-use infrastructure (AWS EC2 & S3, etc...)

V Trust relationships

- > For the VO model to work, parties need a trust relationship
 - > the alternative: every user would need to register at every resource!
 - > need to provide a 'sign-on' for users that works across VOs

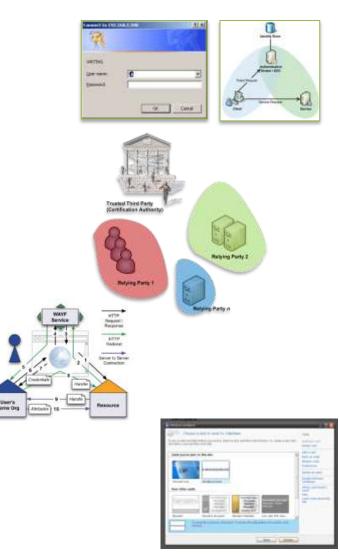
graphic from: Frank Siebenlist, Argonne Natl. Lab, Globus Alliance

V Elements of Trust


- > Authentication
 - > Who are you?
 - > Who says so?
- > Authorization
 - > Why should I let you in? What are you allowed to do?
 - > By whom? Who said you could do that?
 - > Community management and registration
- Accounting (billing and settlement)
- Incident Response
- > Compliance

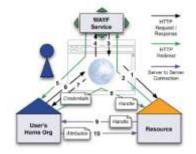
V Grid Security Policy ecosystem

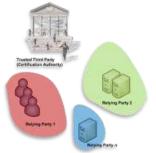
> A User and VO directed policy implementation



V Authentication models

- > Direct user-to-site
 - > passwords, enterprise PKI, Kerberos
 - > Usually with implicit authZ
- > PKI with trusted third parties
- Federated access
 - > Controlled & policy based
 - > 'Free-for-all', e.g., OpenID
- Identity meta-systems
 - > Infocard type systems




V Typical application domains

> Web access and direct user interactions

- > Moving towards WebSSO & federations
- > Or use client PKI where users already have certificates

- Task delegation (compute, data management)
 - > PKI 'Trusted Third Party' based
 - > Augmented with 'proxy' (RFC3820) delegation

V Grid authentication

With emergence of production grids: need for providing cross-national trust

Driven by resource owner – 'relying party' – needs

- independent of users and Vos, who have a conflict of interest
- > National PKI?
 - > in general uptake of 1999/93/EC and e-Identification is (too) slow

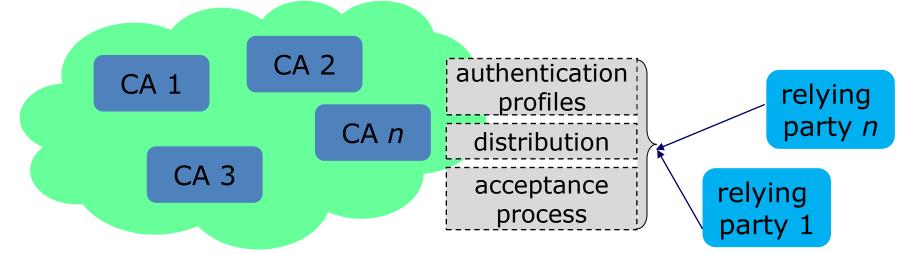
> Various commercial providers?

- > Main commercial drive: secure web servers based on PKI
- > Comodo, Verisign, Global Sign, Thawte, Verisign, SwissPost, ...
- > primary market is server authentication, not end-user identities
- > use of commercial CAs solves the 'pop-up' problem
 ... so for (web) servers a pop-up free service is actually needed

> Grass-roots CAs?

