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ECAL requirements

Reasonable performance on single particle figures of mertit :
— Energy resolution : = 10%/NE & 1%
— Angular resolution : = 1 mrad

(a general purpose detector should not over-compromise on basic
resolution)

Hermetic — measurement of missing energy very important.
Contribute to excellent jet energy resolution. Aim for 30%/ VE.
— Essential to separate photons from interacting charged hadrons
— Higher B, higher R?, smaller Moliere radius (transverse size)
— So large volume, compact and dense
Timing resolution.
— Bunch crossings potentially every 1.4 ns.

— Time resolution of 300 ps for photons helps
Affordable.



Tungsten-Silicon ECAL

» Proposals exist for W-Si ECAL.

* The TESLA design, R=1.7m, 40 layers of ¢/ W-SI-W=se-W=se-i
Silicon pads looks as if it can do the job

(except maybe the timing), but is costed at
133 MS (driven by 3$/cm? Si cost)

— Eres = 10%/VE , Moliere radius = 16.5
mm

* Our proposal centers on developing a cost
optimized ECAL, with similar performance.
This hybrid calorimeter would use Silicon
sensors to do the fine pattern recognition and
position measurement, plastic scintillators for
fine sampling and timing.




Tile/fiber technique

(CMS photo)

Use blue scintillator.

Embed
which absorbs blue light,
re-emits in the

See sample — from OPAL
scintillating tile detector
(rescued from CERN garbage)

Several fibers can be seen by
one photo-detector




CDF existence proof (plastic
transparency)

Hopefully this will be scanned.
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ECAL Design Issues : Sampling Frequency

Tungsten-Silicon EM Calorimeter
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Issues : cost of many layers of active medium
Cost of thin sheets of absorber.
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ECAL Design Study : Sampling Thickness

Tungsten-Scintillator EM calorimeter
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For thin scintillators, need enough
photo-electron statistics. (Kawagoe
et al, 3.2pe for Imm scintillator)

1.5 pe/mip/mm looks like a
sensible target for thin tiles
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Need to minimise gaps, reduce space needed for fiber
routing, by sharing fiber routing gaps among layers



Two strawman designs

1.4mm W plates
12 layers Si1

e 48 layers of 1.5mm
Scintillator

* 4 layers ganged together
(1.5pe/mip/mm) -> 9 pe per
super-layer.

e 12 super-layers 1n total
with mip-detection 1n each
super-layer

0.8mm W sheets
12 layers Si1
96 layers of Imm Sc

8 layers ganged
together -> 12
pe/mip/super-layer

12 super-layers 1n total
with mip-detection 1n
each super-layer

E res : 12%/NE

Moliere radius : 18 mm

(TESLA TDR 10%/VE, 16.5 mm)

9%/NE 30% of the
21 mm Silicon
cost



Possible photo-detectors

Makes optical
summing of several
layers easy

Hamamatsu, multi-
anode PMT, with

1 8Smmx18mm
sensitive area.

16-channels has
16x4.5% 4.5mm (16
Imm ¢ fibers)

64-channels has 64 x
2.25 x 2.25 mm (4
Imm ¢ fibers)




Wacky 1deas ?7?

Temporal calorimetry. Time-stamp every energy
deposit.

Lead-loaded scintillator
— denser, better response to soft photons.
Germanium ? (Ge > S1> Sc.)

Using different response of scintillator and Silicon to
differentiate neutron induced energy deposits.

Multiplexing in time if time resolution good enough

Hybrid design — Si1 can aid scintillator response
calibration



Scintillator/WLS matching
(plastic transparency)

Hopefully this will be scanned



R&D 1ssues

« Calorimeter design optimization.

No. of layers, R, absorber thickness, detector thickness, sampling
frequency vs depth, transverse granularity of Si/Sc, tile shapes, groove
patterns, gap sizes. Should Si-layer be independent of scintillator layers ?
How many Sc. Super-layers. (12,6,4,3,2,1 ?). Fiber routing. Timing
resolution.

Need to study with full shower simulation.

Plan to use OPAL optics simulation in tile-fiber design and testing studies.

« Demonstrating basic performance characteristics

Light yield for thin scintillating tiles Getting started
Re_Sp OnSe uniformity o with lab test-stand
Scintillator/WLS/Photo-detector for timing . .
. . . with cosmic rays

Fiber routing for compact calorimeter

. . and sources. Good
Sound mechanical design . .
Good quality thin absorber plates (sintering is cheap ..) for mnvolving

Photo-detector characteristics students.
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