
MCrush Programmers Manual
09-02-00 PJ

1

MCRUSH Programmers Manual

Introduction

The MCRUSH is designed to receive data from 18 TDC’s. The input data for the
MCRUSH will be organised as can be seen in figure 1. Such data will be produced by the
CSM and send over an S-LINK to the MCRUSH.

Separator TDC0 TDC1 … TDC17 Separator TDC0 …

Figure 1: Input data format for the MCRUSH

A Separator word is used to mark the start of 18 time slots, one for each TDC. When
there is no data available from a TDC then a NoData word is put in the data stream in the
corresponding time slot.
The MCRUSH is programmed to recognise a Separator word and a TDC Trailer word. To
do so, the FPGA on the MCRUSH contains two comparators. For both, Separator and
TDC Trailer, a 33-bit pattern and a 33-bit mask can be programmed. The 33 bits are
organised as two 32-bit words; in the last word, only bit 0 is significant. This single bit
signals whether or not the first 32-bit word needs to be an S-LINK control word or not.
When a Separator is recognised a time slot counter is started which will count from 0 up
until 17. While counting, data from the S-LINK input is transferred to 18 partitions (each
8K words) of the buffer memory. Partition 0 is corresponding with time slot 0, partition 1
with time slot 1 etc. The only case where no data will be transferred to the buffer memory
is when a NoData word is received (NoData is defined as LD[31..0] = 0H and LCTRL_n
= ‘1’).
If there are more than 18 words send after a Separator is recognised then this data will be
discarded.
When a TDC Trailer is recognised then the Event-ID of the trailer is checked whether it
falls within an 8 wide window of expected Event-ID’s. This can lead to an ‘Accept’, an
‘Early’, or a ‘Late’ condition. The Event-ID in the TDC Trailer is 12 bits wide, which
means that the Event-ID can have 4096 different values. So, for 2048 values further than
the expected Event-ID + 4 (which is halfway the ‘Accept’ window) there is a roll over
from ‘Late’ to ‘Early’ (see Table 1). Note that [Expected Event-ID + 3 – 2048] is the
same value as [Expected Event-ID + 3 + 2048].
‘Early’ and ‘Late’ are error conditions, which can generate an interrupt to the SHARC.
When the TDC-trailer is accepted, a flag bit is set in the ‘Tetris register’. The row of the
flag bit in the Tetris register is determined by the low order 3 bits of the TDC-Trailer
Event-ID. The column of the flag bit in the Tetris register is determined by the TDC time
slot (0..17).
When all TDC-Trailers of the Expected Event-ID are received then a ‘RowOut’ condition
is send to the output controller.

MCrush Programmers Manual
09-02-00 PJ

2

Expected Event-ID + 3 – 2048 Early
Expected Event-ID + 4 – 2048 Late

: :
Expected Event-ID – 1 Late

Expected Event-ID Accept
: :