- > usually project specific, and without documented policies
- > unsuitable for the 'production' infrastructure

\bigvee Building a grid authentication infrastructures


> Grid research/academic PKIs

- > started off with pre-existing CAs, and some new ones
- > 'reasonable' assurance based on documented procedures
- > single assurance level inspired by grid-relying party** requirements
- > using a threshold model: *minimum requirements*
- Srid CA coordination driven by 2000 need to solve cross-national authentication issues right now
 - > separation of AuthN and AuthZ allowed progress in the area
 - > the policies convinced enough resource providers to 'trust' the AuthN assertions
 - > there were and are individuals all over Europe (and the world) that need access to these resource providers

Federation Model for Grid Authentication

- > Federation of independent CAs
 - > common minimum requirements (in various flavours)
 - > trust domain as required by users and relying parties where relying party is (an assembly of) resource providers
 - > defined and peer-reviewed acceptance process

No single top

- > leverage of national efforts and complementarities
- > Allow paced regional development, organisation and customisation

V Guidelines: common elements in the IGTF

> Coordinated namespace

- > Subject names refer to a unique entity (person, host)
- > Usable as a basis for authorization decisions
- > This name uniqueness is essential for all authentication profiles!

> Trust anchor repository

- > Coordinated distribution for all trust anchors in the federation
- > Trusted, redundant, sources for download, verifiable via TACAR
- > Concerns, risk assessment, and incident handling
 - > Guaranteed point of contact
 - > Forum to raise issues and concerns
- > Documented processes of federation and authorities
 - > Detailed policy and practice statement
 - > Auditing by federation peers

Introduction to Grid Security

V Geographical coverage

Green: EMEA countries with an Accredited Authority

- 23 of 25 EU member states (all except LU, MT)
- + AM, BY, CH, HR, IL, IR, IS, MA, MD, MK, NO, PK, RS, RU, TR, ...

More Authorities in other continents:

- Most North- and Latin-American countries
- 13+ countries and economic regions in the Asia-Pacific region

AUTHORIZATION AND VIRTUAL ORGANISATIONS

VO management technologies

Delegation and access scenarios

Grouping users

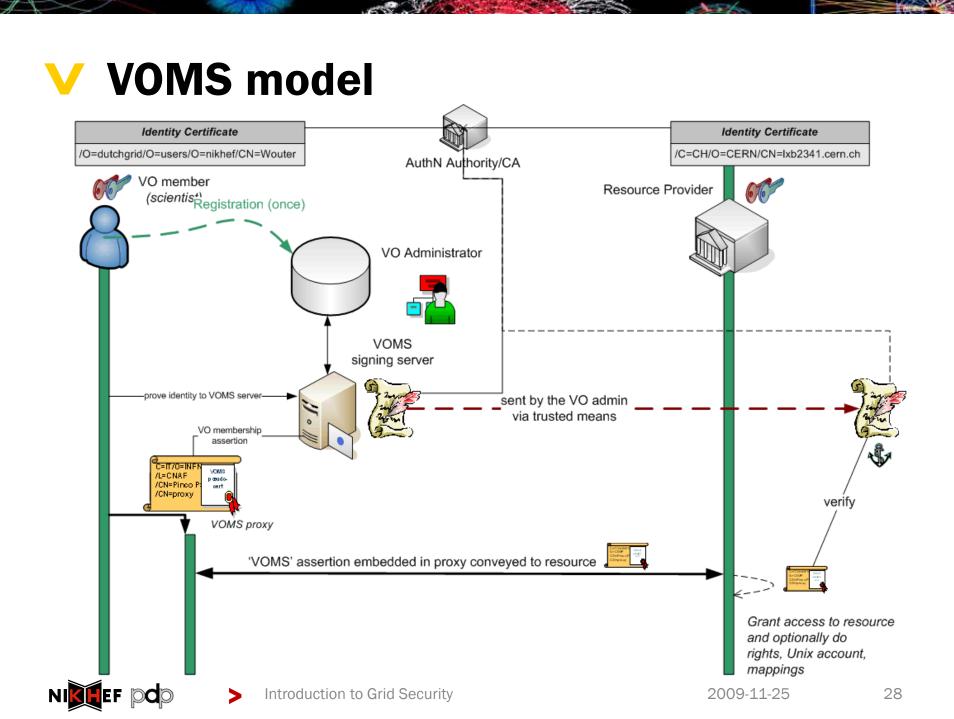
V Authorization: VO representations

- > VO is a directory (database) with members, groups, roles
- > Based on identifiers issues at the authentication stage
- Membership information is then to be conveyed to the resource providers
 - > configured statically, out of band
 - in advance, by periodically pulling membership lists
 LDAP directories, replicated databases (GUMS)
 - in VO-signed assertions pushed with the request:
 VOMS, Community AuthZ Service

