RARE DECAYS AT LHCB

- Introduction
- LHCb design, environment, detector
- 2010 data
- Rare Decays

11 May 2010 Universität Zürich Seminar

Patrick Koppenburg

11 May 2010, Zürich [1/52]

Patrick Koppenburg

Rare Decays at LHCb

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- $(\bar{
 ho},\bar{\eta})$ fit is dominated by sin 2eta

- Changed focus: No longer seeking to verify the CKM picture
- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- We don't know much about constraints from trees

• Changed focus: No longer seeking to verify the CKM picture

- Instead look for signs of New Physics
 - → Discrepancies in measurements or unitarity triangle
- ✓ Look for rare B & D decays (and K as well)

→ Need a lot of data and a good precision

- Need very good precision on all angles and sides.
 - ✓ Precise measurement of γ
- ✓ Need B_s as well → β_s and more

The Large Hadron Collider beauty LHC experiment for precise measurements of CP violation and rare decays

THCK

Rare Decays at LHCb

◆□→ ◆□→ ◆注→ ◆注→ □ 注

Nominal LHC Environment

- pp collider at 14 TeV (7 TeV in 2010–12)
 - Inelastic cross-section about $60 \mathrm{~mb}$
 - Assumed $b\bar{b}$ cross-section about 500 μb (one every 120)

0

- $\bullet\,$ Our <code>Pythia</code> tuning predits more than $1~{\rm mb}$ at 14 TeV
- Bunch crossings at 40 MHz
- Luminosity up to $10^{34} \mathrm{\,cm^{-2}s^{-1}} \Rightarrow 10^4 \, \mu \mathrm{b^{-1}/s}.$
 - → $5 \cdot 10^6 \ b\bar{b}$ pairs per second
- Direction of b and \overline{b} very correlated
 - → A 4π coverage not optimal
 - → Build a forward spectrometer
- The choice of the LHCb collaboration

[rad]

b Physics at Hadron Colliders

- B mesons have a long lifetime $c au=0.5~\mathrm{mm}$ with $\gamma=\mathcal{O}(10\text{--}100)$
 - You want to make lifetime-dependent measurements
- ✓ Good vertex resolution
 ✗ Not too many *pp* interactions per bunch crossing
 → Control luminosity to avoid multiple *pp* collision events
 - We will reach baseline luminosity very early

IHCK

b Physics at Hadron Colliders

- B mesons have a long lifetime c au= 0.5 mm with $\gamma=\mathcal{O}($ 10–100)
 - You want to make lifetime-dependent measurements
 - ✔ Good vertex resolution
- $\bullet\,$ They have a large mass $\sim 5\,GeV,$ but not very large.
 - Look for particles with a transverse momentum $p_T = \mathcal{O}(1)$ GeV
- $b \rightarrow c$ and $c \rightarrow s$. 20% *B* decay to leptons.

✓ Use Kaon, muon and electron-ID

- ✓ Good particle ID to fight large background
- There will still be a lot of background
 - ✔ Good mass, i.e. momentum resolution

LHCB

LHCB

LHCB

LHCB TRIGGER

 Hardware-based L0 trigger: moderate p_T cuts: 40 MHz
 → 1 MHz

3

< ∃ >

LHCB TRIGGER

- Hardware-based L0 trigger: moderate p_T cuts: 40 MHz
 → 1 MHz
- The whole data is then sent at 1 MHz to a farm of O(2000) CPUs
- HLT1 tries to confirm a L0 decision by matching the L0 candidates to tracks.
 → ~ 30 kHz

LHCB TRIGGER

- Hardware-based L0 trigger: moderate p_T cuts: 40 MHz
 → 1 MHz
- The whole data is then sent at 1 MHz to a farm of O(2000) CPUs
- HLT1 tries to confirm a L0 decision by matching the L0 candidates to tracks.
 → ~ 30 kHz
- HLT2 does the full reconstruction and loose selection of *B* candidates → 2 kHz
 - This is much less than the 10^5 b events per second