Expected Event-ID + 7 Accept
Expected Event-ID + 8 Early

: :
Expected Event-ID + 3 + 2048 Early
Expected Event-ID + 4 + 2048 Late

Table 1: Expected Event-ID window

Note that a row is complete when all enabled TDC’s (see the TDC-Mask register) flagged
the presence of their TDC-Trailer with the ‘Expected’ Event-ID in the buffer memory.
A RowOut condition will also occur when a row which is flagging the first, up to sixth
following Event-ID is complete (Expected Event-ID + (1..6)). In this case the RowOut
condition for the expected Event-ID is waiting for one or more TDC-Trailers with an
Event-ID which was lost. The status of the flags of the expected Event-ID row in the
Tetris Register tells us, which TDC-Trailer(s) was/were lost.
Furthermore a RowOut condition immediately occurs whenever a TDC-Trailer is
received with its Event-ID equal to Expected Event-ID + 7. This will only occur if the
Event-ID difference between TDC’s is more than 7 which is a very rare condition. Note
that in this case the last row in the Tetris register is indexed so this RowOut condition is
an attempt to free up rows in the Tetris register in order to keep track of incoming TDC
data.
A RowOut condition stores the data from the Tetris Register row which belongs to the
current expected Event-ID, in an ‘input to output FIFO’ (I2O_FIFO). The expected
Event-ID is also stored.
Note that the S-LINK input data is not restricted to 18 TDC number slots. This could be
less since the TDC number counter is forced to 0 after each Separator word. However the
frequency of the Separator words is limited due to the way the Tetris register is
implemented. Separator words should at least be 3 clock cycles apart.
TDC’s which are not in use or which have a malfunction can be disabled using the TDC-
Mask register. When a TDC is disabled then the Tetris register will not wait for the
corresponding trailer which will never come.
The output controller is supposed to read the I2O_FIFO and gather the data from the
partitions in the buffer memory. This information is placed in an output FIFO
(Outp_FIFO) which is read by the SHARC under DMA control with a maximum
bandwidth of 80 MB/sec. Table 2 lists the format of this data.
Each word that is read from the I2O_FIFO contains the bits of the Tetris Register, and the
expected Event-ID. If a bit in the Tetris Register was set then the corresponding partition
in the buffer memory should be read until a TDC trailer is found with an event number

MCrush Programmers Manual
09-02-00 PJ

3

which is equal to the ‘expected Event-ID’ from the I2O_FIFO data word. It is guaranteed
that the output controller will find such a TDC trailer in the buffer memory since the
Tetris Register has got it’s flag set.
There can be two conditions where the output controller is switching off the read out for a
certain partition. The first condition is when a buffer memory partition is full. Since the
partitions are in fact circular buffers, the information in the partition is being overwritten.
This means there is no unambiguous relation anymore between the content of the Tetris
Register and the information in the buffer memory partition. The output controller could
get confused because it is no longer guaranteed that it will find the TDC trailer with the
expected Event-ID which it is looking for.
The second condition where the output controller is switching off the read out is when a
single event is longer than a maximum event size. Read out of the partition is shut down
to prevent this data from that partition of blocking the output bandwidth to the SHARC.

Data Remark
MCRUSH Header Bits 17..0 point out which TDC’s are present in the data

TDC0 Header If TDC0 was present
TDC0 Data If TDC0 was present and had data

:
TDC0 Trailer
TDC1 Header If TDC1 was present

TDC1 Data If TDC1 was present and had data
:

TDC1 Trailer
:
:

MCRUSH Header Next event

Table 2: Output data format

The MCRUSH can be put in “Test Mode”. Some Control and Status registers can feed
data to the S-LINK input. It is also possible for the SHARC to access the buffer Memory
although this is only possible offline since the cycle-shared ports of the buffer memory
are dedicated to the S-LINK input and the output controller of the FPGA during system
operation.
Several interrupt sources signal special conditions or errors.
All the above can be controlled and monitored by means of a set of Control and Status
Registers, which reside in the MS0 address space of the SHARC. Table 3 contains a
listing these registers.

MCrush Programmers Manual
09-02-00 PJ

4

Control and Status Registers in the MS0 address space of the SHARC

Register 00H and 02H

Register 00H contains the 32-bit pattern that must match the Separator data on the S-
LINK. A mask (register 02H) defines the bits that must match. If a mask bit is set to ‘1’
the corresponding bit in the pattern register must match the Separator data on the S-
LINK. If they do, a Separator is signalled.
If a mask bit is reset to ‘0’ the corresponding bit in the pattern register may be different
from the bit in the S-LINK data.
Reading back registers 00H or 02H yields the value written into them.

