
ZEUS CALDAQ

Transputer System

Technical Notes

Version 2.8

Henk Boterenbrood & Andres Kruse

v2.8: Apr 22, 1998
v2.7: Nov 28, 1997
v2.6: Jul 04, 1997
v2.5: Jan 15, 1997
v2.4: Jun 19, 1996
v2.3: Mar 13, 1996
v2.2: Oct 11, 1995
v2.1: Aug 15, 1995

1

Contents

1 Introduction 3

2 Transputer Identifiers 3

3 Digital Cards 4
3.1 Distribution . 4
3.2 Calibration Constants . 6

4 Hardware Configuration File 8

5 Data-acquisition Configuration Files 9

6 Bank Bit Pattern 13

7 Banks 15
7.1 Generation . 15
7.2 Tools for Checking . 16

8 Calibration Constants Files 18

9 CAL-SLT Constants Files 18

10 Polynomial Constants Files 18

11 DSP-code Files 18

12 DSP-code Configuration Files 19

13 Front-End Electronics Configuration Files 19

14 LED DAC-Settings Files 21

15 SRTD-FLT Configuration Files 21

16 PM-number Files (Cable Files) 22

17 RPN-logic Files 23

18 BOR Files 24

19 Online Log File 24

20 Standalone Test Runs 31

21 CSB connections 31

22 LAYER2/3 transputers 35

23 OCCAM Preprocessor 36

A CALDAQ Transputer Network Map 37

B Adding a Digital Card Based Component to the CAL Readout 39

2

1 Introduction

This document provides all kinds of practical information concerning the CAL-
DAQ transputer system: configuration files, error messages, code files, network
layout, some utilities1. All stuff described here can be found on the hosts aritra
and caldev.

It does not claim to be complete ! More information to be found in
the documents in the reference list.

2 Transputer Identifiers

Most transputers in the CALDAQ transputer network are identified by a unique
hexadecimal number; often messages in the logfile are accompanied by this
number. Table 1 lists them. ’Crate-number’ is a number between 1 and 16.

Transputer name Identifier Remarks

FCAL TRIGGER (LAYER1) #1010 + i i = crate-number-1

BCAL TRIGGER (LAYER1) #1020 + i i = crate-number-1

RCAL TRIGGER (LAYER1) #1040 + i i = crate-number-1

FCAL LAYER2 #1210 + i i = 0,1,2,3,4

BCAL LAYER2 #1220 + i i = 0,1,2,3,4

RCAL LAYER2 #1240 + i i = 0,1

LAYER3 #1400

LAYER3/LAYER23-MONITOR #1401

FCAL READOUT #2010 + i i = crate-number-1

BCAL READOUT #2020 + i i = crate-number-1

RCAL READOUT #2040 + i i = crate-number-1

FCAL ROCOLLECT #4010

BCAL ROCOLLECT #4020

RCAL ROCOLLECT #4040

FCAL MONITOR #8013

BCAL MONITOR #8024

BCAL DATACOLLLECT #8025

DATACOLLLECT #8026

TESTGSLT #8027

REBOOTER #8040

RCAL MONITOR #8041

MONITOR HOST #8042

Table 1: CALDAQ transputers and their identifiers (hexadecimal).

1A separate document [1] describes the available CALDAQ transputer network debugging
and test utilities.

3

3 Digital Cards

3.1 Distribution

Tables 2, 3 and 4 give an overview of the current number of Digital Cards in
the CALDAQ-system, as well as their distribution over the different compo-
nents/subdetectors that are read out by the CALDAQ-system.

FCAL Digital Cards

Crate Total CAL FPC

1 17 17 -

2 16 16 -

3 16 16 -

4 15 15 -

5 4 - 4

6 16 16 -

7 - - -

8 16 16 -

9 16 16 -

10 - - -

11 16 16 -

12 - - -

13 15 15 -

14 16 16 -

15 16 16 -

16 17 17 -

Table 2: FCAL Digital Card distribution.

The Digital Cards in FCAL crates 6, 8, 9 and 11 (with CAL regions around
the beampipe) were supposed to be read out in two parts (per crate), the second
part being called FCAL ’crates’ 5, 7, 10 and 12. In reality this meant two 2TP-
modules per ’real’ VME-crate. So far this has not been implemented, because of
the implementation difficulties of having two readout transputers in one VME-
crate, thus as well breaking the (software-)symmetry in the system.

Options:

• implement as initially planned (requires four 2TP-modules), for improved
system performance,

• add 4 VME-crates and redistribute Digital Cards (requires four VME-
crates and four 2TP-modules), for improved system performance,

• up to 4 extra VME-crates can be added containing hardware for new com-
ponents/subdetectors, if the readout system requires extensions (BTW:
there is room for extensions in the RCAL part as well).

NB: In November 1997 an FCAL crate 5 has been added to the CALDAQ-
system, containing Digital Cards of the Forward Plug Calorimeter (FPC).

4

BCAL Digital Cards

Crate Total CAL Others

1 16 16 -

2 12 12 -

3 16 16 -

4 12 12 -

5 16 16 -

6 12 12 -

7 16 16 -

8 12 12 -

9 16 16 -

10 12 12 -

11 16 16 -

12 12 12 -

13 16 16 -

14 12 12 -

15 16 16 -

16 12 12 -

Table 3: BCAL Digital Card distribution.

RCAL Digital Cards

Crt Total CAL LED LAS SRTD FNC PRES PRT BPC BPRES

1 15 15 (1-15) - - - - - - - -

2 16 16 (1-16) - - - - - - - -

3 14 11 (1-11) - - 3 (12-14) - - - - -

4 14 11 (1-11) - - 3 (12-14) - - - - -

5 14 11 (1-11) - - 3 (12-14) - - - - -

6 14 11 (1-11) - - 3 (12-14) - - - - -

7 16 16 (1-16) - - - - - - - -

8 16 16 (1-16) - - - - - - - -

9 8 - 4 (1-4) 1 (5) - - - - 3 (6-8) 2 (9-10)

102 - - - - - - - - - -

11 14 - - - - - 14 (1-14) - - -

12 3 - - - - 2 (1-2) - 1 (3) - -

133 0 - - - - - - - - -

143 0 - - - - - - - - -

153 0 - - - - - - - - -

163 0 - - - - - - - - -

Table 4: RCAL Digital Card distribution over components (between brackets
the locations in the crate, with crate slots numbered from left to right).

2SRTD-FLT crate
3crate slot available for system extensions

5

3.2 Calibration Constants

Next follows the (OCCAM-style) structure of the 2 calibration constants blocks
which are being produced for every Digital Card (from include file calibc-
nst def.inc):

[4096]INT block1, block2 :

VAL INT Blk1.Control.Word RETYPES block1[0] :

VAL []INT Pedestals.Block RETYPES [block1 FROM 1 FOR (136*24)] :

VAL [][136]INT Pedestals RETYPES Pedestals.Block :

VAL []INT ADC.Ground RETYPES [block1 FROM 3265 FOR 4] :

VAL INT pC.to.GeV RETYPES block1[3269] :

VAL []INT DU.Offset RETYPES [block1 FROM 3293 FOR 24] :

VAL []INT Channel.Ctrl.Word RETYPES [block1 FROM 3317 FOR 24] :

VAL [][2]INT H.to.Q.High RETYPES [block1 FROM 3341 FOR (2*24)] :

VAL [][2]INT H.to.Q.Low RETYPES [block1 FROM 3389 FOR (2*24)] :

VAL INT HCUT RETYPES block1[3437] :

VAL INT SLECUTL RETYPES block1[3438] :

VAL INT SLECUTH RETYPES block1[3439] :

VAL []INT Channel.Ctrl.Word.48 RETYPES [block1 FROM 3440 FOR 48] :

VAL INT Blk1.Format RETYPES block1[4089] :

VAL INT XOR.1 RETYPES block1[4090] :

VAL INT Blk2.Control.Word RETYPES block2[0] :

VAL []INT Gains.Block RETYPES [block2 FROM 1 FOR (136*24)] :

VAL [][136]INT Gains RETYPES Gains.Block :

VAL []INT ADC.Count RETYPES [block2 FROM 3265 FOR 4] :

VAL []INT TOffs.High RETYPES [block2 FROM 3269 FOR 24] :

VAL []INT TOffs.Low RETYPES [block2 FROM 3293 FOR 24] :

VAL INT RDU.Factor RETYPES block2[3317] :

VAL INT DAC.Value RETYPES block2[3318] :

VAL []INT Testarray.Block RETYPES [block2 FROM 3319 FOR (4*24)] :

VAL [][4]INT Testarray RETYPES Testarray.Block :

VAL []INT T.Poly.Data RETYPES [block2 FROM 3415 FOR 3] :

VAL []INT T.Poly.QINJ RETYPES [block2 FROM 3418 FOR 3] :

VAL []INT H.Poly.Data RETYPES [block2 FROM 3421 FOR 4] :

VAL []INT H.Poly.QINJ RETYPES [block2 FROM 3425 FOR 4] :

VAL INT Blk2.Format RETYPES block2[4089] :

VAL INT XOR.2 RETYPES block2[4090] :

A more detailed listing of the constants for Calorimeter Digital Cards can
be found in tables in [2]. Tables 5 and 6 show a more detailed subdivision of the
constant blocks for the PRESAMPLER Digital Cards that handle 48 channels
(Calorimeter Digital Cards handle the high and low gain of 24 channels).

6

Constant Block 1

Word # Data Remarks

0 Block control word = 1
1 Pped ref val for chan 1 scaled by 211

2-59 58 relative Ppeds for chan 1
60 Bped ref val for chan 1
61-68 8 relative Bpeds for chan 1

69 Pped ref val for chan 2
70-127 58 relative Ppeds for chan 2
128 Bped ref val for chan 2
129-136 8 Bpeds ref val for chan 2
.... repeat above block 24 times scaled by 211

(3264 words total)
3265-3268 4 Ground values (1 per ADC) scaled by 211

3269 pc ⇒ Mips conversion factor unused temporarily
3270-3316 - blank temporarily
3317-3340 - not used
3341-3436 96 H to Q constants 48 (a,b) a scaled by 200, b by 100 ∗ 217

3437 HCUT scaled by 128 = 27

3438-3439 -
3440-3487 48 Channel control words
3488-4088 -
4089 Block format identifier
4090 XOR-word XOR of the constants block

Table 5: Calibration constants block 1 of 48-chan Digital Cards.