> Except for the **CA provided DN**, the VO is all the site will see

> Since VO is user-centric, it has a potential conflict of interest for identity

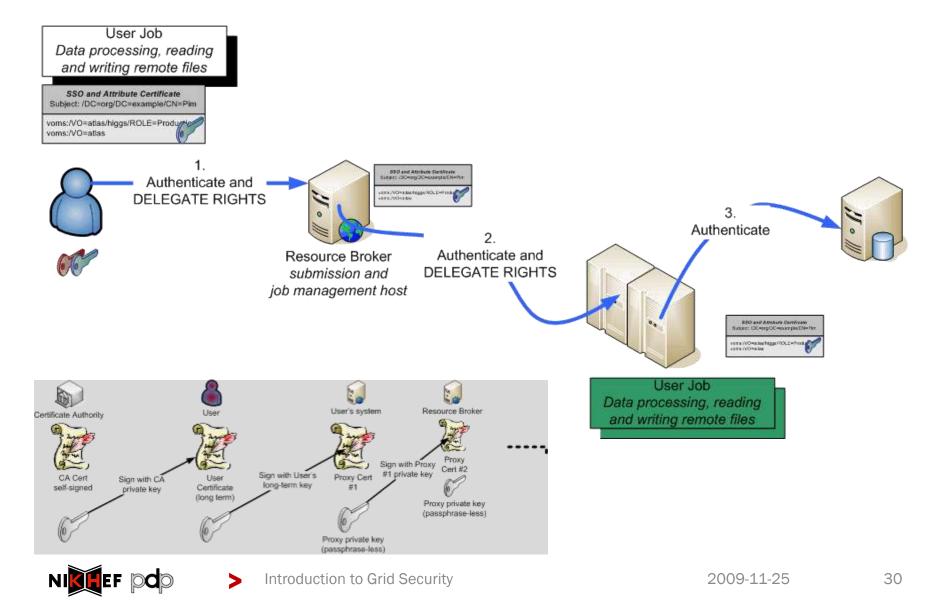
VOMS: VO attributes in a X.509 container


Virtual Organisation Management System (VOMS)

- > developed by INFN for EU DataTAG and EGEE
- > used by VOs in EGEE, Open Science Grid, NAREGI, ...
- > push-model signed VO membership tokens
 - > using the traditional X.509 'proxy' certificate for trans-shipment
 - > fully backward-compatible with only-identity-based mechanisms

OMS proxy with embedded VO assertion	
Serial Number: 26423 (0x6737)	_
Issuer: O=dutchgrid, O=users, O=nikhef, CN=David Groep	
Not Before: Oct 16 12:46:28 2006 GMT	
Not After : Oct 17 00:51:28 2006 GMT	
Subject: O=dutchgrid, O=users, O=nikhef, CN=David Groep, CN=proxy	
Subject Public Key Info:	
Public Key Algorithm: rsaEncryption	
RSA Public Key: (512 bit)] /
X509v3 extensions:	
1.3.6.1.4.1.8005.100.100.5:	\sim
0000W.U0O.M0K1.0U./dteam/ne/ROLE=null/000	
X509v3 Key Usage:	
Digital Signature, Key Encipherment, Data Encipherment	
Signature Algorithm: md5WithRSAEncryption	
66	

Attribute Certificate	
INTEGER	1
SUBJECT	/O=dutchgrid/O=users/O=nikhef/CN=David Groep
SERIAL	0396
ISSUER	/C=CH/O=CERN/CN=lcg-voms.cern.ch
OCTET STRING	/dteam/Role=NULL/Capability=NULL
OCTET STRING	/dteam/ne/Role=NULL/Capability=NULL
OBJECT	No revocation available
AuthorityKeyIdentifier	0H0<3#
SignatureAlgorithm	md5WithRSAEncryption
	2000



V Delegation

- Mechanism to have someone, or some-thing a program act on your behalf
 - > as yourself
 - > with a (sub)set of your rights
- Matches model of brokering and non-interactive (automated) operations
- SSI (PKI) and recent SAML drafts define this
 - > GSI (PKI) through 'proxy' certificates (see RFC3820)
 - SAML through Subject Confirmation, (linking to at least one key or name)

