FIRST PHYSICS AT LHCB

- Introduction
- LHCb design, environment, detector
- **2010** data
- First physics

9 July 2010 Nikhef Seminar

9 July 2010, Amsterdam [1/52]

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- $(\bar{
 ho},\bar{\eta})$ fit is dominated by sin 2eta

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- We don't know much about constraints from trees

• Changed focus: No longer seeking to verify the CKM picture

- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- ✓ Look for rare B & D decays (and K as well)

→ Need a lot of data and a good precision

- Need very good precision on all angles and sides.
 - ✓ Precise measurement of ϕ_3
- ✓ Need B_s as well → β_s and more

The Large Hadron Collider beauty experiment for precise measurements of CP violation and rare decays

THCK

LHC

First Physics at LHCb

Nominal LHC Environment

- pp collider at 14 TeV (7 TeV in 2010–12)
 - $\bullet\,$ Inelastic cross-section about 60 ${\rm mb}\,$
 - Assumed $b\bar{b}$ cross-section about 500 μb (one every 120)
 - $\bullet\,$ Our Pythia tuning predicts more than $1~{\rm mb}$ at 14 TeV

0

- Bunch crossings at 40 MHz
- Luminosity up to $10^{34} \mathrm{\,cm^{-2}s^{-1}} \Rightarrow 10^4 \, \mu \mathrm{b^{-1}/s}.$
 - → $5 \cdot 10^6 \ b\bar{b}$ pairs per second
- Direction of b and \overline{b} very correlated
 - → A 4π coverage not optimal
 - ➔ Build a forward spectrometer
- The choice of the LHCb collaboration

[rad]

LHCB

LHCB

LHCB

LHCB TRIGGER

 Hardware-based L0 trigger: moderate p_T cuts: 40 MHz
 → 1 MHz

= 200

三 ト イ 三 ト .

LHCB TRIGGER

- Hardware-based L0 trigger: moderate p_T cuts: 40 MHz
 → 1 MHz
- The whole data is then sent at 1 MHz to a farm of O(2000) CPUs
- HLT1 tries to confirm a L0 decision by matching the L0 candidates to tracks.
 → ~ 30 kHz

LHCB TRIGGER

- Hardware-based L0 trigger: moderate p_T cuts: 40 MHz
 → 1 MHz
- The whole data is then sent at 1 MHz to a farm of O(2000) CPUs
- HLT1 tries to confirm a L0 decision by matching the L0 candidates to tracks.
 → ~ 30 kHz
- HLT2 does the full reconstruction and loose selection of *B* candidates → 2 kHz
 - This is much less than the 10^5 b events per second

VeLo

IHCh

글 네 글 네 글

Muon

= 200

ECAL

Tracker

RICH₂

LHCB COLLABORATION

-

First Physics at LHCb

9 July 2010, Amsterdam [14/52]

2010 DATA TAKING

LUMINOSITY AT 3.5 TEV

9 July 2010, Amsterdam [16/52]

TRIGGER STRATEGY

L0: BASED ON CALO, MUON AND PILE-UP MB TRIGGERS: HCAL, SPD, CALO, MUON, Pile-Up ... c,b TRIGGERS: Electron, Photon, Hadron, Muon, Di-Muon, π^0 LUMINOSITY: Muon, Di-Muon, Beam-Gas

• Knows about bunch structure.

HLT: SOFTWARE BASED ON "EVERYTHING"

HLT1: Confirmation of L0 objects → ~ 2kHz
HLT2: All combinatorics. Presently still in pass-all mode.
MICRO-BIAS: At least one track in velo (RZ), or T stations (no downscaled to 100 Hz)
NO-BIAS: Downscaled random

TRIGGER OPERATIONS

 $\rm L0$ $_{\rm RATE}:$ Close to 11 kHz per pair of bunches

First Physics at LHCb

》▶ < ≣ ▶ < ≣ ▶ .≣ा≡ ∽)२० 9 July 2010, Amsterdam [18/52]

TRIGGER OPERATIONS

L0 RATE: Close to 11 kHz per pair of bunches PILE-UP: The issue is the large pile-up: We are a factor 2–4 above nominal (like $8 \cdot 10^{32}$). CPU goes exponentially.