VeLo

IHCh

Muon

ECAL

Tracker

RICH₂

LHCB COLLABORATION

-

9

Rare Decays at LHCb

11 May 2010, Zürich [16/52]

2010 Data Taking

Patrick Koppenburg

Rare Decays at LHCb

11 May 2010, Zürich [17/52]

www.koppenburg.or

Luminosity at 3.5 TeV

TRIGGER STRATEGY

L0: BASED ON CALO, MUON AND PILE-UP MB TRIGGERS: HCAL, SPD, CALO, MUON, Pile-Up ... c,b TRIGGERS: Electron, Photon, Hadron, Muon, Di-Muon, π^0 LUMINOSITY: Muon, Di-Muon, Beam-Gas

READOUT SUPERVISOR: Passes on L0 decision and adds random triggers

• Knows about bunch structure.

HLT: SOFTWARE BASED ON "EVERYTHING"

MICRO-BIAS: At least one track in velo (RZ), or T stations NO-BIAS: 100 Hz of random

TRIGGER OPERATIONS

MINIMUM BIAS: We can take minimum bias at full rate at the moment NO BIAS: 100 Hz of no bias events (including 1 Hz beam-gas) HLT1: Standard selections in parallel with pass-all

LHCh

MAGNET POLARITY

- We can swap the magnet polarity
 - \rightarrow Important for systematic studies of CP effects
 - $\bullet\,$ So far have taken 10% data with field Up. Will catch up soon

- Primary vertex in Beam Gas events for Beam1 and Beam2
 - *z* coverage due to velo acceptance
 - Crossing angle due to *B* field
- Beam profiles used to determine luminous region
 - → Luminosity

MAGNET POLARITY

- We can swap the magnet polarity
 - \rightarrow Important for systematic studies of CP effects
 - $\bullet\,$ So far have taken 10% data with field Up. Will catch up soon

HIGLIGHTS

11 May 2010, Zürich [23/52]

VERY NICE PEAKS!

B^+ Candidate

Rare Decays at LHCb

11 May 2010, Zürich [25/52]

æ

문에 비용에 다

 $\langle \Box \rangle \langle \Box$

CANDIDATE R^+

- Well identified muons and kaon.
- $m_{J/\psi} = 3097.90 \text{ MeV}, \ m_{B^+} = 5319.90 \text{ MeV}$
- Proper time = 0.6 ps (26 σ from PV)
- Angle of flight and momentum of $B^+ = 0.7^\circ$

LHCh

E

Semileptonic Candidates

Patrick Koppenburg

Rare Decays at LHCb

11 May 2010, Zürich [27/52]

Some Sensitivities

 $egin{array}{lll} \circ \ {\sf B}_{\sf s}
ightarrow \mu\mu \ {\sf o} \ {\sf b}
ightarrow {\sf s}\gamma \ {\sf o} \ {\sf A}_{\sf FB} \ {\sf in} \ {\sf B}
ightarrow \mu\mu{\sf K}^* \end{array}$

Patrick Koppenburg

Rare Decays at LHCb

11 May 2010, Zürich [28/52]

$B_s \rightarrow \mu \mu$

• Very rare but SM BF well predicted $\mathcal{B} = (3.35\pm0.32)\cdot10^{-9}~_{\text{[Blanke et al.,}}$

JHEP0610:003,2006]

- Sensitive to (pseudo)scalar operators
 - MSSM: $\mathcal{B} \propto rac{ an^6 eta}{M_A^4}$
- Present limit from CDF $\mathcal{B} < 4.3 \cdot 10^{-8} \text{ (95\% CL)}$
- Select signal in a 3D-box of mass, geometrical likelihood, PID likelihood
 - Uncorrelated variables with different control samples
 - B mass resolution \sim 20 MeV

LHCh

11 May 2010, Zürich [29/52]

$B_s \rightarrow \mu \mu$

• Very rare but SM BF well predicted $\mathcal{B} = (3.35\pm0.32)\cdot10^{-9}~_{\text{[Blanke et al.,}}$

JHEP0610:003,2006]