Address Function Write Read
00H Separator Pattern nnnnnnnnH nnnnnnnnH
01H Separator Control Bit Pattern xxxxxxxpH 0000000pH
02H Separator Mask nnnnnnnnH nnnnnnnnH
03H Separator Control Bit Mask xxxxxxxpH 0000000pH
04H TDC Trailer Pattern nnxxxnnnH nn000nnnH
05H TDC Trailer Control Bit Pattern xxxxxxxpH 0000000pH
06H TDC Trailer Mask nnxxxnnnH nn000nnnH
07H TDC Trailer Control Bit Mask xxxxxxxpH 0000000pH
08H MCRUSH Header Pattern nnxxxxxxH nn000000H
09H Expected Event ID xxxxxnnnH 00000nnnH
0AH TDC Mask Register xxxqnnnnH 000qnnnnH
0BH Partition Readout Enable xxxqnnnnH 000qnnnnH

xxxxxxxxH 00000000H
xxxxxxxxH 00000000H

0EH Maximum Event Size xxxxxnnnH 00000nnnH
0FH Interrupt Control IRQ0 xxxxxxxqH 0000000qH
10H LDERR_n Interrupt IRQ1 xxxxxxxxH 000nnnnnH
11H Early and Late Event-ID; IRQ2 xxxxxxxxH 000nnnnnH
12H Test Control Register xxxxxxxqH 0000000qH
13H Test Link Data Register nnnnnnnnH nnnnnnnnH
14H Test Link Control Register xxxxxxxqH 0000000qH

Remarks:
‘n’ is any hexadecimal number
‘x’ is don’t care
‘p’ is either 00H or 01H
‘q’ is 00H, 01H, 02H or 03H

Table 3: Registers in the MS0 address space

MCrush Programmers Manual
09-02-00 PJ

5

Register 01H and 03H

Register 01H contains only one bit. This bit must match the control bit of the Separator
data on the S-LINK but only if the mask bit (register 03H) is set to ‘1’. Note that the S-
LINK control bit is low-active (LCTRL_n).
Reading back registers 01H or 03H yields either 00000000H or 00000001H depending on
the value written into the bit 0 location. Bits 31 to 1 are always read back as ‘0’.

Registers 04H to 07H

The description of these registers is the same as for registers 00H to 03H, except that
registers 04H to 07H control the recognition of a TDC Trailer condition. There is
however a small difference between registers 00H-03H and 04H-07H. Bits 23 downto 12
in the TDC Trailer are reserved for a 12 bit Event-ID. Therefore these bits are don’t care
when they are written to the TDC Trailer Pattern (04H) and TDC Trailer Mask (06H)
registers. When these registers are read back bits 23 downto 12 will be ‘0’.

Register 08H

Register 08H contains an 8 bits MCRUSH Header Pattern in the bit positions 31 downto
24. When readout is initiated a first word is send to the output stream through the
Outp_FIFO, which contains these 8 bits in the positions 31 downto 24 (see table 2). The
lower 18 bits of this word give information about which TDC’s send data (in sequence).
This is actually the AND of the Tetris Register row which is read out, and the Readout
Enable register (register 0BH).
Rule: If one of the lower 18 bits is ‘1’ then data of the corresponding TDC should be in
the output stream.
Note: The following situation is an exception to this rule! If a partition full condition is
met after the MCRUSH header is send to the output but before the corresponding TDC is
read out and send to the output then no data is found in the output stream since the
corresponding TDC was shut down before it was read out. However, this will lead to a
“Partition Full Interrupt” (see register 0x0FH). This should be very rare!
Note: A Maximum Event Size overflow (see register 0x0EH) will shut down the readout
as well but there should at least be some data of the corresponding TDC in the output
stream!

Register 09H

Register 09H contains 12 bits which represents the event-ID that is to be expected as the
next event-ID to receive from the TDC’s.

MCrush Programmers Manual
09-02-00 PJ

6

Register 0AH

Register 0AH contains an 18 bits TDC-Mask. Writing a ‘1’ to a bit enables the
corresponding TDC. If the bit is written ‘0’ then the corresponding TDC is disabled and
the Tetris Register will not wait for the corresponding TDC trailer to arrive in order to
generate a RowOut condition.