MAGNET POLARITY

- We can swap the magnet polarity
 - \Rightarrow Important for systematic studies of ${\rm CP}$ effects
 - $\bullet\,$ Trying to have 50% of each polarity for each trigger configuration.

- Primary vertex in Beam Gas events for Beam1 and Beam2
 - *z* coverage due to velo acceptance
 - Crossing angle due to *B* field
- Beam profiles used to determine luminous region
 - → Luminosity

MAGNET POLARITY

- We can swap the magnet polarity
 - \rightarrow Important for systematic studies of CP effects
 - Trying to have 50% of each polarity for each trigger configuration.

Velo

- Velo sensors all powered
- 99.3% are operational
- With 450 GeV beams we could not fully close the Velo
- ... but we see where the beams are

інсь

Velo

- Velo closed for the first time on 1. Apr
- Closing procedure now takes routinely < 6 minutes
- Stability in (X,Y,Z) : $(10,5,25)\,\mu\mathrm{m}$

lнсb

< E > < E > E = のQ@

Velo

- Resolution is getting close to MC predictions
- One uncertainty was the thickness of the RF foil. But we start to see it.

Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [24/52]

OUTER TRACKER

- Detector is 100% efficient and running at nominal threshold with low noise
- O₂ was added to the gas mixture in order to mitigate ageing effects. No effect on hit efficiency is observed.
- Space vs drift-time relation fits expectation from test beam

OUTER TRACKER

- OT openings for maintenance have little effect
- Stability within 80 μm (30 μm when nothing moves)

LONG TRACKS (VELO & T STATIONS)

 Good agreement between data and MC

TRACKING EFFICIENCY

• Tracking Efficiency from Tag and Probe method using K_S^0 with Calo : $\pm 4\%$

Patrick Koppenburg

LHCh

TRACKING EFFICIENCY

First Physics at LHCb

- Tracking Efficiency from Tag and Probe method using K⁰_S with Calo : ±4%
- From $D \rightarrow K\pi$ and $D \rightarrow K\pi\pi\pi$: $\pm 3\%$

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Zoology 1 — K_S^0 , Λ , Ξ , Ω

Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [30/52]

MASS SCALE

- Residuals: We are getting there. But alignment is not perfect yet.
- Mass scale: *B* field or alignment or both? Need more statistics.

IHCh

RICH

- RICH1 and RICH2 being aligned wrt tracking system
- Nice kaon and pion rings seen in both systems

ZOOLOGY 2: PARTICLES WITH KAONS

9 July 2010, Amsterdam [33/52]

RICH-ID

- Proton-ID efficiency and mis-ID using pions and protons from Λ and K⁰_S
- Kaon-ID from ϕ tag-and-probe (one *K* RICH-IDed)

CALORIMETRY

- The calorimeters systems work very effectively, providing the principal L0 trigger at LHCb
- Time alignment now 1 ns
- PS/SPD calibration using MIPs

misID vs eff (Ecal+Prs+Hcal)

ZOOLOGY 3: π^0

9 July 2010, Amsterdam [36/52]

First Physics at LHCb
Muon-ID

First Physics at LHCb

9 July 2010, Amsterdam [37/52]

MUON-ID

Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [38/52]

-

< 注 > < 注 > .

OFFLINE COMPUTING

- Data processing chain works well. Several reprocessings already done.
- New data is distributed to the Tier1s
- Some issues with Tier1 stability regarding storage
 - So far CERN had highest share of CPU
 - → Getting better
- 200 Grid users (1/4 of the collaboration)
- 2010 Simulation campaign started

IHCh

VERY NICE PEAKS!