Constant Block 2

Word # Data Remarks

0 Block control word = 2
1 Pgain ref for chan 1 (scaled by 221, but during the const loading,

we have the ref*chan gain shifted 2 bits left
in DSP, which means the final gain of Pgain
for each channel on RAM is still 221 scaled,
like Bgain)

2-59 58 relative Pgains for chan 1 scaled by 221

60 Bgain ref for chan 1 not used
61-68 8 relative Bgains for chan 1 scaled by 221

.... repeat for 48 channels
(3264 words total)

3265-3268 4 ADC count (1 per ADC) store as (1/adcperV) ∗ 223

3269-3316 48 Toffs for 48 chans ∗2 + 128
3317 -
3318 DAC value
3319-3414 -
3415-3417 Time poly const (c1,c2,c3) for data trigger cn/512 ∗ 223

3418-3420 Time poly const (c1,c2,c3) for Qinj trigger cn/512 ∗ 223

3421-3424 H poly constants (d1-d4) for data trigger dn/32 ∗ 223

3425-3428 H poly constants (d1-d4) for Qinj trigger dn/32 ∗ 223

3429-3620 192 test arrays for 48 channels E in factor of 128
(baseline max/min, time max/min) T in ∗2 + 128

3620-4088 -
4089 Block format identifier
4090 XOR-word XOR of the constants block

Table 6: Calibration constants block 2 of 48-chan Digital Cards.

7

4 Hardware Configuration File

The hardware configuration file describes per crate the hardware present (Digital
Cards and the components they belong to, SLT-transputers, other hardware)
and parameters if applicable.

The hardware configuration file is an ASCII-file and is read via a symbolic
link from:

/zeus/transputer/online/vxx.y/bin/host/hwconfig/hwconfig.dat
The actual hwconfig.dat file can be found in directory c̃alec rc/defaults/hwconf.
The syntax is as described below:

! crate.id 1st crate

! total number of parameters

! parameters

! crate.id 2nd crate

! total number of parameters

! parameters

! ...

!

! Each block of parameters:

! key number of 1st hardware option

! number of parameters for this option

! parameters

! key number of 2nd hardware option

! number of parameters for this option

! parameters

! ...

!

! Key numbers are:

!

! 1 : Digital Card setup

! format:

! #words for this option

! no.of.digital cards

! component.id component.id ... component.id

!

! 2 : CAL-SLT layer1 there ?

! format:

! #words for this option

! 0 ! no

! OR

! 1 ! yes

!

! 3 : CAL-SLT layer2 there ?

! format:

! #words for this option

! 0 ! no

! OR

! 1 ! yes

!

! 4 : CAMAC readout setup

! format:

! #words for this option = number of parameters (0 = not present)

!

! 5 : SRTD-FLT readout setup

! format:

! #words for this option = number of parameters (0 = not present)

! SRTD-FLT initialized by transputer: 0=no, 1=yes

! SRTD-FLT TriggerCard mask

! Read out scalers on ENVIRONMENTAL trigger: 0=no, 1=yes

Crate.id is a hexadecimal number (see chapter ’Transputer Identifiers’)
defined as:

crate.id = #2000 + CAL + (crate-number - 1)
with CAL=#10 (FCAL) or CAL=#20 (BCAL) or CAL=#40 (RCAL).

8

Component.id is equal to the bit-number of the appropriate component in
the bank-bitpattern.

5 Data-acquisition Configuration Files

The DAQ configuration files (*.dat setup files) are ASCII-files and can be found
in directory c̃alec rc/defaults. A configuration file is read by the local CAL-
DAQ RunControl at every run-startup and the data therein is sent to the CAL-
DAQ transputer network as part of the SETUP command.

Here’s an example setup file (NB: in this listing line numbers are added at the
start of each line, for clarity):

1: 6 /* experiment number */

2: 6 /* run number */

3: 0000F5AF /* FCAL boot map */

4: 00000DFF /* RCAL boot map */

5: 0000FFFF /* BCAL boot map */

6: 0000F5AF /* FCAL readout map */

7: 00000DFF /* RCAL readout map */

8: 0000FFFF /* BCAL readout map */

9: 600007FE /* FCAL banks: CAL=2,SR=4,PR=8,LED/LAS=0x10/0x20,FNC=0x40, */

10: 600007FE /* RCAL banks PRT=0x80,BPC=0x100,CAMAC=0x200,SRFLT=0x400, */

11: 600007FE /* BCAL banks SLT1=0x800,SLT2=0x1000 (see file ’bank_bits’) */

12: 17 16 16 15 0 16 0 16 16 0 16 0 15 16 16 17 /* FCAL cards/crate */

13: 15 16 14 14 14 14 16 16 8 0 14 3 0 0 0 0 /* RCAL cards/crate */

14: 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 /* BCAL cards/crate */

15: 50 /* triggers/configuration */

16: 300 /* requested trigger rate */

17: 19 /* run type (see file ’run_types’) */

18: 0 /* not used */

19: charge1.acf /* CNF file */

20: leopard.dac /* LED CNF file */

21: 8 /* environment bits (see file ’environment_bits’) */

22: 100 /* percentage of events to CALEC */

23: 4 /* data-compression option (see file ’compression_modes’) */

24: 1 /* DSP code config, 0=m&s,1=time&energy,2=player,3=test */

25: Qinj run, all components

26: 1129 /* calib constants (-1=none, 0=dummy, other=version) */

27: 0 /* CAL-SLT/polynomial constants version */

28: 2 /* to CALEC:bit0=testtriggers,bit1=fraction,bit2=all you can */

29: 00000000 /* FCAL crates force samples bitpattern */

30: 00000000 /* RCAL crates force samples bitpattern */

31: 00000000 /* BCAL crates force samples bitpattern */

Line 1 and 2 containing the experiment and run numbers are not significant;
the CALDAQ readout system derives the run number from the BOR filename
it gets from RunControl.

Line 3, 4 and 5 contain the boot mask for FCAL, RCAL and BCAL respec-
tively; bits 0 to 15 of each mask stand for crate 1 to 16; if a crate is switched
on (but not necessarily takes part in the readout) the corresponding bit has to
be set to 1.

Line 6, 7 and 8 contain the readout mask for FCAL, RCAL and BCAL
respectively; bits 0 to 15 of each mask stand for crate 1 to 16; if a crate is
taking part in the readout the corresponding bit has to be set to 1.

Lines 9, 10 and 11 contain the socalled ’bankbit-pattern’ for FCAL, RCAL
and BCAL respectively, described in chapter 6 (’Bank Bit Pattern’).

The lines 12, 13 and 14 containing the number of Digital Cards per crate are
only in this file to make these numbers appear in the BOR-banks; the CALDAQ
readout system extracts the number of Digital Cards from the hwconfig.dat

9

hardware configuration file, described in chapter 4 (’Hardware Configuration
File’).

Line 15 and 16 contain the number of triggers per ’configuration’ (of the
frontend electronics) and the requested trigger rate respectively; these numbers
are only taken into account by the CALDAQ system for standalone runs; the
number of configurations is determined from the electronics configuration file
(see line 19).

Line 17 contains the run type, coded in a decimal number; see table 7 for a
list of possible run types.

Line 19 contains the front-end electronics configuration file name; these files
are described in chapter 13 (’Front-End Electronics Configuration Files’).

Line 20 contains the LED DAC-settings file name; these files are described
in chapter 14 (’LED DAC-Settings Files’).

Line 21 contains a decimal number, the binary representation of which de-
scribes an environment: component ’parts’ and/or global components which are
participating in the readout of the CALDAQ system in this run:

Dec.value Bitmask Component participating
1 0x01 GFLT
2 0x02 GSLT
4 0x04 (Local) EventBuilder
8 0x08 CAL equipment computer (aritra)
16 0x10 CAL Second Level Trigger transputer network
32 0x20 BPC Second Level Trigger transputer
128 0x80 Test-GSLT transputers (replacing GSLT)

Line 22 contains the percentage of events sent to and stored on the CAL
equipment computer, that is: if the ’spy’-option on line 28 is set to getting a
’fraction’.

10

Name Id

DAQ Runs

PHYSICS.MODE 1

DUMMY.MODE 2

DUTY.CYCLE.MONITORING 13

LASER 14

DUNO 15

LED.AC 16

LED.DC 17

EMPTY 18

QINJ 19

LED.QINJ 20

-4 21

-4 22

Calibration Runs

DUNO.MONITORING 30

PEDESTALS 31

GAINS 32

DC.LINEARITY 33

Q.LINEARITY 34

LASER.PULSE.SHAPE 35

Q.PULSE.SHAPE 36

DUTY.CYCLE 37

ADC.TO.VOLTS 38

WRITE.CONSTANTS 39

Checkout Runs

Q.CHECKOUT 40

PEDESTALS.CHECKOUT 41

DUNO.CHECKOUT 42

Calibration Runs5

PEDESTALS.CONSTANTS 50

GAINS.CONSTANTS 51

DUNO.MONITORING.CONSTANTS 52

Q.LINEARITY.CONSTANTS 53

ADC.TO.VOLTS.CONSTANTS 54

Table 7: CALDAQ run types.

4do not use; for RunControl internal use
5transputers calculate the calibration constants

11

Line 23 contains the coded zerosuppress/compression option to be used:

Option Description
0 No compression.
1 Zero-suppression to the CxTENE-bank;

all channels that have a spark behaviour are saved;
with
spark.energy.cut = 500 MeV
spark.imbalance.cut = 0.9(REAL32)

2 Zero-suppression to the CxTENE-bank;
with energy.cut = 50 MeV

3 Compression of CxTENE-bank entries that comply to:
((0 <= left PM-energy < 32) OR (-128 <= left PM-energy < 0))
and
((0 <= right PM-energy < 32) OR (-128 <= right PM-energy < 0))
into CxPECO-bank entries, keeping the CxTENE-bank entries.

4 Same as 3, but now deleting CxTENE-bank entries that moved
to the CxPECO-bank.

5 Same as 4, but now the CxPECO-bank is deleted.
6 - Compression of xxTENE-bank entries that comply to:

((0 <= left PM-energy < E THR) OR (-128 <= left PM-energy < 0))
and
((0 <= right PM-energy < E THR) OR (-128 <= right PM-energy < 0))
into xxCOEN-bank entries, while keeping the xxTENE-bank entries,
with
E THR = 16 for PRESAMPLER and
E THR = 32 for CAL, BPC, FNC, PRT, SRTD, Table Diodes (LASER).
- The BOR-event contains the xxPMNO-bank.
- The xxDCCN is compressed: redundant entries (on a crate-by-crate
basis) are marked by bit 15 of the first word (the ID) set.

7 Same as 6, but xxTENE-bank entries that moved to the xxCOEN-bank are
deleted, as well as redundant xxDCCN entries.

8 Same as 7, but now the xxCOEN-bank is deleted and the BOR-event
does not contain the xxPMNO-bank.

Line 24 contains the number of the DSP-code configuration file to use; see
chapter 11 (’DSP-code Files’) and 12 (’DSP-code Configuration Files’).

Line 25 contains a string describing the type of run etc. (appears e.g. on
the user screen of the Local CALDAQ RunControl).

Line 26 contains the calibration constants version to be downloaded; if the
number is -1 no constants will be downloaded, if the number is 0 socalled
’dummy’ constants will be downloaded; see chapter 8 (’Calibration Constants
Files’).