Register 0BH

Register 0BH contains 18 partition readout enable bits. When a bit is ‘1’ then the
corresponding buffer memory partition is enabled for readout, if it is ‘0’ then the partition
is skipped during readout. Bit 0 corresponds with TDC0; Bit 1 with TDC1 and so on.
There are two conditions where readout for a TDC is disabled by the hardware.
The first condition is when the corresponding TDC partition in the buffer memory is full.
This occurs when more than 5 to 6K words are stored in the buffer memory which are
waiting for readout. If this is the case then it is no longer possible to have a consistent
image of the TDC event data in the buffer memory with respect to the content of the
Tetris Register. Therefore readout may not be able to find the TDC Trailers anymore for
which it is looking in the buffer memory. To avoid readout problems the readout is
disabled. This condition should never occur since data should be read from the output
FIFO fast enough.
Note that the Partition Full condition is met when a partition contains 5 to 6K words in
stead of 8K words. This is due to the fact that the FPGA contains a pipeline to the buffer
memory and only the upper 3 bits of the read- and write pointers of the partitions are used
(to save hardware resources in the FPGA) to determine a full condition. The condition is
met when:
WritePointer[12..10] = ReadPointer[12..10] – 2
Note the following example: when the read pointer is 0x0423 a partition full condition is
met when the write pointer increases to 0x1C00, a difference less then 6K words.
The second condition where readout for a TDC is disabled is when during readout of a
single event a maximum event size is exceeded. In such a case it is likely that a TDC is
out of order. Such a condition forces the readout for that particular TDC to be disabled.
This prevents lots of wrong data from blocking the output bandwidth to the SHARC
In either case IRQ0 is asserted (if enabled, see register 0FH Interrupt Control IRQ0)
The SHARC can read the TDC readout enable register (see register 0BH). This gives the
SHARC information about which condition and TDC caused the interrupt. The SHARC
can write to the register as well, but enabling readout should only be done during
initialisation of the MCRUSH. If the readout is enabled during runtime then the
behaviour depends on the values op the read- and write-pointers of the buffer memory
partition. Therefore this could result in an immediate assertion of the partition full
interrupt which shuts down the output again. It could also result in a maximum event
length interrupt since the relation between the buffer memory partition data and the Tetris
register is lost so the hardware may keep searching for a TDC trailer which was
overwritten.

MCrush Programmers Manual
09-02-00 PJ

7

Registers 0EH

The 12-bit value in this register determines the maximum allowable event size for a TDC.
If the number of words in an event which is being read out from a partition in the buffer
memory is more than the value in this register then the event is truncated. Readout for the
partition is stopped by clearing the corresponding partition readout enable bit in register
0BH. A “Readout Maximum” interrupt will be generated, to signal the SHARC that
something went wrong (see Register 0FH).
Register 0EH will power up to a default value of 1024.
Note that the value ‘0’ for this register will give unpredictable results and should be
avoided.
Note also that due to pipelining, one extra word could be transferred to the output FIFO.

Register 0FH

This register controls the interrupt output IRQ0_n to the SHARC.
There are three interrupt sources. If register 0FH is read back then bits 0 to 2 determine
which of the three interrupt sources generated the interrupt.
Bit 0: I2O_FIFO Full Interrupt.
Bit 1: Buffer Memory Partition Full Interrupt.
Bit 2: Readout Maximum Interrupt.
Writing a ‘1’ to one of these bits in register 0FH clears the interrupt.
Bits 3 to 5 are the mask bits for the interrupt bits (bits 0 to 2). An interrupt bit can only be
set when the corresponding mask bit is a ‘1’.