First B^+ Candidate

First Physics at LHCb

9 July 2010, Amsterdam [41/52]

◆ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ④ ◆ ● ◆ 臣 ▶

< < >> < <>>></>>

CANDIDATE R^+

- Well identified muons and kaon.
- $m_{J/\psi} = 3097.90 \text{ MeV}, \ m_{B^+} = 5319.90 \text{ MeV}$
- Proper time = 0.6 ps (26 σ from PV)
- Angle of flight and momentum of $B^+ = 0.7^\circ$

LHCh

3

= 200

More B

- We are starting to see B peaks in $\mathcal{O}(10)\,\mathrm{nb}^{-1}$
- Don't know yet how many there are in the full sample

2010 Physics

Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [44/52]

www.koppenburg.or

PHYSICS

- At low luminosities we can do cross-section measurements
 - Unbiased trigger
 Unique rapidity coverage
- K_S^0 cross-section
- $\Lambda/\overline{\Lambda}$ and p/\overline{p}
- Open charm
- J/ψ
- B

This is the tracking acceptance. For composites we get a bit higher.

First Physics at LHCb

9 July 2010, Amsterdam [45/52]

K_S^0 Cross-Section at $\sqrt{s} = 900 \text{ GeV}$

- Two independent analyses (one with and one without VeLo)
 - Large overlap → no attempt to average. We take best bin of each.
- Errors:
 - 10% statistical
 - 13% luminosity
 - 10% tracking
- Data seems to favour higher p_T than MC
- ➔ First LHCb paper

 p_T spectrum in bins of y.

Λ and $\overline{\Lambda}$ at $\sqrt{s} = 900~{ m GeV}$ and $\sqrt{s} = 7~{ m TeV}$

- Measure ∧ and ∧ ratios versus rapidity
- Clear asymmetry in the mass peaks

< A

E 9900

(注) (注) (注) (

A and $\overline{\Lambda}$ at $\sqrt{s} = 900~{ m GeV}$ and $\sqrt{s} = 7~{ m TeV}$

- Measure Λ and Λ ratios versus rapidity
- Clear asymmetry in the mass peaks
- Asymmetry at 900 GeV larger than predicted in MC
- Not the case at 7 TeV

IHCh

A and $\overline{\Lambda}$ at $\sqrt{s} = 900~{ m GeV}$ and $\sqrt{s} = 7~{ m TeV}$

- Measure Λ and Λ ratios versus rapidity
- Clear asymmetry in the mass peaks
- Asymmetry at 900 GeV larger than predicted in MC
- Not the case at 7 TeV
- In Δy(Λ Beam) all data agrees well

 J/ψ at $\sqrt{s} = 7$ TeV

We can measure

- $\frac{\mathrm{d}\sigma}{\mathrm{d}p_T}$ for all J/ψ
- σ for prompt J/ψ
- σ for non-prompt J/ψ $\Rightarrow B$ cross-section
- No numbers yet...

Warning : This is a pseudo-lifetime.

Patrick Koppenburg

First Physics at LHCb

▲ □ → ▲ 豆 → ▲ 豆 → 三 □ → へへの 9 July 2010, Amsterdam [50/52]

HERE'S A REAL LIFETIME

- $D \rightarrow K\pi$ lifetime is measured as $(0.398 \pm 0.026) \, \mathrm{ps}$ (only statistical)
- PDG says $(0.410.1 \pm 0.0015)$ ps. Still some way to go ...

Patrick Koppenburg

LHCh

First Physics at LHCb

9 July 2010, Amsterdam [51/52]

CROSS-SECTION D*

Work done by Alexandr Kozlinskiy with Ivan Belyaev and Thomas Bauer

• Very clean sample of D^*

Patrick Koppenburg

• Pointing requirement removes

350

300

250

200F

M(D*) - M(D0 χ^2 / nd

Mean [MeV]

σ [MeV]

11A9 + A6

 145.4 ± 0.0

464.7 + 42.9

 0.7755 ± 0.0335

D_s CROSS-SECTION

Measure D_s cross section in bins of p_T and rapidity

- Select $\phi\pi$ candidates:
 - See favoured D_s
 - and Cabibbo-suppressed D⁺
- Look at log(IP) → separate prompt and B component

IHCK

D_s CROSS-SECTION

Measure D_s cross section in bins of p_T and rapidity

- Select $\phi\pi$ candidates:
 - See favoured D_s
 - and Cabibbo-suppressed D⁺
- Look at log(IP) → separate prompt and B component

• Get distributions in p_T and y.