Line 27 contains the CAL Second Level Trigger constants version to be down-
loaded to the CAL-SLT transputers in case of physics runs or the polynomial
constants version to be downloaded to the readout transputers in case of cali-
bration runs; see chapter 9 (’CAL-SLT Constants Files’) and 10 (’Polynomial
Constants Files’).

Line 28 contains a decimal number, the binary representation of which de-
scribes which ’spy’-option is to be used, meaning which events and the number
of events taken (’spied’) from the Local EVB buffer and sent to the CAL equip-
ment computer to be stored locally on disk:

12

• bit 0 set means: take all testtriggers;

• bit 1 set means: take a fraction, the percentage of which is set in line 22;

• bit 2 set means: take as many events as possible without disturbing the
central data-acquisition.

’Take-fraction’ (bit 1) overrules ’take-as-many-as-possible’ (bit 2). To store
all events locally, ’take-fraction’ should be set to 1 and the percentage (in line 22)
to 100.

Lines 29, 30 and 31 contain a mask for FCAL, RCAL and BCAL respectively,
defining in which crates the samples of the Digital Cards will be forced to be
generated; bits 0 to 15 of each mask stand for crate 1 to 16; if in a crate the
samples should be produced the corresponding bit has to be set to 1.

The files referred to in the comment of some of the lines of the DAQ con-
figuration file can be found in directory c̃alec rc/defaults/info caldaq and
contain information which also can be found in this document:

• bank bits: contains the definition of the bits of the ’bank-bitpattern’; see
chapter 6 (’Bank Bit Pattern’).

• run types: contains a list of the decimal codes for the different run types;
see table 7.

• compression modes: contains a description of the data-compression op-
tions listed above.

6 Bank Bit Pattern

The ’bank-bitpattern’ is a 32-bit bit mask used to enable/disable the readout of
the different components individually and to enable/disable certain features, e.g.
BOR/EOR bank generation, means & sigmas calculations. Table 8 shows the
definition of the different bits in the ’bank-bitpattern’ word (see file bankbit-
pattern.inc).

The bank-bitpattern can be set per Calorimeter in the CALDAQ-system
configuration file (see chapter 5 (’Data-acquisition Configuration Files’)).

13

Bit Bit-mask Bit-name Description

0 0x00000001 COMPONENT.NONE don’t use

1 0x00000002 COMPONENT.CAL CAL in run

2 0x00000004 COMPONENT.SRTD SRTD in run

3 0x00000008 COMPONENT.PRES PRESAMPLER in run

4 0x00000010 COMPONENT.LEDMONITOR LED in run

5 0x00000020 COMPONENT.LASERMONITOR LASER in run

6 0x00000040 COMPONENT.FNC FNC in run

7 0x00000080 COMPONENT.PRT PRT in run

8 0x00000100 COMPONENT.BPC BPC in run

9 0x00000200 COMPONENT.CAMAC CAMAC crate in run

10 0x00000400 COMPONENT.SRTDFLT SRTD-FLT in run

11 0x00000800 COMPONENT.CALSLTL1 CAL-SLT layer1 in run

12 0x00001000 COMPONENT.CALSLTL2 CAL-SLT layer2 in run

13 0x00002000 COMPONENT.TEST TEST-component in run6

14 0x00004000 COMPONENT.BPRES Barrel-PRES in run

15 0x00008000 COMPONENT.FPC FPC in run

16 0x00010000 - -

17 0x00020000 - -

18 0x00040000 - -

19 0x00080000 - -

20 0x00100000 DISABLE.SAMPLE.BANKBIT no sample banks

21 0x00200000 - -

22 0x00400000 - -

23 0x00800000 - -

24 0x01000000 - -

25 0x02000000 - -

26 0x04000000 - -

27 0x08000000 NOT.CALIB.BANKBIT no intermediate banks
in calibration sequence

28 0x10000000 ZEUS.BOREOR.BANKBIT BOR/EOR in ZEUS runs

29 0x20000000 BOREOR.BANKBIT BOR/EOR

30 0x40000000 EVDATA.BANKBIT event data

31 0x80000000 MSIG.BANKBIT means & sigmas

Table 8: Meaning of the bits in the bank-bitpattern (’-’ means ’not used (yet)’).

6For any Digital Card assigned to the TEST component a bank containing the full DC
output page will be produced; meant for Digital Card DSP code test/development.

14

7 Banks

7.1 Generation

In this chapter will be described how the selection of banks to be generated on
the READOUT transputers takes place.

Per (sub)component and per triggertype there is a list of banks (see file
banksets.inc) to be produced; at every startup a hardware configuration file
(hwconfig.dat, see chapter 4 (’Hardware Configuration File’)) is read that con-
tains amongst other things per crate a list of Digital Cards and the component
each Digital Card belongs to; from this information and the banklists the READ-
OUT transputer compiles a banklist per triggertype containing all banks to be
produced from all components present in that crate for that particular trigger-
type.

There are some limitations to the Digital Card distribution related to the gen-
eration of banks:

• Digital Cards in one crate belonging to one subdetector should be located
next to one another.

• Digital Cards of one subdetector can only be put in more than one of
the FCAL, BCAL or RCAL parts of the CALDAQ system when different
bank names are defined for each of the CALDAQ system parts in which
the subdetector is present.

At every startup a socalled ’bank-bitpattern’ is sent along with the hardware
configuration (can be set separately for FCAL, BCAL and RCAL; see chapter 5
(’Data-acquisition Configuration File’)).

Using the ’bank-bitpattern’ the generation of banks can be steered; all
banks of a certain component may be ’switched off’ (i.e. its banks are not
produced) or certain bank ’types’ or ’classes’ (e.g. BeginOfRun banks) may be
enabled/disabled; see chapter 6 (’Bank Bit Pattern’).

For every bank in the compiled banklists the required bank-bitpattern is
compared to the received value and generation of the bank is disabled if the
required bank-bitpattern is not a subset of the received value (this applies only
to the bits in the bank-bitpattern that steer the generation of bank classes).

The most important constants governing the generation of banks:

• COMPONENT.BANKSET.LIST: a two-dimensional list of banklist
identifiers (indices into array BANKSET.BANKLIST) ordered by com-
ponent and by triggertype (in file banksets.inc).

• BANKSET.BANKLIST: a list of banklists ordered by banklist identi-
fier (in file banksets.inc).

• BANK.CONTROL: the required bank-bitpattern for every possible bank
can be found (in file bankcontrol.inc).

Adding a new bank(set) or component involves additions/changes to several
files in the include, readout, libs and test subdirectories in /zeus/transputer/online/vxx.y/src/
(CALDAQ transputer code version xx.y).

Appendix B shows a complete list with short descriptions of all additions
and modifications needed to incorporate a new Digital Card based subdetector
in the CALDAQ readout system.

15

The most important include files are:

• bankbitpattern.inc: contains the definitions of the bits in the bank-
bitpattern

• bankcontrol.inc: contains a list of required bank-bitpatterns, one per
bank

• banks.inc: contains bank indices and per bank the number of columns

• banks info.inc: contains per bank info about the component it belongs
to, the amount of data associated with it and possible alternative banks
(per event only one of the alternative banks can be generated); this info
is used by the eventsize calculation tool described below

• banks maxsize.inc: contains per bank and per calorimeter a maximum
number of rows to avoid event sizes too large to be handled upstream by
the EVB/TLT (e.g. if samples are forced in all crates)

• banksets.inc: contains lists of banks to be generated per component and
per triggertype

• zebra decl.inc, zebra init.inc: contains definitions and lists of hollerith
constants used by the ROCOLLECT transputer to build the banks in
ZEBRA-format.

7.2 Tools for Checking

For every CALDAQ transputer code version xx.y, in directory
/zeus/transputer/online/vxx.y/src/test,

a tool can be found to check the integrity of several of the lookup tables in the
above mentioned include files. The program is run by typing ’run testtables’.
(NB: check if the tool is up-to-date with the readout code by typing ’make -f
testtables’).
To be used every time when new components and/or banks are added to the
system.

In the same directory a tool can be found to display for every crate for every
triggertype the banks generated and the sizes of the events produced; at the
same time it checks the configuration file syntax and checks whether buffer sizes
in the readout system are big enough to contain all bank data; the bank listings
produced provide a way to check if newly added banks are generated for the
right triggertype in the right crate and if the right banks are generated for newly
added components or Digital Cards.

The program reads the hardware configuration from file
c̃alec rc/defaults/hwconfig.dat

(through a symbolic link) and uses the component banklists of the current trans-
puter code version.
(NB: check if the tool is up-to-date with the readout code by typing ’make -f
check readout’).
To be used every time when new components and/or banks are added to the
system.

The program is run by typing ’run check readout <option>’
from directory /zeus/transputer/online/vxx.y/src/test; when no option is
given the following information is displayed;

• the maximum size of an event generated which possibly is generated in
any of the crates of the readout (one number)

16

• the total size of the data received on the ROCOLLECT transputer per
calorimeter and per triggertype

• the sizes of the event passed on to the LocalEVB transputer per calorime-
ter and per triggertype

• any problems with the configuration file syntax or buffer size limitations
are reported when they occur

The available options are f, b, r or a; when one of these options is given the
following extra information about the FCAL, BCAL, RCAL or all calorimeter
crates respectively is displayed, per crate:

• component bitpattern (see chapter 6 (’Bank Bit Pattern’))

• the number of Digital Cards in the crate, listing which Digital Card be-
longs to which component

• parameters for some of the components (if present)

• lists of banks generated, per triggertype

• size of event data, per triggertype

17

8 Calibration Constants Files

Digital Card calibration constants file names are read from a file in direc-
tory /data/calib/dummy (in case socalled ’dummy’ constants are used) or
/data/calib/vnnnn, named xcal calib.files, in which nnnn is a 4-character
version number and x= f, b or r (for FCAL, BCAL and RCAL respectively).

There is one calibration constants file per crate. The files are in ZEBRA-
format.

The version number used is the number on the 26th line of the DAQ config-
uration file (the line with the comment: calib constants).

If the version number is -1 no calibration constants are downloaded to the
Digital Cards.

9 CAL-SLT Constants Files

For runs using the CAL-SLT (physics runs) SLT constants are read from a
file in directory /calcon/cslt, named sltconstvnnnn.fz, in which nnnn is a
4-character version number. The file is in ZEBRA-format.

The version number used is the number on the 27th line of the DAQ configu-
ration file (the line with the comment: CAL-SLT/polynomial constants version).

10 Polynomial Constants Files

For calibration runs polynomial constants are read from a file in directory /cal-
con/calib/poly, named bfrvnnnn.poly, in which nnnn is a 4-character version
number. The file is in ZEBRA-format.

The version number used is the number on the 27th line of the DAQ configu-
ration file (the line with the comment: CAL-SLT/polynomial constants version).