- Sensitive to (pseudo)scalar operators
 - MSSM: $\mathcal{B} \propto rac{ an^6 eta}{M_A^4}$
- Present limit from CDF $\mathcal{B} < 4.3 \cdot 10^{-8} \text{ (95\% CL)}$
- With SM BF, expect 8 signal and 12 background events in most sensitive bin in 2 fb⁻¹
 - → 3σ evidence with 2 fb⁻¹
 - → 5 σ observation with 6–10 fb⁻¹

Patrick Koppenburg

IHC

Rare Decays at LHCb

11 May 2010, Zürich [30/52]

OPERATORS

Operator

Effective Hamiltonian $\mathcal H$

 $A(M \rightarrow F) = \langle F | \mathcal{H}_{eff} | M \rangle$

$$\mathcal{H}_{\mathrm{eff}} = -rac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) \mathcal{O}_i(\mu)$$

- Operators \mathcal{O}_i : Long-distance effects
- Wilson coefficients C_i: Short-distance effects(masses above μ are integrated out)

New physics can show up in new operators or modified Wilson coefficients

OPERATORS

OPERATORS

Operator

- All *C_i* calculated at NLO if not NNLO in SM
- We need to measure all coefficients
- Any discrepancy is a sign of New Physics

 $b \rightarrow s\gamma$

BF sets strong constraints on New Physics

The photon polarisation is not well measured.

• Naively
$$r = \frac{C'_{7\gamma}}{C_{7\gamma}} \stackrel{\text{SM}}{\simeq} \frac{m_s}{m_b}$$

- Right-handed operators could contribute
- ✓ Mixing-induced CP violation in B_s → $\phi\gamma$
 - Λ_b baryons
 - $B \rightarrow \gamma K^{**}(K\pi\pi)$
- ✓ Virtual photons $(b \rightarrow \ell \ell s)$

[Koppenburg et al., PRL93, 061803, (2004)] Converted_photons

Rare Decays at LHCb

11 May 2010, Zürich [34/52]

$B_d \to K^* \gamma$ and $B_s \to \phi \gamma$ yields for 2 Fb⁻¹

	$B_d \rightarrow K^* \gamma$	$B_s \rightarrow \phi \gamma$
Visible BR	$2.9 \cdot 10^{-5}$	$2.2 \cdot 10^{-5}$
$\eta_{\rm rec}$	5.6%	5.4%
η_{sel}	13.3%	11.7%
$\eta_{ m trg}$	46%	44%
η_{tot}	0.34%	0.28%
Signal Yield	73 000	11 000
B/S	0.59 ± 0.26	< 0.55

The B mass resolution is 70 MeV.

LHCh

Rare Decays at LHCb

11 May 2010, Zürich [35/52]

$B_d \to K^* \gamma$ and $B_s \to \phi \gamma$ yields for 2 Fb⁻¹

	$B_d \rightarrow K^* \gamma$	$B_s \rightarrow \phi \gamma$
Visible BR	$2.9 \cdot 10^{-5}$	$2.2 \cdot 10^{-5}$
$\eta_{\rm rec}$	5.6%	5.4%
η_{sel}	13.3%	11.7%
$\eta_{ m trg}$	46%	44%
η_{tot}	0.34%	0.28%
Signal Yield	73 000	11 000
B/S	0.59 ± 0.26	< 0.55

The *B* mass resolution is 70 MeV.

Running on 13 minutes equivalent of $b\bar{b}$ events one already gets a peak

Patrick Koppenburg

IHCh

Rare Decays at LHCb

$${\cal B}_d
ightarrow {\cal K}^* \gamma$$
 and ${\cal B}_s
ightarrow \phi \gamma$ yields for 2 Fb⁻¹