Bit 3: I2O_FIFO Full Interrupt Mask. If ‘1’ then an I2O_FIFO Full condition generates an
interrupt.
Bit 4: Buffer Memory Partition Full Interrupt Mask. If ‘1’ then a Buffer Memory Partition
Full condition generates an interrupt. Note that the Partition Readout Enable Register
(Register 0BH) can give more detailed information about which partition caused the
interrupt.
Bit 5: Readout Maximum Interrupt Mask. If ‘1’ then an interrupt is generated if an Event
is read from a partition but the event contains more data words than is programmed in the
“Maximum Event Size” register 0EH. Note that the Partition Readout Enable Register
(Register 0BH) can give more detailed information about which partition caused the
interrupt.

Register 10H

This register controls the interrupt output IRQ1_n to the SHARC.
IRQ1_n occurs whenever an error is detected on the S-LINK interface.
When reading this register, bit 18 of this register indicates whether the link error occurred
during the transfer of a TDC data word (Bit 18 = ‘0’) or whether the link error occurred
during the transfer of another word (Separator, NoData or other data word etc.).

MCrush Programmers Manual
09-02-00 PJ

8

If bit 18 = ‘0’ then bits 17 downto 0 yields a buffer memory address. On this buffer
memory address, the TDC data word is stored which contains an error indicated by the
LDERR_n bit of the S-LINK.
If bit 19 of this register is a ‘1’ then there was an overrun condition. This means that there
were one or more errors that weren’t read out in time. Note that during an overrun
condition, bits 18 downto 0 of the register represent the status of the first error that
occurred.
Writing any value to this register clears IRQ1_n.

Register 11H

This register controls the interrupt output IRQ2_n to the SHARC.
IRQ2_n occurs whenever a TDC trailer is received with an Event-ID which is out of the
expected Event-ID window. Such an Event-ID can be either ‘Early’ or ‘Late’ (see table
1).
Bits 11 downto 0 represent the Event-ID which caused the interrupt.
Bits 16 downto 12 represent the TDC slot number which caused the interrupt.
If Bit 17 is ‘1’ then the Event-ID is ‘Early’. For example, this will be the case when the
expected Event-Id is 51 and the received Event-ID for a TDC is 102, which is ‘in the
future’ with respect to the expected Event-ID.
If Bit 18 is ‘1’ then the Event-ID is ‘Late’. For example, this will be the case when the
expected Event-Id is 51 and the received Event-ID for a TDC is 50, which is ‘in the past’
with respect to the expected Event-ID.
If bit 19 of this register is a ‘1’ then there was an overrun condition. This means that there
were one or more errors that weren’t read out in time. Note that during an overrun
condition, bits 18 downto 0 of the register represent the status of the first error that
occurred.
Writing any value to this register clears IRQ2_n.
Take care in enabling IRQ2 on the SHARC. When the MCRUSH is being synchronised
with respect to the Event-ID’s, the expected Event-ID register (register 09H) is
programmed with an Event-ID, which will be valid in the near future. ‘Late’ interrupts
will be generated until the Event-ID’s form the TDC trailers are within the expected
Event-ID window. Therefore it is advisable to enable IRQ2, only when the MCRUSH is
in synchronisation and Event-ID’s should fall within the expected Event-ID window.

Registers 12H to 14H

These registers are used in ‘Test Mode’.
In test mode, the S-LINK input is disabled, and is taken over by the SHARC. The
SHARC can now write data as if it came from the S-LINK.
The Test Control Register (12H) controls access to the buffer memory as well. The buffer
memory has two cycle-share ports.
The first port is always dedicated to the S-LINK input.
The second port is connected to the FPGA by default in such a way that the FPGA can
read data from the buffer memory. For test purposes the SHARC may read or write the

MCrush Programmers Manual
09-02-00 PJ

9

buffer memory as well. When bit 2 of the Test Control Register is set then the second port
is switched from ‘FPGA Read mode’ to SHARC ‘Read/Write mode’.