11 DSP-code Files

During the boot procedure of the CALDAQ system several code-files are stored
in the memory of the REBOOTER transputer (code for DATACOLLECT trans-
puters, ROCOLLECT transputers, READOUT transputers, LAYER1 TRIG-
GER transputers, TESTGSLT transputers and the Digital Card DSPs), and
stay there as long as the CALDAQ system is running; if individual transputers
in the CALDAQ system have to be rebooted the code which is stored in the
REBOOTER’s memory is used.

This means that a code change for any of these transputers or the DSPs
always requires a full reboot of the CALDAQ system in order for the new code
to be used.

DSP-code files are read via symbolic links in directory:
/zeus/transputer/online/vxx.y/bin/readout

The link names are daq x.dsp, with 0<=x<=9 or a<=x<=f, so that a total
of 16 different DSP-codes can be used at the same time.

When adding a DSP-code or changing a DSP-code it is necessary to check/update
the ’DSP.CODE.DESCR’ array in include file dsp codes.inc, describing some
properties of the DSP-code.

Which DSP-code is booted on which Digital Card DSP is controlled by a
DSP-code configuration file which is read via a symbolic link to directory:

/zeus/transputer/online/vxx.y/bin/host/dcconf

18

The actual files can be found in directory c̃alec rc/defaults/dcconf and are
named dcconf n.conf, with 0<=n<=16, so that a total of 16 different DSP-
code configurations are possible.

Which dcconf n.conf is used is determined by the number on the 24th line
of the DAQ configuration file (the line with the comment: DSP code config).

12 DSP-code Configuration Files

The DSP-code configuration files are the ’dcconf n.conf’ files mentioned in the
previous chapter.

A DSP-code configuration file is a simple ASCII-file containing 17*16*3 num-
bers, 17 entries per crate, 16 per crates per calorimeter, 3 calorimeters (FCAL,
BCAL and RCAL); each entry denotes the DSP-code version to be used to boot
one Digital Card, ordered per VME-crate from left to right, and per calorimeter
from crate 1 to crate 16; e.g. if the number is 3 then the code pointed to by
daq 3.dsp will be used (see chapter 11 (’DSP-code Files’)).

13 Front-End Electronics Configuration Files

The control signals for the calorimeter frontend electronics (’NEVIS Electron-
ics’) are generated by a number of NIM modules; these modules are configured
through serial links coming from 4 Serial Cards in the F/RCAL Subsystem
VME-crate; settings of the F/R/BCAL Analog Cards are also downloaded via
these cards.

In ZEUS the Serial Card channels are connected as follows:

Serial Card 1
chan 0 ⇒ -
chan 1 ⇒ Control Fanout FCAL
chan 2 ⇒ Analog Cards FCAL
chan 3 ⇒ Analog Cards FCAL
chan 4 ⇒ Table Card
chan 5 ⇒ Pipeline Controller
chan 6 ⇒ Format Card
chan 7 ⇒ Pulser Card

Serial Card 2
chan 0 ⇒ -
chan 1 ⇒ Control Fanout RCAL
chan 2 ⇒ Analog Cards RCAL
chan 3 ⇒ Analog Cards RCAL
chan 4 ⇒ -
chan 5 ⇒ -
chan 6 ⇒ -
chan 7 ⇒ -

Serial Card 3
chan 0 ⇒ -
chan 1 ⇒ Control Fanout BCAL
chan 2 ⇒ Analog Cards BCAL
chan 3 ⇒ Analog Cards BCAL
chan 4 ⇒ -
chan 5 ⇒ -

19

chan 6 ⇒ -
chan 7 ⇒ -

Serial Card 4 (duty-cycle settings)
chan 0 ⇒ Clock fanout modules
chan 1 ⇒ -
chan 2 ⇒ -
chan 3 ⇒ -
chan 4 ⇒ Start/Stop Calorimeter clock (??)
chan 5 ⇒ -
chan 6 ⇒ -
chan 7 ⇒ -

The Serial Cards are controlled by the HOST-transputer which downloads
the configuration data to the cards. Downloading of configuration data can be
disabled (at CALDAQ startup) by setting an environmental variable USESE-
RIALCARDS on the host computer to FALSE.

The configuration files are read via a symbolic link to directory:
/zeus/transputer/online/vxx.y/bin/host/cnf

The actual configuration files can be found in directory c̃alec rc/cnf, in
the form of ASCII-files (*.acf files) or binary files (*.cnf files).

Once at every startup of the CALDAQ system the following configuration
files get downloaded:

• table.cnf (to Serial Card 1)

• pulser.cnf (to Serial Card 1)

• format.cnf (to Serial Card 1)

• duty.cnf (to Serial Card 4)

At every start of a run, configuration data is downloaded which is read from
a file whose name is taken from the 19th line of the DAQ configuration file (the
line with the comment: CNF file). The same configuration data is downloaded
to each of the Serial Cards 1, 2 and 3, corresponding to FCAL, RCAL and
BCAL respectively.

(NOTE: because this data can also contain settings for the NIM modules
connected to Serial Card 1 channels 4 to 7, nothing can be connected to these
same channels on Serial Cards 2 and 3, although they are available...).

(NOTE: in case of run types DUTY.CYCLE.MONITORING and DUTY.CYCLE
configuration data gets only downloaded to Serial Card 4; moreover preceeding
the configuration data from the above-mentioned file, data from file duty cycle mon ch.acf
or duty cycle ch.acf respectively is downloaded).

At every abort-run or end-of-run configuration data from file endrun.cnf is
downloaded (to Serial card 1 only).

20

A configuration data ASCII-file consists of one or more configurations, each
configuration consisting of one comment line and 8 lines of data, one line per
Serial Card channel; which Serial Card the data is downloaded to is decided by
the HOST-transputer and depends on the specific configuration file being read.

The syntax of a data-line is:
repeat-count #databytes <databyte> <databyte>

The repeat-count signifies how many times the list of databytes have to be
downloaded to the particular Serial Card channel.

Example of a configuration:

-- charge 1
0 0
1 1 255
20 3 63 63 166
20 3 63 63 166
1 2 50 64
1 4 90 0 0 192
0 0
0 0

In this example no data is downloaded to Serial Card channels 0, 6 and 7,
one word (255) is downloaded to channel 1, three bytes are downloaded 20 times
to channels 2 and 3.

More detailed information on the meaning of the bytes and bits downloaded
to the different cards of the control electronics can be found in [3].

14 LED DAC-Settings Files

The LED DAC-settings file is read via a symbolic link to directory:
/zeus/transputer/online/vxx.y/bin/host/leopard

The actual files can be found in directory c̃alec rc/leopard. The tool to
create the LED DAC-settings file (called leomaker) and its documentation can
be found in the same directory.

A DAC-settings file is an ASCII-file with lines with the following syntax:
<mux-number> <LED-box> <LED-number> <DAC-setting>

with 1<=mux-number<=4 (FCAL right (south), FCAL left (north), RCAL
right (south), RCAL left (north) resp.), 0<=LED-box<=12, 0<=LED-number<=3
and 0<=DAC-setting<=255.

Which DAC-settings file is used is determined by the filename on the 20th
line of the DAQ configuration file (the line with the comment: LED CNF file).

15 SRTD-FLT Configuration Files

The SRTD-FLT configuration file is read via a symbolic link from:
/zeus/transputer/online/vxx.y/bin/host/hwconfig/srtd flt.zeus

for physics runs and from
/zeus/transputer/online/vxx.y/bin/host/hwconfig/srtd flt.qinj

for other runs.
The actual files can be found in directory c̃alec rc/defaults/hwconf. A

tool is available to create these configuration files (refer to the SRTD-FLT ex-
perts...).

21

An SRTD-FLT configuration file contains 5 structures: 4 for each sector
and 1 for the EVB/FLT-Card. Each sector structure consists of 3 structures for
the sector’s 3 Trigger Cards. Each Trigger Card structure has 80 bytes of data.
The EVB/FLT-Card structure has 272 bytes of data.
The Trigger Card structure is as follows:

Byte Contents Remarks
0-3 address card’s VME-address
4-51 threshold chan 0-23 bits 0-7=low, 8-15=high
52-53 enable chan 0-15 bitpattern for 16 channels
54-55 enable chan 16-23 bitpattern for 16 channels
56-67 delays 6-bit delays, stored on byte boundaries
68-69 status for status register
70-75 fifo for FIFO control registers
76-79 pad bytes

The EVB/FLT-Card structure is as follows:

Byte Contents Remarks
0-3 address card’s VME-address
4-5 offsets for offset registers
6-15 control EVB/FLT control signals
16-143 linear chan 0-63 timing lookup tables sectors 0,1
144-271 linear chan 0-63 timing lookup tables sectors 2,3

And the full structure of card configurations:

Byte Contents
0-79 Sector 0 Card s 0
80-159 Sector 0 Card s 1
160-239 Sector 0 Card l
240-319 Sector 1 Card s 0
320-399 Sector 1 Card s 1
400-479 Sector 1 Card l
480-559 Sector 2 Card s 0
560-639 Sector 2 Card s 1
640-719 Sector 2 Card l
720-799 Sector 3 Card s 0
800-879 Sector 3 Card s 1
880-959 Sector 3 Card l
960-1271 EVB/FLT Card

16 PM-number Files (Cable Files)

The socalled cable files or PM-number files contain tables with channel numbers
ordered according to their position on the Digital Cards in the VME-crates.
There is a file for each of the components utilizing Digital Cards (except LED
which sends its numbers via RPN-logic files):
CAL, SRTD, PRES, BPC, FNC, LASERMONITOR, PRT and BPRES.

Each component can thus use its own numbering scheme. The numbers
appear e.g. in the time/energy banks and sample banks.

The files are accessed through symbolic links in directory

22

/zeus/transputer/online/vxx.y/bin/host
and are named calcable.dat, srtdcable.dat, prescable.dat, bpccable.dat,
fnccable.dat, lasermonitorcable.dat, prtcable.dat, bprescable.dat re-
spectively.

The actual files are in directory
/zeus/transputer/online/vxx.y/bin/cablefiles

The files are in ZEBRA-format and contain one bank per crate containing Dig-
ital Cards for that particular component.

The ZEBRA-files are generated from ASCII-files containing the PM-number
tables; the tool named cable2zebra (just type cable2zebra to run the tool)
and the original ASCII-files can be found in directory

/zeus/transputer/tools/cable2zebra

The format of the ASCII-files is as follows:

<crate-id> <number.of.PM.numbers>

<PM-no0> <PM-no1> <PM-no2> <PM-no3> <PM-no4> <PM-no5> <PM-no6> <PM-no7>

<PM-no8> <PM-no9>

<crate-id> <number.of.PM.numbers>

<PM-no0> <PM-no1>

etc. etc.

in which crate-id is a hexadecimal number, written in decimal and defined as:
crate.id = #2000 + CAL + (crate-number - 1)

with CAL=#10 (FCAL) or CAL=#20 (BCAL) or CAL=#40 (RCAL).