IHCh

B Cross-Section

This time keep only the non-prompt part

- Start from log(IP) of $D^0 \to K^- \pi^+$
 - Clear non-prompt contribution
- Add a non-prompt muon : $B^- \rightarrow D^0 \mu^- \nu$
 - Wrong sign distribution dominated by prompt D

LHCb

vents/(0.1) 800

600

200

Preliminary s = 7 TeV Data

ONE MORE THING...

$$p_{T} = 39.2 \text{ GeV/c}$$

 $A_{pT} = 0.93$

Charge = +1 η = 2.65

《 ☞ ▷ 《 클 ▷ 《 클 ▷ · 클| = · · · ○ Q (~ 9 July 2010, Amsterdam [56/52]

Outlook

- We are starting to look at trigger efficiencies
- Backgrounds, PID, lifetimes...
- → We will be ready for *B* physics

- $\bullet\,$ We now have $\sim 100\;{\rm nb}^{-1}$
- $\bullet\,$ With a few 100 $\rm pb^{-1}$ we are in business for
 - $B_s \rightarrow \mu \mu$

•
$$B_d \to \mu \mu K^*$$

- D mixing
- For more *B* physics wait for 1 fb^{-1}

LHCh

Very good start in 2010
 First measurements are coming out -> more at ICHEP

• We should be able to get new results in ${\sf B}_{\sf s} o \mu\mu$ and ${\sf B} o \mu\mu{\sf K}^*$ in 2011

new era in flavour physics is starting

Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [58/52]

Questions?

KOPPENBURGLAAN BIJLMERMEER

Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [59/52]

www.koppenburg.o

SOME SENSITIVITIES

 \circ B_s $ightarrow \mu\mu$ $b
ightarrow s\gamma$ A_{FB} in B $ightarrow \mu K^*$

$B_s \rightarrow \mu \mu$

• Very rare but SM BF well predicted $\mathcal{B} = (3.35\pm0.32)\cdot10^{-9}~_{\text{[Blanke et al.,}}$

JHEP0610:003,2006]

- Sensitive to (pseudo)scalar operators
 - MSSM: $\mathcal{B} \propto rac{ an^6 eta}{M_A^4}$
- Present limit from CDF $\mathcal{B} < 4.3 \cdot 10^{-8} \text{ (95\% CL)}$
- Select signal in a 3D-box of mass, geometrical likelihood, PID likelihood
 - Uncorrelated variables with different control samples
 - B mass resolution \sim 20 MeV

LHCh

9 July 2010, Amsterdam [61/52]

$B_s \rightarrow \mu \mu$

• Very rare but SM BF well predicted $\mathcal{B} = (3.35\pm0.32)\cdot10^{-9}~_{\text{[Blanke et al.,}}$

JHEP0610:003,2006]

- Sensitive to (pseudo)scalar operators
 - MSSM: $\mathcal{B} \propto rac{ an^6 eta}{M_A^4}$
- Present limit from CDF $\mathcal{B} < 4.3 \cdot 10^{-8} \text{ (95\% CL)}$
- With SM BF, expect 8 signal and 12 background events in most sensitive bin in 2 fb⁻¹
 - → 3σ evidence with 2 fb⁻¹
 - → 5 σ observation with 6–10 fb⁻¹

