A compact Si-W-Scintillator ECAL?

Graham W. Wilson Univ. of Kansas

ECAL requirements

- Reasonable performance on single particle figures of merit :
 - Energy resolution : $\approx 10\%/\sqrt{E \oplus 1\%}$
 - Angular resolution : $\approx 1 \text{ mrad}$
 - (a general purpose detector should not over-compromise on basic resolution)
- Hermetic measurement of missing energy very important.
- Contribute to excellent jet energy resolution. Aim for 30%/ \sqrt{E} .
 - Essential to separate photons from interacting charged hadrons
 - Higher B, higher R², smaller Moliere radius (transverse size)
 - So large volume, compact and dense
- Timing resolution.
 - Bunch crossings potentially every 1.4 ns.
 - Time resolution of 300 ps for photons helps
- Affordable.

Tungsten-Silicon ECAL

- Proposals exist for W-Si ECAL.
- The TESLA design, R=1.7m, 40 layers of Silicon pads looks as if it can do the job (except maybe the timing), but is costed at 133 M\$ (driven by 3\$/cm² Si cost)
 - Eres = $10\%/\sqrt{E}$, Moliere radius = 16.5 mm
- Our proposal centers on developing a cost optimized ECAL, with similar performance. This hybrid calorimeter would use Silicon sensors to do the fine pattern recognition and position measurement, plastic scintillators for fine sampling and timing.

Sc-W-Sc-W-Si-W-Sc-W-Sc-W

Tile/fiber technique

(CMS photo)

Use blue scintillator.

Embed wavelength shifting fiber which absorbs blue light, re-emits in the green.

See sample – from OPAL scintillating tile detector (rescued from CERN garbage)

Several fibers can be seen by one photo-detector

CDF existence proof (plastic transparency)

Hopefully this will be scanned.

ECAL Design Issues : Sampling Frequency

Issues : cost of many layers of active medium Cost of thin sheets of absorber.

ECAL Design Study : Sampling Thickness

Compactness

Need to minimise gaps, reduce space needed for fiber routing, by sharing fiber routing gaps among layers

Two strawman designs

- 1.4mm W plates
- 12 layers Si
- 48 layers of 1.5mm Scintillator
- 4 layers ganged together (1.5pe/mip/mm) -> 9 pe per super-layer.
- 12 super-layers in total with mip-detection in each super-layer

- 0.8mm W sheets
- 12 layers Si
- 96 layers of 1mm Sc
- 8 layers ganged together -> 12 pe/mip/super-layer
- 12 super-layers in total with mip-detection in each super-layer

E res :	12%/√E	9%/√E
Moliere radius :	18 mm	21 mm

30% of the Silicon cost

(TESLA TDR 10%/ \sqrt{E} , 16.5 mm)

Possible photo-detectors

Makes optical summing of several layers easy Hamamatsu, multianode PMT, with 18mm×18mm sensitive area.

16-channels has $16 \times 4.5 \times 4.5$ mm (16 1mm ϕ fibers)

64-channels has $64 \times 2.25 \times 2.25 \text{ mm} (4 \text{ lmm } \phi \text{ fibers})$

Wacky ideas ??

- Temporal calorimetry. Time-stamp every energy deposit.
- Lead-loaded scintillator
 - denser, better response to soft photons.
- Germanium ? (Ge > Si > Sc.)
- Using different response of scintillator and Silicon to differentiate neutron induced energy deposits.
- Multiplexing in time if time resolution good enough
- Hybrid design Si can aid scintillator response calibration

Scintillator/WLS matching (plastic transparency)

Hopefully this will be scanned

R&D issues

- Calorimeter design optimization.
 - No. of layers, R, absorber thickness, detector thickness, sampling frequency vs depth, transverse granularity of Si/Sc, tile shapes, groove patterns, gap sizes. Should Si-layer be independent of scintillator layers ? How many Sc. Super-layers. (12,6,4,3,2,1 ?). Fiber routing. Timing resolution.
 - Need to study with full shower simulation.
 - Plan to use OPAL optics simulation in tile-fiber design and testing studies.
- Demonstrating basic performance characteristics
 - Light yield for thin scintillating tiles
 - Response uniformity
 - Scintillator/WLS/Photo-detector for timing
 - Fiber routing for compact calorimeter
 - Sound mechanical design
 - Good quality thin absorber plates (sintering is cheap ..)
 - Photo-detector characteristics

Getting started with lab test-stand with cosmic rays and sources. Good for involving students.

Design $\sigma(E)/E = (16/\sqrt{E} \oplus 1)\%$

npe/layer/MIP=6 (REQUIRED 3)

PRETTY IMPRESSIVE (BUT AT CENTER OF TOWER)

RESPONSE NON-UNIFORMITY ~ 2%. (& AT SOME LEVEL - CORRECTABLE)

CSTOCHASTIC 215%, CCONSTANT 21%.