As an example follows the LASERMONITOR PM-number ASCII-file (1 Dig-
ital Card (24 channels) in RCAL crate 9 (crate-id = 8192 + 64 + 9 - 1 = 8264);
the channels which are zero are unused channels:

8264 24

0 128 129 130 131 132 0 133

134 135 136 137 0 0 0 0

0 0 0 0 0 0 0 0

17 RPN-logic Files

Some components required to be able to design and use their own formulas
for time and charge reconstruction from the samples received from the Digital
Cards (although this can now also be done by writing a new DSP-code and
booting this code on the appropriate Digital Cards). A provision was made in
the CALDAQ-system to make this possible.

To reconstruct time and charge in this way is a slow process (typical maxi-
mum readout rate 5 Hz) and is meant only for testtriggers and standalone runs
(e.g. ’means-and-sigma’ runs). A full description can be found in [6].

For the LED-component RPN-logic file names are read from a file in direc-
tory c̃alec rc/leopard, named rpnlogic.files. The first file in rpnlogic.files
contains a list of formula identifiers, 10 per channel (channels in the order they
appear on the Digital Cards in the VME-crate), the first 5 of which are for time
reconstruction and the other 5 for charge reconstruction, ordered by testtrigger
type as follows:

Formula# TriggerType
0 Empty
1 Qinj

23

2 LED (run-type != LED.QINJ)
3 LED (run-type = LED.QINJ = 20)
4 LASER

The rest of the files in the list in rpnlogic.files contain the reconstruction
formulas, one formula per file, the formula identified by its position in rpn-
logic.files (first file contains formula 0, second file contains formula 1, etc.).
All files listed in rpnlogic.files are in ZEBRA-format.

18 BOR Files

At the start of a run the following files are downloaded to the CALDAQ network:

• /data/calib/uno/unovnnnn.fz, in which nnnn is a 4-character version
number (this UNO BOR data ends up in the CxBU-banks; only down-
loaded for physics runs),

• /data/calib/srtd/srpctomipvnnnn.fz, in which nnnn is a 4-character
version number (these SRTD pC-to-MIP conversion factors end up in the
SRBM-bank; only downloaded for physics runs, NB: was never used, now
taken out of the code,

• /calcon/calib/poly/bfrvnnnn.poly, in which nnnn is a 4-character ver-
sion number (these polynomial constants for calibration constants calcu-
lations; only downloaded for calibration runs),

• /zeus/data/CBORn.X (actually it is the name provided by the CAL-
DAQ RunControl program in the ACTIVATE command message), in
which n is the run number (this BOR data ends up in the CxBO-banks).

19 Online Log File

The CALDAQ transputer network logfile (named iserver.log, which can be
found in directory c̃alec rc/log) contains mostly messages of the format:

<sender-name>: <message>
in which sender-name is the name of the process, routine or transputer sending
the message.

A complete description of the messages present in the logfile is not avail-
able...; why and where the messages are generated can be found in the source
code and is mostly a matter of concern to the code expert. However a few
message types will be explained here in more detail.

Messages starting with ’###’ signify that something serious or possibly
fatal occurred.

Error messages originating from the CSBs (name of the message sender
in this case: CSBREPORT) are worth noting; some of these messages are
accompanied by a more explanatory message on the RunControl screen. Here
is a list of these messages:

� ARE1.ERROR mask=<n>
ARE2.ERROR mask=<n>
ARE3.ERROR mask=<n>
CSB received an interrupt from ARE1-, ARE2- or ARE3-board respec-
tively, with the source(s) of the interrupt in bitmask n, meaning that the

24

connected transputer(s) set the error flag (but did not necessarily halt, if
the code was compiled in undefined mode, e.g. the CAL-SLT code); which
transputer is connected to which ARE-connection can be found in chapter
’CSB Connections’,

� could not send NEXT TRIGGER
serious problem with process that controls NEVIS frontend control elec-
tronics (on HOST-transputer, via Serial Cards); it does not accept the
command to generate the next trigger (in standalone runs),

� CSB.MESS.FAIL dest=<n>
the CSB failed to pass on a message to the next CSB (destination id =
n),

� CSB.UNKNOWN.COMMAND cmd=<n>
the CSB received an unknown command n from HOST,

� CSB.UNKNOWN.DESTINATION dest=<n>
the CSB received an unknown destination transputer number n from
HOST,

� EVT1.EVENT mask=<n>
EVT2.EVENT mask=<n>
EVT3.EVENT mask=<n>
CSB received an (unexpected) interrupt from EVT1-, EVT2- or EVT3-
board respectively, with the source(s) of the interrupt in bitmask n; a
transputer in panic can draw attention this way...; which transputer is
connected to which EVT-connection can be found in chapter ’CSB Con-
nections’,

� EVT1.TIMEOUT tp.id=<n>
EVT2.TIMEOUT tp.id=<n>
EVT3.TIMEOUT tp.id=<n>
CSB timed out on an expected event (interrupt) from the EVT1-, EVT2-
or EVT3-board respectively, from transputer with identifier n,

� LKC1.OINT.TIMEOUT mask=<n> bytes.sent=<m>
LKC2.OINT.TIMEOUT mask=<n> bytes.sent=<m>
one or more transputers connected to the LKC1- or LKC2-board respec-
tively did not accept a byte sent via the LKC-board; bitmask n shows in
the bits which are NOT 1 which connected transputer did not accept; the
number of bytes of the message sent via LKC before the failure occurred
is m.

� LKC.UNKNOWN.COMMAND cmd=<n>
CSB received an unknown message byte n via one of its LKCs,

� LKS1.CONFIG.FAIL
LKS2.CONFIG.FAIL
LKS3.CONFIG.FAIL
CSB failed to configure its LKS1-, LKS2- or LKS3-board because of a
configuration link communication problem,

� LKS.REQUEST.DISABLED (Warning!)
CSB received a request for an LKS-link connection, but the permission
to use this link is not yet given (by the HOST-transputer); this warning
might occur in the network startup phase; messages are queued and should
appear in the logfile as soon as the LKS-links are enabled later on in the
startup procedure,

25

� READOUT.OK ackn failed
READOUT.NOT.OK ackn failed
communication problem with CSB-message receiver process and the main
process (both processes run on the HOST-transputer),

� TRP.ERROR1
device connected to the TRP-ARI connector set its error flag,

� TRP.ERROR2
device connected to the TRP-ARO connector set its error flag,

� TRP.NONEMPTY.EVTREG after init: trp.requestin.reg=<n>
the event register of the TRP-board is not zero after initialization (as it
should be),

� TRP.UNEXP.EVENT expected=<n> received=<m>
the TRP-board received an unexpected interrupt or interrupts; n and m
are interrupt bitmasks (see [5] for their definition),

� unknown CSB source
the CSBREPORT process received a message with an unknown sender
identifier; unlikely that this will ever happen, but if it happens it is serious
because it means there probably is a CSB hardware problem,

� unknown message tag <n>
the CSBREPORT process did not understand message identifier n it re-
ceived from the CSB (it wasn’t any of the identifiers described below).

Error messages originating from different processes on the READOUT trans-
puters are also sent via the CSB (name of the message sender in this case also:
CSBREPORT), to enable notification on the RunControl screen, are worth
noting; these messages are accompanied by a more explanatory message in the
logfile, written there directly by the READOUT transputer (through its monitor
link).

� CAMAC.INIT.ERROR
initialization of the CAMAC hardware (for LASER in RCAL crate 9) failed
(procedure is cccz, ccci, cccc, cclm (ADC, N=2), cclm (TDC, N=5)),

� CAMAC.STATUS.ERROR
error occurred while reading out data from CAMAC for LASER (one or
more of: LAM timeout ADC (N=2), data read error ADC (N=2), LAM
timeout TDC (N=5), data read error (N=5)),

� CALIB.XMIT.ERROR
an XOR-checksum error occurred in the downloading of calibration con-
stants blocks from host to READOUT transputer (compare to DC.XOR.ERROR),

� CALIB.CNST.MISSING
calibration constants for one or more of the Digital Cards in the crate are
missing from the download from host to READOUT transputer,

� DC.BRC.BOOT.FAIL
booting the Digital Cards in a crate by broadcast method failed,

� DC.DATA.MISMATCH
a mismatch was found between the DSP calculated time and energy sums
and the transputer calculated sums (the check is performed on a regular
basis during runs for CAL Digital Cards only),

26

� DC.DATA.TIMEOUT
a timeout occurred while waiting for an event to appear in the Digital
Card DPM (although the GSLT-decision has been received already),

� DC.DOWNLOAD.FAIL
downloading of one or more blocks of calibration constants to one or more
Digital Cards failed,

� DC.GLOBALEXEC.FAIL
giving the Digital Card exec command failed (during means&sigmas read-
out in calibration runs),

� DC.GLOBALREAD.FAIL
setting the Digital Card read flag failed (during means&sigmas readout in
calibration runs),

� DC.HEADER.ERROR
a mismatch occurred between the headerword of the first Digital Card in
the crate and another in this crate,

� DC.PAGENO.ERROR
the page number from a Digital Card page header does not match the
page number read from the Digital Card OFDR,

� DC.PAGENO.ORDER
the page number read from the Digital Card OFDR does not match the
expected number,

� DC.PARITY.ERROR
a parity error occurred on the Digital Card for this event (the least signif-
icant bit of the control byte (byte 3) of the header word is set),

� DC.XOR.ERROR
the Digital Card reports a mismatch between the XOR-checksum(s) of
calibration constants blocks received and the one(s) calculated by the DSP,

� EVENT.TOO.BIG
an event was generated with a size larger than the available buffer size
(this can only happen if the code is compiled in undefined mode),

� GSLT.BUFFER <description>
the GSLT buffering process detected a corrupted GSLT-decision; the na-
ture of the corruption is explained in description,

� GSLT.DC.MISMATCH
a mismatch was found between the FLT-number or the triggertype pro-
vided by the Digital Card and the FLT-number or triggertype provided
by the GSLT-decision,

� HWPARAMS.ERROR
an error was detected in the hardware parameters received from the host,

� POLY.CONST.ERROR
an error was detected in the format of the downloaded polynomial con-
stants (needed for calibration runs),

� RO.DATASEND.FAIL
the sender process is trying now for about 30 seconds to send event data
to the ROCOLLECT transputer,

27

� TWOTP.BERRL.EVT
the transputer detected VME-bus errors,

� TWOTP.TIMEOUT.EVT
the transputer detected refresh timeout errors (probably caused by not
getting VME access).

At regular intervals during a run a STATUS.RUN command is given; when
the CAL-SLT is taking part in the run and the ’status’ hasn’t changed in between
two STATUS.RUN commands the status of the CAL-SLT is printed in the
logfile.