Patrick Koppenburg

IHC

First Physics at LHCb

9 July 2010, Amsterdam [62/52]

$B \rightarrow \mu \mu K^*$

Extra dimensions

-

IHCh

First Physics at LHCb

Ŵ

9 July 2010, Amsterdam [63/52]

< 17 ▶

A lot of information in the full $\theta_\ell \text{, } \theta_K$ and ϕ distributions

$$\frac{d\Gamma'}{d\theta_{I}} = \Gamma'\left(\frac{3}{4}F_{L}\sin^{2}\theta_{I} + A_{FB}\cos\theta_{I} + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{I})\right)$$

$$\frac{d\Gamma'}{d\phi} = \frac{\Gamma'}{2\pi}\left(\frac{1}{2}(1 - F_{L})A_{T}^{(2)}\cos 2\phi + A_{Im}\sin 2\phi + 1\right)$$

$$\frac{d\Gamma'}{d\theta_{K}} = \frac{3\Gamma'}{4}\sin\theta_{K}\left(2F_{L}\cos^{2}\theta_{K} + (1 - F_{L})\sin^{2}\theta_{K}\right)$$

$$\Rightarrow Many observables$$
[Krüger & Matias]
[Egede, et. al]
[Egede, et. al]

A lot of information in the full $\theta_\ell \text{, } \theta_K$ and ϕ distributions

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{l}} = \Gamma'\left(\frac{3}{4}F_{L}\sin^{2}\theta_{l} + A_{\mathsf{FB}}\cos\theta_{l}\right) + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{l})\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\phi} = \frac{\Gamma'}{2\pi}\left(\frac{1}{2}(1 - F_{L})A_{T}^{(2)}\cos 2\phi\right) + A_{\mathsf{Im}}\sin 2\phi + 1\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{K}} = \frac{3\Gamma'}{4}\sin\theta_{K}\left(2F_{L}\cos^{2}\theta_{K} + (1 - F_{L})\sin^{2}\theta_{K}\right)$$

$$\Rightarrow \mathsf{Transverse asymmetry } A_{T}^{(2)}(\mathsf{RH})$$

$$\mathsf{First Physics at LHCb} \qquad 9 July 2010. Amsterdam [65/52]$$

A lot of information in the full θ_{ℓ} , θ_K and ϕ distributions

First Physics at LHCb

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{l}} = \Gamma'\left(\frac{3}{4}F_{L}\sin^{2}\theta_{l} + A_{\mathrm{FB}}\cos\theta_{l} + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{l})\right)$$

$$+ \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{l})\right)$$

$$A_{\mathrm{FB}} = \frac{\left(\int_{0}^{1} - \int_{-1}^{0}\mathrm{d}\cos\theta_{l}\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}}\right)}{\int_{-1}^{1}\mathrm{d}\cos\theta_{l}\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}}}$$

$$A_{\mathrm{FB}} = \frac{\left(\int_{-1}^{1} - \int_{-1}^{0}\mathrm{d}\cos\theta_{l}\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}}\right)}{\int_{-1}^{1}\mathrm{d}\cos\theta_{l}\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}}}$$

$$\Rightarrow \text{ Zero point measures ratio of Wilson coeffs } C_{9}/C_{7}.$$

$$\Rightarrow \text{ Forward-backward asymmetry } A_{\mathrm{FB}}$$

$$[\text{Figure & Matias}]$$

$$[\text{Figure & Matias}]$$

$$[\text{Figure & Matias}]$$

$$[\text{Figure & Matias}]$$

9 July 2010, Amsterdam [66/52]

Messages from Other Experiments

BELLE: 230 $B \rightarrow \ell \ell K^*$ events in $657 \cdot 10^6 B\overline{B}$ [PRL103:171801,2009] BABAR: 60 $B \rightarrow \ell \ell K^*$ events in $384 \cdot 10^6 B\overline{B}$ [PRD79:031102,2009] CDF: 100 $B \rightarrow \ell \ell K^*$ events in 4.4 fb⁻¹ [CDF public note] FB ASYMMETRY: All seem to favour $C_7 = -C_7^{SM}$ case. Not conclusive yet...