Register 12H is the test control register. This register contains the following bits:
Bit 0: If in test mode, taking this bit from 0 to 1 writes test data from register 13H and

14H to the MCRUSH S-LINK input.
Bit 1: ‘0’ Normal operation (S-LINK)

‘1’ test mode operation.
Bit 2: ‘0’ Normal operation. FPGA read mode; default on power up.

‘1’ test mode operation. SHARC has got Read/Write access to buffer memory.

Register 13H are the 32 data bits which would normally come from the S-LINK LD0-
LD31 bus.

Register 14H contains the following bits:
Bit 0: Status of the LCTRL_n bit which would normally come from the S-LINK.
Bit 1: Status of the LDERR_n bit which would normally come from the S-LINK.

After power-up, the MCRUSH operates normal (that is, no test mode and the FPGA has
got read access to the buffer memory).
To run a test, write the following data in the corresponding registers:
12H: 00000002H (Enter the test mode)
13H: S-LINK Data word 1
14H: S-LINK Corresponding status LCTRL and LDERR
12H: 00000003H (Write Data Word 1 by taking bit 0 from 0 to 1)
12H: 00000002H
13H: S-LINK Data word 2
14H: S-LINK Corresponding status LCTRL and LDERR
12H: 00000003H (Write Data Word 2 by taking bit 0 from 0 to 1)
12H: 00000002H
:
13H: S-LINK Data word N
14H: S-LINK Corresponding status LCTRL and LDERR
12H: 00000003H (Write Data Word N by taking bit 0 from 0 to 1)
12H: 00000000H (Go to normal operation, exit test mode)

MCrush Programmers Manual
09-02-00 PJ

10

SHARC Memory regions:

Memory
Region

Function EBxWS EBxWM Remarks

MS0 MCRUSH internal
registers

100 01 1, 4

MS1 Read Output FIFO 000 00 1, 2
MS2 Buffer memory access

when in SHARC
Read/Write Mode

011 01 1, 3

MS3 Not Used N.A. N.A.

Table 4: SHARC Memory regions

Remarks:
1: EBxWS and EBxWM are sub-patterns of the Wait register described in chapter

5.4.4.1 of the SHARC user's manual.
2: EBxWS = 000 means 0 Wait, 0 Hold Cycles

EBxWM = 01 Internal Wait states only
3: EBxWS = 011 means 3 Wait, 0 Hold Cycles

EBxWM = 01 Internal Wait states only
4: EBxWS = 100 means 4 Wait, 1 Hold Cycle

EBxWM = 01 Internal Wait states only

SHARC Flags:

Table 5 gives an overview of the SHARC flags.
Flag 0 and Flag 1 will be discussed in the section ‘Reset Facilities’ below.
Flag 2 is connected to the Freeze_n signal. When asserted, this signal stops the data
flowing from the S-LINK FIFO into the FPGA. This eventually will cause an UXOFF#
condition on the S-LINK when the S-LINK FIFO fills up to ‘half full’. The output
controller is not affected by the freeze_n signal. If Flag 2 is ‘0’ then the Red LED is on.
Flag 3 must be configured as an input and is connected to the Empty output of the Output
FIFO.

Flag Number Direction Description
0 Output S-LINK Reset
1 Output FPGA Reset
2 Output Freeze/ Red LED
3 Input Empty status of Output

FIFO

Table 5: SHARC Flags

MCrush Programmers Manual
09-02-00 PJ

11

SHARC Interrupt Lines

IRQ0 is asserted when the I2O_FIFO is full, a buffer memory partition is full or an event
was read out which was longer than a pre-programmed maximum (see register 0FH).
IRQ1 is asserted when an S-LINK error (LDERR_n) occurs (see register 10H).
IRQ2 is asserted whenever a TDC trailer is received with an Event-ID which is out of the
expected Event-ID window (‘Early’ or ‘Late’, see register 11H and table 1).