For a READOUT transputer the status printed looks like this (example):

TP.ID #201D #000031F7 #000031EC #000031EC #00000000

#00000546 #00000000 #00000091

in which #201D is the transputer identifier; the 7 numbers following are respec-
tively:

1. the FLT-trigger number processed by the read.trigger.data() process

2. the FLT-trigger number of the last GSLT-decision received by the gslt.decision.buffer()
process

3. the FLT-trigger number of the last GSLT-decision processed by the read.cal.data()
process

4. the total number of polls necessary in this run while waiting for Digital
Card data while the GSLT-decision was received already

5. the GSLT-trigger number of events sent by the send.data() process to
the ROCOLLECT transputer

6. the total number of times in this run a timeout or transmission error
occurred while sending from READOUT to ROCOLLECT transputer,
when using the ’SECURE’ send option in sender.opp

7. the total number of times the send.data() process has had to wait for
permission to send an event to the ROCOLLECT transputer in this run

For a LAYER1 trigger transputer the status printed looks like this (example):

TP.ID #101D #00000000 #000031F8 #00003206 #00000000

#00000000 #00000000 #00000000

in which #101D is the transputer identifier; the following 7 numbers are respec-
tively:

1. not used

2. the number of events processed by the LAYER1 algorithm

3. the number of data blocks sent to LAYER2 (includes all events plus 13
’FORWARD.CONSTANTS’ data blocks plus 1 ’BECOME.ACTIVE’ data
block)

4. not used

5. not used

28

6. the number of arithmetic errors/overflows that occurred in the LAYER1
algorithm process (in which part(s) of the algorithm an error occurred can
be found per event in a word in the CAL-SLT offline databanks)

7. not used

For a LAYER2 trigger transputer the status printed looks like this (example):

TP.ID #1214 #31F8 #0000 #0000 #3206 #3206 #0000 #3206 #0000

#0000 #0000 #0000 #0000 #0000 #0000 #0000

in which #1214 is the transputer identifier; the following 15 numbers are re-
spectively:

1. the number of events processed by the LAYER2 algorithm

2. the number of arithmetic errors/overflows that occurred in the LAYER2
algorithm process (in which part(s) of the algorithm an error occurred can
be found per event in a word in the CAL-SLT offline databanks)

3. the number of events received by the input process (on link 0); includes all
events plus 13 ’FORWARD.CONSTANTS’ plus 1 ’BECOME.ACTIVE’

4. idem (on link 1)

5. idem (on link 2)

6. idem (on link 3)

7. the number of events sent to LAYER3; includes all events plus 13 ’FOR-
WARD.CONSTANTS’ plus 1 ’BECOME.ACTIVE’

8. not used

9. not used

10. the number of times a transmission error occurred in the reception of an
event from LAYER1 (on link 0)

11. idem (on link 1)

12. idem (on link 2)

13. idem (on link 3)

14. not used

15. not used

For a LAYER3 trigger transputer the status printed looks like this (example):

TP.ID #1400 #31F8 #0000 #3206 #3206 #3206 #0000 #31F8 #0000

#0000 #0000 #0000 #0000 #0000 #0000 #0000

in which #1400 is the transputer identifier; the following 15 numbers are re-
spectively:

1. the number of events processed by the LAYER3 algorithm

2. the number of arithmetic errors/overflows that occurred in the LAYER3
algorithm process (in which part(s) of the algorithm an error occurred can
be found per event in a word in the CAL-SLT offline databanks)

29

3. the number of events received by the input process (on link 1); includes all
events plus 13 ’FORWARD.CONSTANTS’ plus 1 ’BECOME.ACTIVE’

4. idem (on link 2)

5. idem (on link 3)

6. not used

7. the number of events sent to the GSLT

8. not used

9. not used

10. the number of times a transmission error occurred in the reception of an
event from LAYER2 (on link 1)

11. idem (on link 2)

12. idem (on link 3)

13. not used

14. not used

15. not used

30

20 Standalone Test Runs

It has been made possible to run the complete CALDAQ system including the
Digital Cards (the DSPs) and the CAL-SLT transputer network with a set
of real events in order to test the functioning and the maximum performance
of the CALDAQ system. The socalled TESTGSLT transputers simulate the
workings of the GSLT decision-making and subsequent decision distribution.

Command run it to perform this kind of standalone run can be found in
directory /zeus/transputer/online/vxx.y/bin/host.

The setup parameters in the DAQ configuration file normally received from
RunControl are hardcoded in the source code found in file
/zeus/transputer/online/vxx.ysrc/host/standalone runcontrol.occ;
it includes a simple user-interface from which runs can be started, aborted etc.

A special DSP-code (the socalled ’player code’) is booted on the Digital
Cards which produces events in the Digital Card DPM with a frequency that
can be set by the user (NB: the Digital Cards run unsynchronized in this mode!).

The events produced are either random energy-noise events (when no ’real’
events have been downloaded to the Digital Cards) or the events have been read
from (a) ZEBRA-formatted file(s) whose name has/have been read from file
evpfiles.dat in directory /zeus/transputer/online/vxx.y/bin/host. These
files also contain the SLT-data banks so that on the TESTGSLT transputers
the results of the SLT-network can be checked against what is expected.

21 CSB connections

For a description of the CSB crates and their function in the CALDAQ system
see chapter 2.5 and 3.5 of [4]; for a detailed description of the CSB hardware
see [5].

On the FCAL, BCAL and RCAL CSB the 64-pin connectors labelled xCAL
2ND LEVEL TRIGGER-READOUT are numbered from 00 to 15 and
connect to the 2TP-modules in FCAL/BCAL/RCAL crates numbered 1 to 16
respectively.

Every socalled READOUT transputer of the connected 2TP-modules (the
2TP’s Y-transputer) is connected (internal to the CSB) to the ARE1- and the
EVT1-board; the 2TP-modules in crates 1 to 16 are connected to ARE1-0 to
ARE1-15 and EVT1-0 to EVT1-15 respectively; the socalled TRIGGER trans-
puters (the 2TP’s X-transputers are similarly connected to the ARE2- and
EVT2-boards.

All connections labeled TRIG-n connect the TRIGGER transputer in crate
n+1 to LAYER2 of the Second Level Trigger transputer network; see the trans-
puter network scheme in appendix A.

Tables 9 to 15 give an overview of most of the rest of the external LKS, ARE
and EVT connections of the CSBs.

31

FCAL

Connector Connected to link

LKS1-SMLK TRP 1

LKS1-24 LKS2-24

LKS1-25 LKB-BMLK

LKS1-26 FCAL ROCOLLECT 1

LKS1-27 FCAL ROCOLLECT 0

LKS1-28 FCAL MONITOR 1

LKS1-29 TEST-GSLT Y-1

LKS1-30 GSLT decision

LKS2-SMLK TRP 2

LKS2-24 LKS1-24

LKS2-25 -

LKS2-26 FCAL ROCOLLECT 2

LKS2-27 FCAL ROCOLLECT 3

LKS2-28 FCAL MONITOR 2

LKS2-29 REBOOTER 1

LKS2-30 -

Table 9: FCAL CSB LKS connections.

BCAL

Connector Connected to link

LKS1-SMLK TRP 1

LKS1-24 LKS2-24

LKS1-25 LKB-BMLK

LKS1-26 BCAL ROCOLLECT 1

LKS1-27 BCAL ROCOLLECT 0

LKS1-28 BCAL MONITOR 1

LKS1-29 TEST-GSLT Y-2

LKS1-30 GSLT decision

LKS2-SMLK TRP 2

LKS2-24 LKS1-24

LKS2-25 BCAL DATACOLLECT 1

LKS2-26 BCAL ROCOLLECT 2

LKS2-27 BCAL ROCOLLECT 3

LKS2-28 BCAL MONITOR 2

LKS2-29 REBOOTER 3

LKS2-30 TEST-GSLT X-0

Table 10: BCAL CSB LKS connections.

32

RCAL

Connector Connected to link

LKS1-SMLK TRP 1

LKS1-24 LKS2-24

LKS1-25 LKB-BMLK

LKS1-26 RCAL ROCOLLECT 1

LKS1-27 RCAL ROCOLLECT 0

LKS1-28 RCAL MONITOR 1

LKS1-29 TEST-GSLT Y-3

LKS1-30 GSLT decision

LKS2-SMLK TRP 2

LKS2-24 LKS1-24

LKS2-25 -

LKS2-26 RCAL ROCOLLECT 2

LKS2-27 RCAL ROCOLLECT 3

LKS2-28 RCAL MONITOR 2

LKS2-29 REBOOTER 2

LKS2-30 -

Table 11: RCAL CSB LKS connections.

BCAL LKS3

Connector Connected to link

LKS3-SMLK TRP 3

LKS3-00 LAYER3 0

LKS3-01 GSLT input

LKS3-02 TEST-GSLT X-3

LKS3-04 -

LKS3-05 -

LKS3-06 -

LKS3-07 -

LKS3-08 -

LKS3-09 -

LKS3-10 -

LKS3-11 -

LKS3-12 -

LKS3-13 -

LKS3-14 -

Table 12: BCAL CSB LKS3 (external LKS-board, located in BCAL SSC (Sub-
System Crate)) connections.

33

FCAL

Connector Connected to transputer

ARE3/EVT3-00 FCAL LAYER2 #0

ARE3/EVT3-01 FCAL LAYER2 #1

ARE3/EVT3-02 FCAL LAYER2 #2

ARE3/EVT3-03 FCAL LAYER2 #3

ARE3/EVT3-04 FCAL LAYER2 #4

ARE3/EVT3-05 FCAL MONITOR

ARE3/EVT3-06 -

ARE3/EVT3-07 -

ARE3/EVT3-08 -

ARE3/EVT3-09 -

ARE3/EVT3-10 -

ARE3/EVT3-11 -

ARE3/EVT3-12 -

ARE3/EVT3-13 -

ARE3/EVT3-14 -

ARE3/EVT3-15 FCAL ROCOLLECT

Table 13: FCAL CSB ARE/EVT connections.

BCAL

Connector Connected to transputer

ARE3/EVT3-00 BCAL LAYER2 #0

ARE3/EVT3-01 BCAL LAYER2 #1

ARE3/EVT3-02 BCAL LAYER2 #2

ARE3/EVT3-03 BCAL LAYER2 #3

ARE3/EVT3-04 BCAL LAYER2 #4

ARE3/EVT3-05 BCAL MONITOR

ARE3/EVT3-06 BCAL DATACOLLECT

ARE3/EVT3-07 DATACOLLECT

ARE3/EVT3-08 -

ARE3/EVT3-09 -

ARE3/EVT3-10 -

ARE3/EVT3-11 -

ARE3/EVT3-12 -

ARE3/EVT3-13 -

ARE3/EVT3-14 TEST-GSLT

ARE3/EVT3-15 BCAL ROCOLLECT

Table 14: BCAL CSB ARE/EVT connections.