	Signal Yield B/S	$B_d \to K^* \gamma$ 73000 0.59 ± 0.26	$B_s \rightarrow \phi \gamma$ 11 000 < 0.55		Running on 13 minutes equivalent of <i>bb</i> events one already gets a peak
	Expecting $A_{\mathrm{CP}}(B_d { ightarrow} K^*)$	a <i>statistical</i> γ) of 0.5%	error	on	
	$ \Rightarrow Will be d • K^{\pm} i • B_d, b $	ominated by systinteraction with m \overline{B}_d production asy	tematics atter mmetries .		5 -
			[LHCb note 200	7-030]	
LH TH	cp Patrick Koppenbu	Irg Rare Decays at LH	ІСЬ		K*γ mass [GeV/c ²] < □ ▶ < ⊡ ▶ < ≧ ▶ < ≧ ▶ < ≧ ∽ < <

$$B_s \to \phi \gamma$$

In SM mainly $B_s \rightarrow \phi \gamma_{\rm R}$ and $B_s \rightarrow \phi \gamma_{\rm L}$. Mixing only if wrong polarisation. $\mathcal{A}^{\text{mix}} \text{ tiny} \qquad \mathcal{A}^{\text{dir}} = 0 \text{ in MFV} \qquad \mathcal{A}^{\Delta\Gamma} \propto r$ $\mathcal{A}_s(t) = \frac{\Gamma_{\overline{B}_s \rightarrow \phi \gamma} - \Gamma_{B_s \rightarrow \phi \gamma}}{\Gamma_{\overline{B}_s \rightarrow \phi \gamma} + \Gamma_{B_s \rightarrow \phi \gamma}} = \frac{\mathcal{A}^{\text{dir}} \cos \Delta m_s t + \mathcal{A}^{\text{mix}} \sin \Delta m_s t}{\cosh \frac{1}{2} \Delta \Gamma t - \mathcal{A}^{\Delta\Gamma} \sinh \frac{1}{2} \Delta \Gamma t}$

Tagged approach (measure all A):

- → 12% on \mathcal{A}^{mix} (2 fb⁻¹)
- → 23% error on $\mathcal{A}^{\Delta\Gamma}$ (2 fb⁻¹)

Untagged approach (only $\mathcal{A}^{\Delta\Gamma} \propto r$):

イロン イ部ン イヨン イヨン 三日

- → 19% error (2 fb⁻¹)
- 9% with 10 fb⁻¹

$B \rightarrow \mu \mu K^*$

- Supersymmetry,
 - Graviton exchanges,
 - Extra dimensions

< 🗇 🕨 🔸

IHCh

Rare Decays at LHCb

Ŵ

11 May 2010, Zürich [39/52]

- - E ►

A lot of information in the full $\theta_\ell \text{, } \theta_K$ and ϕ distributions

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{I}} = \Gamma'\left(\frac{3}{4}F_{L}\sin^{2}\theta_{I} + A_{\mathrm{FB}}\cos\theta_{I} + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{I})\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\phi} = \frac{\Gamma'}{2\pi}\left(\frac{1}{2}(1 - F_{L})A_{T}^{(2)}\cos 2\phi + A_{\mathrm{Im}}\sin 2\phi + 1\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{K}} = \frac{3\Gamma'}{4}\sin\theta_{K}\left(2F_{L}\cos^{2}\theta_{K} + (1 - F_{L})\sin^{2}\theta_{K}\right)$$

$$\Rightarrow \mathsf{Many observables}$$

$$[Krüger \& Matias] [Egede, et. al]$$

A lot of information in the full $\theta_\ell \text{, } \theta_K$ and ϕ distributions

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{l}} = \Gamma'\left(\frac{3}{4}F_{L}\sin^{2}\theta_{l} + A_{\mathsf{FB}}\cos\theta_{l}\right) + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{l})\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\phi} = \frac{\Gamma'}{2\pi}\left(\frac{1}{2}(1 - F_{L})A_{T}^{(2)}\cos 2\phi\right) + A_{\mathsf{Im}}\sin 2\phi + 1\right)$$