V Daisy-chaining proxy delegation

V Acceptable Credentials on the Grid

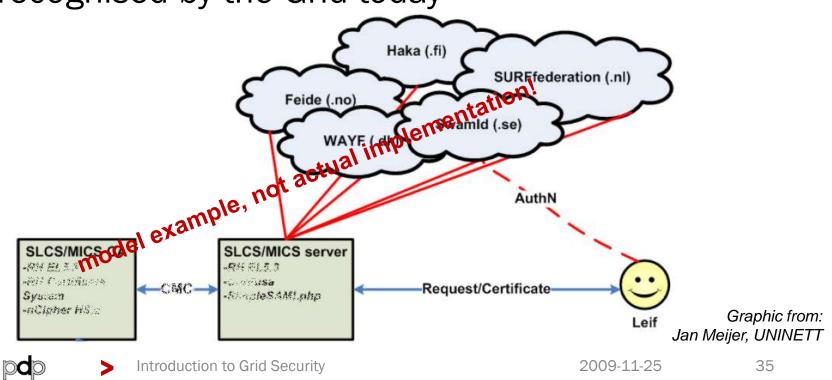
'Let's not make the SSH mistake again'

'All Credentials Have A Life Time'

- > Long lived credentials must be revocable
- > Short lived (< 100ks) credentials may be left to expire So we get
- X.509 identity certificates: <= 1 year</p>
- > Proxy credentials: between 12 and ~24 hours
- > VOMS attributes: ~ 24 hours
- Proxies in a managed credential store: 1Ms, ~11 days

> 'limited delegation' proxies prevents creeper-reaper-type exploits

V Linking federations to Grid AuthN

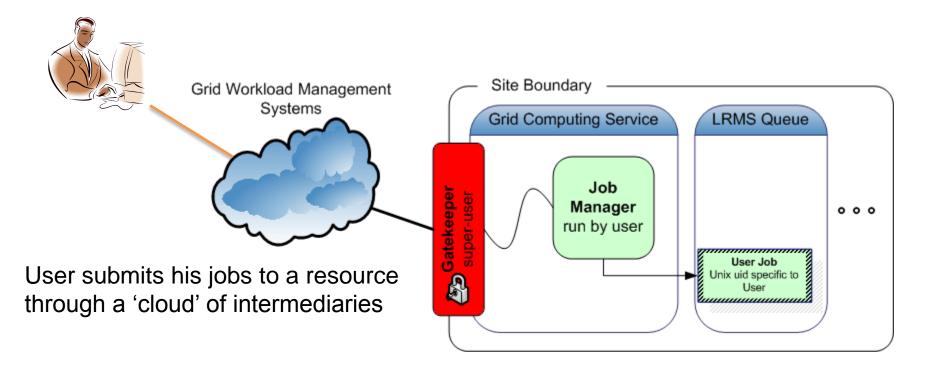

> Use your federation ID

NIKHEF

- In to authenticate to a service
- ... that issues a certificate
- recognised by the Grid today

Implementations:

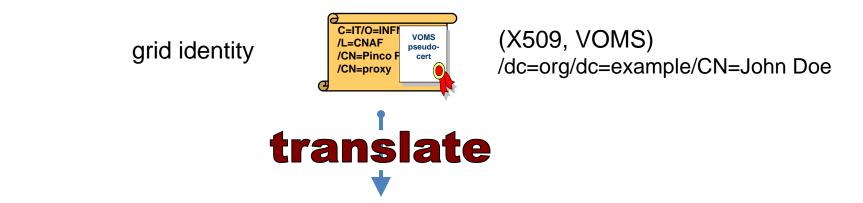
- SWITCHaai SLCS
- DFN SLCS
- TERENA eScience Personal CA