34

RCAL

Connector Connected to transputer

ARE3/EVT3-00 RCAL LAYER2 #0

ARE3/EVT3-01 RCAL LAYER2 #1

ARE3/EVT3-02 -

ARE3/EVT3-03 -

ARE3/EVT3-04 -

ARE3/EVT3-05 RCAL MONITOR

ARE3/EVT3-06 MONITOR.HOST

ARE3/EVT3-07 LAYER3

ARE3/EVT3-08 LAYER3 MONITOR

ARE3/EVT3-09 -

ARE3/EVT3-10 -

ARE3/EVT3-11 -

ARE3/EVT3-12 -

ARE3/EVT3-13 -

ARE3/EVT3-14 REBOOTER

ARE3/EVT3-15 RCAL ROCOLLECT

Table 15: RCAL CSB ARE/EVT connections.

22 LAYER2/3 transputers

Table 16 shows in which crates the LAYER2 and LAYER3 transputers are lo-
cated and which LAYER1 and LAYER2 transputers connect to which LAYER2
and LAYER3 transputer respectively.

Transputer (id) In Crate Link 0-3 connections

FCAL LAYER2 #0 (#1210) FCAL #16 #1015 #101A #1017 #1018

FCAL LAYER2 #1 (#1211) FCAL #16 #1401 #101D #101E #101F

FCAL LAYER2 #2 (#1212) FCAL #15 (#1014 #101B #1016 #1019) 7

FCAL LAYER2 #3 (#1213) FCAL #15 #1401 #1013 #1010 #1011

FCAL LAYER2 #4 (#1214) RCAL #8 #1401 #1012 #101C -

BCAL LAYER2 #0 (#1220) BCAL #8 #1023 #1024 #1025 #1026

BCAL LAYER2 #1 (#1221) BCAL #8 #1400 #1020 #1021 #1022

BCAL LAYER2 #2 (#1222) BCAL #12 #102A #102B #102C #102D

BCAL LAYER2 #3 (#1223) BCAL #12 #1400 #1027 #1028 #1029

BCAL LAYER2 #4 (#1224) RCAL #7 #1400 #102E #102F -

RCAL LAYER2 #0 (#1240) RCAL #7 #1044 #1045 #1042 #1043

RCAL LAYER2 #1 (#1241) RCAL #8 #1040 #1041 #1046 #1047

LAYER3 #0 (#1400) FCAL #14 GSLT #1221 #1223 #1224

LAYER3 #1 (#1401) FCAL #14 HOST #1214 #1211 #1213

Table 16: LAYER2/LAYER3 location and connections.

35

23 OCCAM Preprocessor

Program occpp is an OCCAM preprocessor, developed by Andres Kruse. A
more comprehensive description of the program than given here can be found
in [7]. The purpose of occpp is to extend the number of available compiler
metacommands, as follows:

• #DEFINE variable
a statement to define a variable.

• #UNDEF variable
undefine a variable.

• #IFDEF variable, #ENDIF
if the variable is defined the code that is enclosed between these two state-
ments will be processed further.

• #IFNDEF variable, #ENDIF
if the variable is defined the code will NOT be processed further.

• #ELSE
extension to #IFDEF and #IFNDEF

With the -D and -U option this preprocessor can be used as a tool to have
conditionally compiled code.
The syntax is as follows:

occpp [-v] [[-Dvariable1] [-Dvariable2]...] [[-Uvariable1] [-Uvariable2]...] file[s]
with:

• -h
give usage information (no processing)

• -v
print information while processing

• -V
print debug information

• -F
force occpp to overwrite existing .occ and .inc files (normally it will only
overwrite .occ and .inc files if they differ from the new version (good for
make!))

• -Dvariable define the variable to be TRUE this cannot be overwritten
by an #UNDEF in the file !

• -Uvariable define the variable to be FALSE this cannot be overwritten
by an #DEFINE in the file !

• -o file name of the output file then only one input file is allowed

• file[s] names of the occam source files; the extension has to be .opp or
.ipp or .ppp.

occp will automatically generate files with the extension “.occ”, “.inc” and
“.pgm”

7These transputers are not present in the current system.

36

References

[1] Henk Boterenbrood,
Debugging and Test Utilities for the CALDAQ Transputer Network
Version 2.1, Internal documentation, NIKHEF-H, Amsterdam, August 1995.

[2] Steve Ritz,
DAQ5.DSP,
ZEUS-Note 92-76.

[3] A. Caldwell and S. Ritz,
User Interfaces to the CAL Electronics Readout,
ZEUS-Note 92-46, April 1992.

[4] Hermen van der Lugt,
The Data-Acquisition and Second Level Trigger System for the ZEUS
Calorimeter,
PhD-thesis, Universiteit van Amsterdam, April 1993.

[5] Arthur de Waard,
Hardware Description of the Control and Switch Box Crates
Version 2.1, Internal documentation, NIKHEF-H, Amsterdam, August 1991.

[6] Andres Kruse,
User Defined ONLINE Charge and Time Reconstruction for the Calorimeter
LASER and LED Monitor Readout,
NIKHEF-H, Amsterdam.

[7] Andres Kruse,
OCCPP: An OCCAM Preprocessor,
NIKHEF-H, Amsterdam.

A CALDAQ Transputer Network Map

The following figure shows a detailed map of the layout of the CALDAQ trans-
puter network, including TPM VME-addresses and most transputer link num-
bers.

37

 ZEUS CALORIMETER
DATA-ACQUISITION & TRIGGER
 TRANSPUTER NETWORK

HISTORY: '90 - '91 ; H v.d. Lugt ; Initial versions.
24.04.91; A de Waard ; Modified.
13.07.92; H v.d. Lugt ; Updated SLT Layer2.
25.07.95; Henk B&B ; Major update to new situation (extended CSB-RCAL, TESTGSLT);

 added more info.
10.07.97; Henk B&B ; Some additions and corrections.
10.03.98; Henk B&B ; Added FPC crate (FCAL crate 5).

(Containing: 112 transputers (T800: 109, T222: 3), 7 linkswitches (C004), 96 parallel-to-link interfaces (C012))

LKS1

8x

LKC1 LKB1

8x

T2

BCAL
Readout

BCAL
Readout

BCAL
Trigger

BCAL
Trigger

monitor link

readout links

(re)boot link

ARE2EVT2

ARE1EVT1 ARE3

EVT3

 BCAL
Layer2
 #1

 BCAL
Layer2
 #0

BCAL
Readout
Collect

LocalEVB

RCAL
Monitor

BCAL
Data

Collect

RCAL
Readout
Collect

LocalEVB

Monitor
Host

Data
Collect

BCAL
Monitor

Host

RebooterFCAL
Monitor

29 TestGSLT decision input

LKS2

T2

monitor link

readout links

(re)boot link

EVT2

EVT1 ARE3

EVT3

FCAL
Readout
Collect LocalEVB

LKC2

LKC1 LKB1

FCAL
Readout

FCAL
Readout

FCAL
Trigger

FCAL
Trigger

ARE2

ARE1 LKS1

LKS2LKC2

 BCAL
Layer2
 #4

 RCAL
Layer2
 #0

 FCAL
Layer2
 #4

 RCAL
Layer2
 #1

Layer 3
Collect/
Layer2/3
Monitor

Layer 3
Collect

8x

8x8x

8x

DataCollectors boot link

0

1 2 3

0
1
2
3

0
1
2
3

0

1 2

0

1 2 3

2
1
0

3

1
0
3
2

0

12

0

2 3 1 3

0

0

1 2 3 1

2 3

0

3

0

0

1

230

1

2

3

0

1 2 30

1

2

0

2

1

3

2 3

0

1

2 3

1

2

3

0

1

2 3

2 3

0

1

2 3

x y

 BCAL
Layer2
 #3

 BCAL
Layer2
 #2

x y

x y

x y

 FCAL
Layer2
 #1

 FCAL
Layer2
 #0

0

123

0
1
2
3y x

x y

x y

x y

x y

x y

xy

xy

xy

x y

x y

yx

yx

2

1

1

2

8

7

6

5

4

3

2

1

10

9

11

12

13

14

15

16

28

27

26

24

24

26

27

28

29

24

24

28

27

26

26

27

28

29

8

7

6

5

4

3

2

1

9

10

11

12

13

14

15

16

2 0

 FCAL
Layer2
 #2

 FCAL
Layer2
 #3
x y

02

1

LKC1 LKB1

T2

RCAL
Readout

LED/
LASER/
BPC/
BPRES

RCAL
Trigger

monitor link

readout links

(re)boot link

ARE2EVT2

ARE1EVT1 ARE3

EVT3

LKS1

LKS2LKC2
0

0

1

x y

x y

2

1

29

28

27

26

24

24

26

27
28

29

8

7

6

5

4

3

2

1

9

10

11

12

13

14

15

16

3

SRTD-FLT

Presampler

FNC/
PRT

25

Host Computer
 link 1
 (data out)

Host Computer
 link 0
(RunControl)

8x

8x

4x

4x 8x

4x

8x

8x

25BMLK

8x

8x8x

8x

readout links

monitor link

readout links

monitor link

readout links

monitor link

3

LKS3

SMLK

SMLK

SMLK

SMLK

SMLK

SMLK

TestGSLTx

0

2

3

1

3

yxSMLK
210

CAL-SLT output to TestGSLT

CAL-SLT output
 to GSLT

CAL-SLT
output
from
Layer3
Collect

TestGSLTy

29

30

1

0

30

30

30

BCAL SSC slot #3
kludge-board

BCAL SSC slot #2
C, TPM=#55800000

BCAL SSC slot #1
A, TPM=#55940000

FRCAL SSC slot #2
A, TPM=#55940000

FRCAL SSC slot #3
B, TPM=#55920000

FRCAL SSC slot #1
A, TPM=#55900000

FRCAL SSC slot #5
C, TPM=#55880000

FRCAL SSC slot #4
C, TPM=#55800000

2TP TPM addresses (VME):
Layer1: #55080000
Layer2: #55100000
Layer3: #55100000
SRTD-FLT: #10800000

= Transputer not present

= 2TP-module

= a type of CSB module

T2 = CSB-TRP module
 (with T222 transputer)

= Transputer NOT under
 CALDAQ control

TestGSLT decision input

TestGSLT decision input

 GSLT
decision
 input

25BMLK

25BMLK

RCAL/
SRTD

RCAL/
SRTD

RCAL/
SRTD

RCAL/
SRTD

BCAL SSC slot #19+#20

TestGSLT boot link

Layer3 monitor link

CSB-BCAL

CSB-RCAL

CSB-FCAL

0 0 1

3
2

1

2

0 0 1

3
2

1

2

0 0 1

3
2

1

2

100
2

1 3
2

100

1 3
2

100
2

1 3
2

RCAL

RCAL

RCAL

to EVB

to EVB

to EVB

BPC-SLT

(idle)

(idle)

(idle)

 GSLT
decision
 input

 GSLT
decision
 input

FCAL crate #16,
slot #2

FCAL crate #15,
slot #2

RCAL crate #8,
slot #2

RCAL crate #7,
slot #2

BCAL crate #12,
slot #2

BCAL crate #8,
slot #2

FCAL crate #14,
slot #2

(idle)

BPC-SLT output
 to GSLT
(CSB-RCAL: TRIG-08)

2

SMLK = Switch Master LinK

BMLK = Broadcast Master LinK
SSC = SubSystem Crate

FPC
(idle)

(C004 configuration link)

#1240

#1241

03.01.05; Henk B&B ; Fix RCAL Layer2 layout error; added TP IDs (in red).