Reset Facilities

There are three reset signals: “GlobalRst_n”, a “Rst_n” and “LRst_n”.
The GlobalRst_n signal becomes active during a power-up of the MCRUSH, during a
“Manual Reset” (reset button), or an “External Reset” (2-pin header). The GlobalRst_n
signal resets the SHARC and the FPGA (including the Pipeline, Address Generators,
Tetris Register, I2O_FIFO, Output FIFO etc.). Note that the S-LINK and the S-LINK
FIFO are not reset.
The “LRst_n” signal resets the S-LINK and the S-LINK FIFO. The S-LINK will force
LDOWN# low until the initialisation phase of the S-LINK is complete. LDOWN# will
then go high again. The S-LINK is now up and running again. “LRst_n” can be controlled
by the SHARC using flag0.
The “Rst_n” signal is used to reset the whole FPGA (including the Pipeline, Address
Generators, Tetris Register, I2O_FIFO, Output FIFO etc.). “Rst_n” is active during a
GlobalRst_n, and can be controlled by the SHARC using flag1.
The following sequence should give a proper initialisation. First there will be a global
reset. After that, the SHARC is booted through one of its links. In the mean time garbage
data had a chance to enter the S-LINK FIFO and the FPGA. Therefore the SHARC
activates flags 1 (Rst_n) and flag 0 (LRst_n). This resets the S-LINK, the S-LINK FIFO
and the FPGA.

	MCRUSH Programmers Manual
	The MCRUSH is designed to receive data from 18 TDC’s. The input data for the MCRUSH will be organised as can be seen in figure 1. Such data will be produced by the CSM and send over an S-LINK to the MCRUSH.
	Figure 1: Input data format for the MCRUSH
	The MCRUSH is programmed to recognise a Separator word and a TDC Trailer word. To do so, the FPGA on the MCRUSH contains two comparators. For both, Separator and TDC Trailer, a 33-bit pattern and a 33-bit mask can be programmed. The 33 bits are organised
	Early
	Late
	Table 2: Output data format
	Register 00H contains the 32-bit pattern that must match the Separator data on the S-LINK. A mask (register 02H) defines the bits that must match. If a mask bit is set to ‘1’ the corresponding bit in the pattern register must match the Separator data on

	TDC Trailer Pattern
	TDC Trailer Control Bit Pattern
	TDC Trailer Mask
	TDC Trailer Control Bit Mask
	MCRUSH Header Pattern
	Expected Event ID
	TDC Mask Register
	Partition Readout Enable
	xxxxxxxxH
	xxxxxxxxH
	Maximum Event Size
	0FH
	LDERR_n Interrupt IRQ1
	11H
	Test Control Register
	Test Link Data Register
	Test Link Control Register
	Register 0AH contains an 18 bits TDC-Mask. Writing a ‘1’ to a bit enables the corresponding TDC. If the bit is written ‘0’ then the corresponding TDC is disabled and the Tetris Register will not wait for the corresponding TDC trailer to arrive in order t
	Register 0BH contains 18 partition readout enable bits. When a bit is ‘1’ then the corresponding buffer memory partition is enabled for readout, if it is ‘0’ then the partition is skipped during readout. Bit 0 corresponds with TDC0; Bit 1 with TDC1 and s
	WritePointer[12..10] = ReadPointer[12..10] – 2
	In either case IRQ0 is asserted (if enabled, see register 0FH Interrupt Control IRQ0)
	Registers 0EH
	Register 0FH
	Register 10H
	Register 11H
	Registers 12H to 14H

	The Test Control Register (12H) controls access to the buffer memory as well. The buffer memory has two cycle-share ports.
	The first port is always dedicated to the S-LINK input.
	The second port is connected to the FPGA by default in such a way that the FPGA can read data from the buffer memory. For test purposes the SHARC may read or write the buffer memory as well. When bit 2 of the Test Control Register is set then the second

	Direction
	Table 5: SHARC Flags