Example: running compute jobs Tracing users and actions Storage

ACCESS CONTROL AT THE SITE

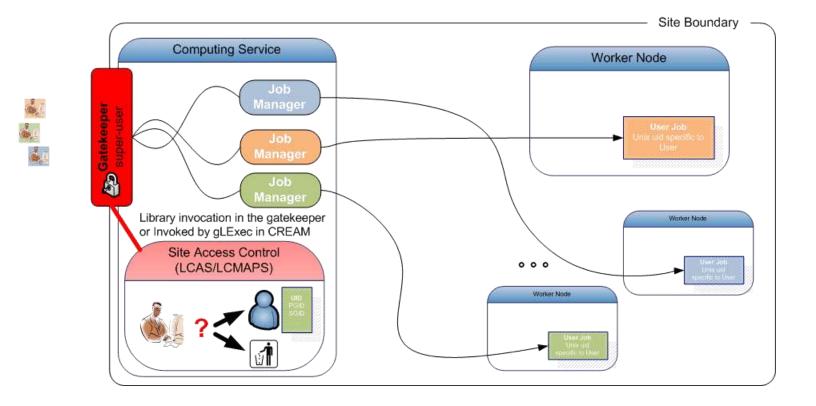
V Accessing (compute) resources

Direct binding of payload and submitted grid job


- job contains all the user's business
- access control is done at the site's edge
- inside the site, the user job has a specific, site-local, system identity

Introduction to Grid Security

\vee To the Unix world


enmr001:x:43401:2029:PoolAccount eNMR 001:/home/enmr001:/bin/sh

- Unix does not talk Grid, so translation is needed between grid and local identity
- this translation has to happen somewhere
 - > On entry at the Gatekeeper
 - > When running tasks or accessing files

V Access Control on the CE

- > System access (authorization: LCAS, mapping: LCMAPS)
- Embedded or though 'call-out hooks' in Grid middleware

>

V Access Control

Granting access: grid-mapfile

"/O=dutchgrid/O=users/O=nikhef/CN=David Groep" .dans
"/O=dutchgrid/O=users/O=nikhef/CN=Sven Gabriel" .dteam
"/O=dutchgrid/O=users/O=wageningen-universiteit/CN=Anonymised User" .lsg
"/O=dutchgrid/O=users/O=wageningen-universiteit/CN=Anonymised User" .lsg
"/alice/Role=lcgadmin" .alisgm
"/alice" .alice
"/atlas/Role=lcgadmin" .atlsm
"/atlas/Role=pilot" .atlpi
"/atlas/Role=pilot" .atlpi
"/atlas/nl" .atlnl
"/atlas" .atlas

Denying access: ban_users.db

```
# This file contains the user subject DNs that are BANNED from this fabric
#
"/C=UK/O=eScience/OU=Cambridge/L=UCS/CN=anonymised user"
# from [UPDATE 5] Security incident - XXXXCERT-20080805, 04.Sept. 11:52
"/O=Grid/O=NorduGrid/OU=somesite.se/CN=Olof Palme"
"/O=Grid/O=NorduGrid/OU=somesite.se/CN=Alfred Nobel"
# 16-Jan-2009 banned compromised DN
"/C=CN/O=HEP/O=PKU/OU=PHYS/CN=Mao Zhedong"
# 23-Feb-2009 Security Service Challenge
# SG let Arjen in again after 18.Mar 2009
"/O=dutchgrid/O=users/O=nikhef/CN=Arnold Johan van Rijn"
```


Introduction to Grid Security

What does the site owner see?

Batch system

stro.nikhef.nl:

							Req'd	Req'd	Ela	ap
Job ID	Username	Queue	Jobname	SessID	NDS	TSK	Memory	Time a	S Ti	me
3223967.stro.nikhef.	atlb021	atlas	STDIN	32473	1			66:00	R ·	wn-val-046
3227086.stro.nikhef.	atlb021	atlas	STDIN	22038	1			66:00	R ·	wn-val-004
3227691.stro.nikhef.	atlb019	atlas	STDIN	11290	1			66:00	R ·	wn-lui1-028
3228887.stro.nikhef.	atlb021	atlas	STDIN	1562	1			66:00	R ·	wn-val-091
3235888.stro.nikhef.	lhcbpi01	lhcb	STDIN	23903	1			33:00	R 32	:11 wn-lui2-014
3236232.stro.nikhef.	atlb019	atlas	STDIN	26115	1			66:00	R 32	:10 wn-bull-011