#1017 #2017

#101F #201F

#1047 #2047

#102F #202F

#1027 #2027

#1210

#1211

#1212
#1213

#1214

#1224

#1222#1223

#1221

#1220

#1401#1400

#8027

#4020

#4040

#4010

#8013 #8040

#8042

#8041 #8026

#8024 #8025

Figure 1: The CALDAQ transputer network.

38

B Adding a Digital Card Based Component to
the CAL Readout

The following list sums up the source code files and configuration files involved
–together with a short description of the changes/additions necessary– when
adding a completely new –Digital Card based– component to the CALDAQ
system.

The example below is based on the work necessary to include the BARREL
PRESAMPLER (BPRES) in the readout.

==

component/banks declaration stuff

=================================

include/bankbitpattern.inc:

- increase NO.COMPONENTS

- define component id (bit number in bankbitpattern)

- COMPONENT.BITPATT, BANKNAMES

include/bankcontrol.inc:

- add to BANK.CONTROL (here: BPRES banks):

[PBBA.BANK, BOREOR.BITPATT],

[PBPM.BANK, BOREOR.BITPATT],

[PBDC.BANK, EVDATA.BITPATT],

[PBTE.BANK, EVDATA.BITPATT],

[PBCO.BANK, EVDATA.BITPATT],

[PB8S.BANK, EVDATA.BITPATT],

[PB6S.BANK, EVDATA.BITPATT],

[PBXO.BANK, EVDATA.BITPATT],

[PBUM.BANK, EVDATA.BITPATT],

[PBDM.BANK, EVDATA.BITPATT],

[PBPQ.BANK, MSIG.BITPATT],

[PBPP.BANK, MSIG.BITPATT],

[PBPL.BANK, MSIG.BITPATT],

[PBPD.BANK, MSIG.BITPATT],

[PBDU.BANK, MSIG.BITPATT],

include/banks.inc:

- adjust MAX.NO.BANKS

- add "VAL INT XXxx.BANK IS" (with ’XX’ the 2-letter id for the component;

’PB’ for BPRESAMPLER)

- add "VAL INT xxxx.NCOLS IS ..." if needed

- add to BANK.NCOLS (here: BPRES banks):

[PBBA.BANK, xxBA.NCOLS],

[PBPM.BANK, xxPM.NCOLS],

[PBDC.BANK, PRSD.NCOLS],

[PBTE.BANK, PRTE.NCOLS],

[PBCO.BANK, xxCO.NCOLS],

[PB8S.BANK, PRS8.NCOLS],

[PB6S.BANK, PRS6.NCOLS],

[PBXO.BANK, xxXO.NCOLS],

[PBUM.BANK, xxUM.NCOLS],

[PBDM.BANK, PRDM.NCOLS],

[PBPQ.BANK, PRPQ.NCOLS],

[PBPP.BANK, PRPP.NCOLS],

[PBPL.BANK, PRPL.NCOLS],

[PBPD.BANK, PRPD.NCOLS],

[PBDU.BANK, xxDU.NCOLS],

include/banks_info.inc:

- add entries to BANK.INFO

- add entries to BANK.DESCR

include/banks_maxsize.inc:

- add entries to BANK.MAX.NROWS

39

include/banksets.inc:

- add bankset entries:

(’xxxx’ = component name; the actual numbers should be different).

VAL INT xxxx.BOR.BANKSET IS 57 :

VAL INT xxxx.EOR.BANKSET IS 58 :

VAL INT xxxx.NORMAL.BANKSET IS 59 :

VAL INT xxxx.ENV.BANKSET IS 60 :

VAL INT xxxx.UNO.BANKSET IS 61 :

VAL INT xxxx.MS.BANKSET IS 62 :

- add banksets (or lists):

(’xxxx’ = component name).

xxxx..BOR.BANKLIST

xxxx..EOR.BANKLIST

xxxx..NORMAL.BANKLIST

xxxx..ENV.BANKLIST

xxxx..UNO.BANKLIST

xxxx..MS.BANKLIST

- add banksets to BANKSET.BANKLIST (=list of banklists)

- add banksets list to COMPONENT.BANKSET.LIST

(=lists of bankset indices (index into BANKSET.BANKLIST)

ordered per trigger type)

include/zebra_decl.inc:

- add entries for bank headers (2 ’holleriths’ per bank)

include/zebra_init.inc:

- add 1 entry per bank in ZEBRA.BANK.NR, ZEBRA.FCAL.BANK.ID,

ZEBRA.BCAL.BANK.ID and ZEBRA.RCAL.BANK.ID

include/rcparams.inc:

- add new control commands for downloading the PM-numbers:

(’xxxx’ = component name; actual numbers should be different).

VAL BYTE GET.xxxx.PM.NUMBERS.LKS IS #5D(BYTE) :

VAL BYTE GET.xxxx.PM.NUMBERS.LKC IS #DD(BYTE) :

include/dc.inc:

- if necessary add DSP code dependent DC page data offsets and

number of channels.

Declaration/init stuff

======================

libs/decode_hwparams.occ:

- add ’xxxx.from.dc, xxxx.for.dc’ (’xxxx’ = component name).

libs/send_numbers.occ:

- add ’send.pmnumbers()’ call to ’send.numbers()’ routine

(if PM-numbers are to be downloaded).

readout/hwparams_decode.occ:

- add ’xxxx.from.dc, xxxx.for.dc’ (’xxxx’ = component name).

readout/hwparams_init.occ:

- inititialize ’xxxx.from.dc, xxxx.for.dc’ (’xxxx’ = component name).

include/hwparams_mem.inc:

- add ’xxxx.from.dc, xxxx.for.dc’ (’xxxx’ = component name).

readout/caldata.opp:

- add (’xxxx’ = component name):

INT xxxx.pm.numbers.from, xxxx.pm.numbers.for :

- add (’xx’ = component 2-letter id; ’pb’ for BPRESAMPLER):

[]INT xxco.bank :

INT xxco.bank.size :

and

INT no.xxdc.rows, no.xxte.rows, no.xxco.rows :

INT no.xx6s.rows, no.xx8s.rows :

40

INT xxdc.start, xxte.start, xxco.start, xx6s.start, xx8s.start :

- add ’make.dummy.pm.numbers()’ call

- add entries for reception of PM-numbers:

IF

tag = GET.xxxx.PM.NUMBERS.LKS

get.pm.numbers()

tag = GET.xxxx.PM.NUMBERS.LKC

get.pm.numbers()

readout/ro_csb_intf.occ:

readout/calib_csb_intf.occ:

- add entries for reception of PM-numbers:

tag = GET.xxxx.PM.NUMBERS.LKS

...

tag = GET.xxxx.PM.NUMBERS.LKC

...

readout/calcconst.opp:

- add entry for reception of PM-numbers:

tag = GET.xxxx.PM.NUMBERS.LKS

...

readout/print_hwparams.occ:

- add new component to print out

Means&Sigma stuff

=================

readout/caldata_msinit.occ:

- add initialization to ’PROC init.meansigma.stuff()’:

IF

(component.mask /\ BPRES.BITPATT) <> 0

init.meansigma.for.component(COMPONENT.BPRES,

BPRES.from.dc,

BPRES.for.dc,

BPRES.pm.numbers.from,

BPRES.pm.numbers.for)

TRUE

SKIP

readout/caldata_msmem.inc:

- add MS-banks for the new component to MSIG.bank.list[][]:

[COMPONENT.BPRES, QINJ.TEST.TRIGGER, PBPQ.BANK] ,

[COMPONENT.BPRES, EMPTY.TEST.TRIGGER, PBPP.BANK] ,

[COMPONENT.BPRES, LED.TEST.TRIGGER, PBPD.BANK] ,

[COMPONENT.BPRES, LASER.TEST.TRIGGER, PBPL.BANK] ,

[COMPONENT.BPRES, UNO.TEST.TRIGGER, PBDU.BANK] ,

readout/makemsdatabanks.occ:

- add making of the MS-banks:

xxPQ.BANK, xxPP.BANK, xxPD.BANK, xxPL.BANK,

and

xxDU

DAQ stuff

=========

readout/makeboreorbanks.occ:

- add making of:

xxPM.BANK

xxBA.BANK

readout/makedcdatabanks.occ:

- add making of:

xxDC.BANK

xxTE.BANK

xx6S.BANK (xx8S.BANK)

41

xxUM.BANK

xxDM.BANK

readout/makenondcdatabanks.occ:

- add making of:

xxCO.BANK

xxXO.BANK

Test tools

==========

test/check_readout.occ

- add ’xxxx.from.dc, xxxx.for.dc’ (’xxxx’ = component name).

- add ’component = COMPONENT.xxxx’ to FUNCTION calc.crate.event.size().

- exclude xx6S and xx8S banks if event sizes without samples are requested.

Notes:

1. Run the test tool (’run_check_readout’) to get bank lists on a per crate

basis and (maximum) event sizes; also run ’run_testtables’ to check the

consistency of the different bank tables in the include files.

2. When these tests do not detect any problems one can be reasonably confident

there will be no runtime errors due to inconsistent bank info or buffers

that are too small to contain all event data.

3. Compile the test tools, then run the tools, only then compile the actual

CALDAQ stuff.

Configuration

=============

~calec_rc/defaults/hwconf/hwconfig.dat:

- add Digital Cards with proper component number in appropriate crate,

and increase the total number of DCs for that crate.

~calec_rc/defaults/dcconf/dcconf_N.conf

with 0<=N<=...

- put appropriate numbers to boot a particular DSP code on the new

Digital Card(s).

~calec_rc/defaults/*.dat:

- set the bankbit for the new component in the bankbit pattern(s)

for F, R and/or BCAL; e.g. for BPRESAMPLER with DCs in RCAL:

you have to add 0x00004000 to the RCAL ’bankbitpattern’

e.g. in ALLCAL_PHYSICS.DAT change line

70001FEE /* RCAL banks PRT=0x80,BPC=0x100,CAMAC=0x200,SRFLT=0x400, */

to

70005FEE /* RCAL banks PRT=0x80,BPC=0x100,CAMAC=0x200,SRFLT=0x400, */

- change the number of DCs in the lines stating the number of cards per

crate according to the number of DCs added.

PM-number file:

- if required make a new PM-number zebra-file using the ’cable2zebra’

tool in directory /zeus/transputer/tools/cable2zebra

- copy the resulting zebra-file to /zeus/transputer/online/vXX.Y/bin/cablefiles

and create a link to this file in /zeus/transputer/online/vXX.Y/bin/host

(with XX.Y, the tp-code version number).

~calec_rc/bin/start...

- the runcontrol program should point to the new transputer code version

if a new version has been made

42