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{K}} = \frac{3\Gamma'}{4}\sin\theta_{K}\left(2F_{L}\cos^{2}\theta_{K} + (1 - F_{L})\sin^{2}\theta_{K}\right)$$

$$\Rightarrow \mathsf{Transverse asymmetry } A_{T}^{(2)}(\mathsf{RH})$$

$$\mathsf{Fright Koppenburg} \qquad \mathsf{Frick Koppenb$$

A lot of information in the full θ_{ℓ} , θ_{K} and ϕ distributions

Rare Decays at LHCb

$$\frac{\mathrm{d}\Gamma'}{\mathrm{d}\theta_{l}} = \Gamma'\left(\frac{3}{4}F_{L}\sin^{2}\theta_{l} + A_{\mathsf{FB}}\cos\theta_{l} + \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{l})\right)$$

$$+ \frac{3}{8}(1 - F_{L})(1 + \cos^{2}\theta_{l})\right)$$

$$A_{\mathsf{FB}} = \frac{\left(\int_{0}^{1} - \int_{-1}^{0}\right)\mathrm{d}\cos\theta_{l}\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}}}{\int_{-1}^{1}\mathrm{d}\cos\theta_{l}\frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta_{l}}}$$

$$\Rightarrow \mathsf{Zero} \mathsf{ point measures ratio of Wilson coeffs } C_{9}/C_{7}.$$

11 May 2010, Zürich [42/52]

Messages from Other Experiments

BELLE: 230 $B \rightarrow \ell \ell K^*$ events in 657 $\cdot 10^6 \ B\overline{B}$ [PRL103:171801,2009] BABAR: 60 $B \rightarrow \ell \ell K^*$ events in 384 $\cdot 10^6 \ B\overline{B}$ [PRD79:031102,2009] CDF: 100 $B \rightarrow \ell \ell K^*$ events in 4.4 fb⁻¹ [CDF public note] FB ASYMMETRY: All seem to favour $C_7 = -C_7^{SM}$ case. Not conclusive yet...

Need much more statistics

IHCK

11 May 2010, Zürich [43/52]

$B_d ightarrow \mu \mu K^*$ yields with 2 Fb⁻¹

Expected signal and background yields in 2 fb^{-1} of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

Sample	Yield
$B_d o \mu \mu K^*$	$\textbf{7200} \pm \textbf{2100}$
$b ightarrow \mu \mu s$	2000 ± 100
$2(b ightarrow \mu)$	1050 ± 250
$b ightarrow \mu c(\mu q)$	600 ± 200
Background	3700 ± 300
B/S	0.5 ± 0.2

LHCh

H

$B_d \rightarrow \mu \mu K^*$ yields with 2 FB⁻¹

Expected signal and background yields in 2 fb^{-1} of data (Assuming the SM BR of $12 \cdot 10^{-7}$):

→ Resolution on A_{FB} zero : $\pm 0.46 \, \text{GeV}^2$ (12%) in 2 fb⁻¹

Patrick Koppenburg

ν² ο 1400

1000

600 400

200

LHCh

0.1 120

Rare Decays at LHCb

11 May 2010, Zürich [45/52]

Scaling to Lower Luminosities

3

Scaling to Lower Luminosities

 $\begin{array}{c} \text{SM prediction} & -\!\!\!\!- \text{Babar} & -\!\!\!\!- \text{Belle} \\ & \text{LHCB at 500 } \text{pb}^{-1} \end{array}$

IHCh

SCALING TO LOWER LUMINOSITIES

SM prediction — Babar — Belle LHCB at 1 fb^{-1}

IHCh

3

Understanding the $heta_{\mathsf{I}}$ distribution

• Needs to know the θ_L distribution for background \rightarrow sidebands

4 ≧ ▶ 4 ≧ ▶ ≧ ∽ Q (11 May 2010, Zürich [49/52]

Understanding the $heta_{\mathsf{I}}$ distribution

• Needs to know the θ_L distribution for background \rightarrow sidebands

• Need to understand the acceptance effects on $\theta_L \rightarrow MC$?

LHCh

Understanding the $heta_{\mathsf{I}}$ distribution

- Needs to know the θ_L distribution for background \rightarrow sidebands
- Need to understand the acceptance effects on $\theta_L \rightarrow MC$?
- → Using control samples like $B_d \rightarrow J/\psi K^*$ and $B \rightarrow \mu \mu K$

IHCh

Conclusion

Very good start in 2010
We should be able to get new results in B_s → µµ and B → µµK* in 2011

A new era in flavour physics is starting

www.koppenburg.or