Gatekeeper audit log

- PID: 13507 -- Requested service: jobmanager-pbs
- PID: 13507 -- Authorized as local user: atlb019
- PID: 13507 -- Authorized as local uid: 70019
- PID: 13507 -and local gid: 2036
- PID: 13507 -- "/C=CA/O=Grid/OU=westgrid.ca/CN=Anony Mous" mapped to atlb019 (70019/2036)
- PID: 13507 -- GATEKEEPER JM ID 2009-11-16.12:51:40.0000013507.0000000000 for
 - /C=CA/O=Grid/OU=westgrid.ca/CN=Anony Mous on 142.90.256.257
- PID: 13507 -- Child 13576 started

\vee Tracing the job

JobManager log

```
gmtime=20091116115140Z;uniqid=19095.1258344261;ug=70019:2036 2036;
jobid=3243289.stro.nikhef.nl; tag=https://gazon.nikhef.nl:20082/19095/1258344261/;
dry=no;jobtype=single;count=1;
exec=https://condorg.triumf.ca:20014/home/atlasprod/Panda/pyfactory/20091105/runpilot3-
wrapper.sh;
args=;
dir=/home/atlb019//gram scratch pCHATpWQJY;log=/home/atlb019/gram job mgr 13576.log;
```

Batch system syslog entry

Nov 16 11:51:40 gazon jobmanager-pbs[19374]: qsub success (atlb019:atlb) /home/atlb019/.globus/job/gazon.nikhef.nl/19095.1258344261/scheduler_pbs_job_script: 3243289.stro.nikhef.nl

As well as regular entries created by the batch system(s) and any auditing data

V Storage: Virtual Ids or Unix domain?

- Mapping to Unix credentials
 - > Lacks expression of VO attributes and rights
 - > Allows joint native and grid use of storage systems
- Srid storage systems with grid meta-layer access control
 - > No need to allocate Unix-level resources or mappings
 - > Expresses both VO and site-level policies and ACLs
 - > Access *must* be via grid-aware mechanisms
- Example: Disk Pool Manager DPM:
 - > mapped to 'virtual UIDs': created on the fly first time system sees DN
 - > VOMS roles are mapped to virtual GIDs
 - > User can have one DN and several roles, so may be mapped to one UID and several GIDs

V Example Access Control Lists

- > LFC and DPM support Posix ACLs based on Virtual Ids
 - > Access Control Lists on files and directories
 - > Default Access Control Lists on directories: they are inherited by the sub-directories and files under the directory
- > Example
 - > dpns-mkdir /dpm/cern.ch/home/dteam/jpb
 - > dpns-setacl -m d:u::7,d:g::7,d:o:5 /dpm/cern.ch/home/dteam/jpb
 - > dpns-getacl /dpm/cern.ch/home/dteam/jpb
 - # file: /dpm/cern.ch/home/dteam/jpb
 - # owner: /C=CH/O=CERN/OU=GRID/CN=Jean-Philippe Baud 7183
 - # group: dteam
 - user::rwx
 - group::r-x

#effective:r-x

- other::r-x
- default:user::rwx
- default:group::rwx
- default:other::r-x

V Handling E2E incidents in this system

- > Detection and coordination
 - Globally unique identifiers (subject DNs, VO names)
 - Policy ecosystem guidelines for auditing, log retention, and information exchange between participants
 - Periodically tested through SSCs
- > Revocation

which, e.g., ssh keys don't have, but federated access does

- At the identity level, the Grid implements working revocation and CRL support for the PKI
- > At the authorization level: VO-level banning, site bans
- > Recovery
 - > De-facto, the only transparent recovery is by revocation of identity
 - Subject name (DN) is persistent for the user across incidents, so no re-registration needed

Introduction to Grid Security

SUMMARY

> Introduction to Grid Security

V Summary

> Grid and the VO make collaboration explicit at systems level

- > Structure of researchers themselves drives VO structure
- > This discloses the 'interconnected vulnerabilities' & incidents issue

> Threats in distributed computing exist irrespective of Grid

- > Multiple accounts across organisations, usually ill-managed
- > Shared or semi-public group accounts or shared storage
- > Grid middleware gives some additional handles ...
- > ... but also exposes new risk surfaces
- > We have yet to see a grid-specific incident
 - > Many 'traditional' incidents propagate along research collaborations
 - > Using non-grid attack vectors, and without 'grid' controls to help