Need much more statistics

IHCh

ヨト イヨト

$B_d ightarrow \mu \mu K^*$ yields with 2 Fb⁻¹

Expected signal and background yields in 2 fb^{-1} of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

Sample	Yield
$B_d o \mu \mu K^*$	$\textbf{7200} \pm \textbf{2100}$
$b ightarrow \mu \mu s$	2000 ± 100
$2(b ightarrow \mu)$	1050 ± 250
$b ightarrow \mu c(\mu q)$	600 ± 200
Background	3700 ± 300
B/S	0.5 ± 0.2

Patrick Koppenburg

LHCh

First Physics at LHCb

H

9 July 2010, Amsterdam [68/52]

$B_d \rightarrow \mu \mu K^*$ yields with 2 Fb⁻¹

Expected signal and background yields in 2 fb⁻¹ of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

→ Resolution on A_{FB} zero : ±0.46 GeV² (12%) in 2 fb⁻¹

Mean = $4.01 \text{ GeV}^2/c^4$ Sigma = $0.46 \text{ GeV}^2/c^4$

q2 (GeV2/c4)

Patrick Koppenburg

ν² ο 1400

1000

600 400

200

LHCh

-120

First Physics at LHCb

9 July 2010, Amsterdam [69/52]

Scaling to Lower Luminosities

= ~ Q Q

Scaling to Lower Luminosities

 $\begin{array}{c} \text{SM prediction} & -\!\!\!\!- \text{Babar} & -\!\!\!\!- \text{Belle} \\ & \text{LHCB at 500 } \text{pb}^{-1} \end{array}$

IHCh

First Physics at LHCb

9 July 2010, Amsterdam [71/52]

B 🕨 🖌 B 🕨

Scaling to Lower Luminosities

 $\begin{array}{c} \text{SM prediction} & -\!\!\!\!- & \!\!\!\text{Babar} & -\!\!\!\!- & \!\!\!\text{Belle} \\ & & \!\!\! \mathrm{LHCB} \text{ at } 1 \, \text{fb}^{-1} \end{array}$

IHCh

-

= 200

물 제 문 제 문 제 .
b Physics at Hadron Colliders

- B mesons have a long lifetime $c au=0.5~\mathrm{mm}$ with $\gamma=\mathcal{O}(10\text{--}100)$
 - You want to make lifetime-dependent measurements
- ✓ Good vertex resolution
 ✗ Not too many *pp* interactions per bunch crossing
 → Control luminosity to avoid multiple *pp* collision events
 - We will reach baseline luminosity very early

THC

b Physics at Hadron Colliders

- B mesons have a long lifetime c au= 0.5 mm with $\gamma=\mathcal{O}($ 10–100)
 - You want to make lifetime-dependent measurements
 - ✔ Good vertex resolution
- $\bullet\,$ They have a large mass $\sim 5\,GeV,$ but not very large.
 - Look for particles with a transverse momentum $p_T = \mathcal{O}(1)$ GeV
- $b \rightarrow c$ and $c \rightarrow s$. 20% *B* decay to leptons.

✓ Use Kaon, muon and electron-ID

- ✓ Good particle ID to fight large background
- There will still be a lot of background
 - ✔ Good mass, i.e. momentum resolution

Zoology 3: $D \to K\pi$ and D^*

Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [75/52]

ション (四) (日) (日) (日) (日)

Zoology 3: $D \to K\pi$ and D^*

THCP Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [76/52]

◆□ → ◆□ → ◆三 → ◆□ → ◆□ → ◆○ ◆

Zoology 3: $D \to KK$ and D^*

THCP Patrick Koppenburg

First Physics at LHCb

9 July 2010, Amsterdam [77/52]

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 の Q @

ZOOLOGY 4: D^+ , D_s^+ , Λ_c

First Physics at LHCb

9 July 2010, Amsterdam [78/52]

ZOOLOGY 5: $D^0 \rightarrow K\pi\pi\pi$

Untagged $K\pi\pi\pi$

 $m_{K\pi\pi\pi}$ with Δm cut

9 July 2010, Amsterdam [79/52]

◆□ → ◆□ → ◆三 → ◆三 → ◆回 → ◆○ ◆