CP-odd phases @ NLC: a project outline

Benedikt Gaissmaier TU München

A report on an idea & first results of a recent project in collaboration with:

S.Y. Choi M. Drees

1. Introduction

 <u>framework</u>: MSSM with R-parity and without any assumptions about mechanism of SUSY breaking

- idea:

- take low energy data as a set of constraints on parameter space
- apply the resulting low-energy compatible points to set of high-energy experiments at NLC
- study impact of non-vanishing phases on high-energy observables (→CP-violation ?)

2. More details - 4 major steps

STEP 1:

constraints and parameters

- lower mass bounds: $m_{\tilde{e}}$, $m_{\tilde{\mu}}$, $m_{\tilde{\nu}}$, $m_{\tilde{\chi}_1^0}$
- cross-section for $\tilde{\chi}_1^- \tilde{\chi}_1^+$ from LEP2
- allowed range for $(d_e)_{SUSY}$ $-7.9 {\rm ecm} < (d_e)_{SUSY} \cdot 10^{28} < 21.7 {\rm ecm}$
- allowed range for $(a_{\mu})_{SUSY}$ optimistic interpretation $(e^+e^-\text{-data})$: $5.7 \cdot 10^{-10} < (a_{\mu})_{SUSY} < 49.3 \cdot 10^{-10}$ conservative interpretation $(\tau\text{-decay-data})$: $-57.2 \cdot 10^{-10} < (a_{\mu})_{SUSY} < 60.6 \cdot 10^{-10}$

- real parameters (without sflavor-mixing): $|\mu|$, \tilde{m}_L , \tilde{m}_R , $|M_1|$, M_2 , |A|, $\tan\beta$
- phases: ϕ_{μ} , ϕ_{1} , ϕ_{A} ($\phi_{2}=0$ by convention)

STEP 2:

define high energy observables: unpolarized, total cross-sections for

$$e^{-}e^{-} \rightarrow \tilde{e}_{i}^{-}\tilde{e}_{j}^{-} \quad i, j = 1, 2 \ (\simeq R, L)$$
 $e^{-}e^{+} \rightarrow \tilde{e}_{i}^{-}\tilde{e}_{j}^{+} \quad i, j = 1, 2 \ (\simeq R, L)$
 $e^{-}e^{+} \rightarrow \tilde{\chi}_{i}^{0}\tilde{\chi}_{j}^{0} \quad i, j = 1, \dots, 4$
 $e^{-}e^{+} \rightarrow \tilde{\chi}_{i}^{-}\tilde{\chi}_{j}^{+} \quad i, j = 1, 2$

problem: how to study CP phases at a LC?

STEP 3:

Sensitivity of CP-even cross sections $S(\sigma_{f_if_j})$

assume: real parameters to be fixed

idea:

compare size of deviation in counting rates of CP-violating (CPV) and CP-conserving (CPC) point to the statistical error in CP-conserving case:

$$S \propto \frac{|\Delta N_{CPV-CPC}|}{\delta N_{CPC}}$$

- → basically four significances corresponding to four CPC points relevant for collider physics
- → conservative estimate: take minimum of these four significances

 \rightarrow definition of $S(\sigma_{f_if_i})$

$$S(\sigma_{f_if_j}) = \min \left\{ \frac{|\sigma_{f_if_j}^{CPV} - \sigma_{f_if_j}^{CPC}|}{\sqrt{\sigma_{f_if_j}^{CPC}}} \right\} \sqrt{\mathcal{L}}$$

message of $S(\sigma_{f_if_j})$:

- \cdot high $S(\sigma_{f_if_j})$: impact of phases significant in this mode
- · low $S(\sigma_{f_if_j})$: this mode is not useful for constraining phases

STEP 4:

- next question: how to disentangle kinematical from coupling effects?
- ightarrow introduce : kinematical fixed significances

$$\bar{S}(\sigma_{f_if_j}) = \min \left\{ \frac{|\sigma_{f_if_j}^{\overline{CPV}} - \sigma_{f_if_j}^{CPC}|}{\sqrt{\sigma_{f_if_j}^{CPC}}} \right\} \sqrt{\mathcal{L}}$$

- · \overline{CPV} :
 - same ϕ_{α} as CPV
 - $|M_1|,~M_2$ and $|\mu|$ varied so that $m_{\widetilde{\chi}_1^-}$ and $m_{\widetilde{\chi}_{1,3}^0}$ in \overline{CPV} are identical to the corresponding masses in the \bar{S} -minimizing CPC point

- → smaller or removed kinematical effects
 - coupling effects more dominant
 - problem with selectron modes: kinematical and coupling effects interfere in neutralino functions
 - schematic

4. Preliminary results

performed two random scans for both a_{μ} -bounds:

A:
$$(\phi_{\mu}, \phi_{1}, \phi_{A}) \in (0, 2\pi)$$
 and $|\mu| = 200 \text{GeV}$

B:
$$(\phi_{\mu}, \phi_{1}, \phi_{A}) \in (0, 2\pi)$$
 and $|\mu| = 500 \text{GeV}$

- $\tan \beta = 3$, 12
- $M_2=2|M_1|=200 \text{ GeV}$
- \tilde{m}_L =235 GeV, \tilde{m}_R =180 GeV, |A|=500GeV

a few examples presented here:

- ullet only optimistic a_{μ} -bound
- only $S(\sigma_{f_if_j})$
- selected cross sections: $\tilde{e}_L^- \tilde{e}_R^+$ and $\tilde{\chi}_1^0 \tilde{\chi}_2^0$

known fact: in general MSSM cancellations may occur and phases can be sizeable imposing model(s) for SUSY breaking \rightarrow constraints get more severe

$$|\mu|=200{
m GeV}$$

expected: $d_e = d_e(\phi_\mu, \phi_1, \phi_A) \Leftrightarrow S = S(\phi_\mu, \phi_1)$ different scales for S

- \leftrightarrow changes in neutralino mixing due to $|\mu|$
- \leftrightarrow available ϕ_1 -range and available CPC points

$|\mu|=\text{200GeV}$

smeared triangles (ϕ_{μ}) from ϕ_1 -dependence of each S, as extrema of S_1 and S_2 do not coincident

more complicated patterns possible

5. Conclusion

- low energy data put constraints on parameter space, allowed phases can still be rather sizeable
- can give two quantities to estimate the impact of CP-odd phases on CP-even crosssections
- these significances can be rather big, implying significant deviations of CPV scenario(s) from the CPC ones
- ullet these significances are correlated with each other, but *not* with d_e and a_μ
- significances dominantly due to coupling effects