HIGGS PHYSICS

Ivo van Vulpen (Nikhef/UvA)

BROUT-ENGLERT-HIGGS PHYSICS

Higgs in the SM

Higgs physics at the BND 2014 school

09:00-10:45 hours

Theory and role of Higgs in the SM [blackboard]

11:15-13:00 hours

Experiment + consequences/interpretations [slides]

14:30-16:15 hours

Exercises (mainly thinking/discussing)

Dag Gilbert (ATLAS) - ICHEP 2014

"Combination of the Higgs boson main property measurements using the ATLAs detector"

Dag Gilbert (CMS) – ICHEP 2014 "Combined results of the 125 GeV Higgs boson couplings using all decay channels measured by the CMS detector"

Marumi Kado (ATLAS) - ICHEP 2014 "Higgs physics in ATLAS"

Christian Veelken (CMS) - ICHEP 2014 "Search for MSSM and NMSSM Higgs bosons with the CMS detector"

Christophe Grojean (theory) - ICHEP 2014 "Physics of the Brout_Englert-Higgs boson –theory-"

+ several other parallel talks from the ICHEP meeting

the foundations

X

Local gauge innvariance

Basis for forces in the Standard Model

Gauge field + interactions

What symmetries define the Standard Model

QED:	$U(1)_{\gamma} \rightarrow 1 \text{ d.o.f}$	Υ	
Weak force:	$SU(2)_{L} \rightarrow 3 \text{ d.o.f}$	W⁺, W⁻ en Z⁰	– Spin-1 particles
Strong force:	$SU(3)_{c} \rightarrow 8 \text{ d.o.f}$	8 gluons	

What is missing in our Standard Model?

GOOD THINGS:

• 'understand' origin of forces

Excellent agreement data

Connection EM / Weak force

Not-so-good things:

No massive gauge bosons (W[±],Z)

No massive fermions (all particles)

Vector boson scattering diverges

Solved by the Higgs mechanism

The Standard Model

 $SU(2)_L \otimes U(1)_Y \otimes SU(3)_C$

+ Higgs boson

¥

Particles have no ma

D. M. Tait methate of Mathematical Physics	HIGGS			
Received IV AJy 1964				
Fig a matcher of gaugin have discussed state theorem $2,27$; has any solution of a invariant theory which violates as inter- entry operation of that theory must con- mission activity particle. Kere, as $l = 20$	over, gave a pool that the latture of the C beeren in the source-distribute case is of a odditional point when there is beerefare power on a theory. The purpose of the too when that Giberrin asymetric fields for an i			

of there with violate as itersatus partials. How and the method base of the second second

 $+G_{2}\pi_{\mu}\sigma^{\mu}00$, (0) rest of, on applying on [1], that all there is any [4] can all contraints to $+g_{\mu\nu}$. Then the states theorem facts of $\pi_{\mu} = 0$, which as parting to the other terms mass. (Sheri's reing to append to state vector π_{μ} to availits a thereshowering and the vector π_{μ} to avail-10.5000

- September 1964 -

The Higgs mechanism

Particles do have mass

Higgs field in tha vacuum

"If I'm right there shold be a new particle: the Higgs boson"

Higgs production & decay at the LHC

"There are electromagnetic waves around us that contain voices and images"

"There is a Higgs field that allows particle to acquire a mass."

Production of the Higgs boson

Gauge bosons

Massive gauge boson ? ... then the Higgs couples to it

Fermions

Massive fermion ? ... then the Higgs couples to it

Production of the Higgs boson

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR3

How many Higgs bosons have been produced at the LHC run-1

Higgs branching fractions

Decay of the Higgs boson

Gauge boson

Massive gauge boson ? ... then the Higgs couples to it

Fermion

Higgs boson decayction

Higgs branching fractions

$$m_{h} = 125 \text{ GeV}$$

Br(h→bb) = 57.7 %
Br(h→WW) = 21.5 %
Br(h→ττ) = 6.32 %
Br(h→ZZ) = 2.64 %
Br(h→ZZ) = 0.23 %

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CERNYellowReportPageBR3

KABBALAH

Trivialities in the Higgs sector

$$SUM = \sum_{i} BR_{h \to i}(m_h)$$

A perfect straight line at 1.00

Kabbalah in the Higgs sector

$$\mathsf{PROD} = \prod_{i} BR_{h \to i}(m_h)$$

So ? m_h=125 GeV gives access to largest variety of decay channels

Kabbalah in the Standard Model

Quark mixing

$$\begin{pmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{pmatrix}$$

CKM-matrix

Neutrino mixing

$$\begin{pmatrix} |\mathbf{v}_{e}\rangle \\ |\mathbf{v}_{\mu}\rangle \\ |\mathbf{v}_{\tau}\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} |\mathbf{v}_{1}\rangle \\ |\mathbf{v}_{2}\rangle \\ |\mathbf{v}_{3}\rangle \end{pmatrix}$$

PMNS-matrix

Kabbalah in the Standard Model

Quark mixing

$$\begin{pmatrix} |d'\rangle \\ |s'\rangle \\ |b'\rangle \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} |d\rangle \\ |s\rangle \\ |b\rangle \end{pmatrix}$$

CKM-matrix

Neutrino mixing

$$\begin{pmatrix} \left| \mathbf{v}_{e} \right\rangle \\ \left| \mathbf{v}_{\mu} \right\rangle \\ \left| \mathbf{v}_{\tau} \right\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \left| \mathbf{v}_{1} \right\rangle \\ \left| \mathbf{v}_{2} \right\rangle \\ \left| \mathbf{v}_{3} \right\rangle \end{pmatrix}$$

PMNS-matrix

Completely different hierarchy, good parametrisations -> origin unknown!

More Kabbalah in the Standard Model

Yoshio Koide formula:

Top-quark Yukawa coupling:

$$\frac{m_e + m_\mu + m_\tau}{\left(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau}\right)^2} \approx \frac{2}{3}$$

= 0.666659(10)

$$\lambda_t = \frac{\sqrt{2}m_t}{v} \approx 1.00$$

= 0.9956

$$w = \frac{1}{\sqrt{2}G_F} = 246.22$$
 $m_t = 173.34$

discovery

... The real work

Does the Higgs boson hav a unique fingerprint ?

aviza

赵重驾下严禁始人

Standard Model cross-sections at the LHC

Another 4-lepton candidate

CMS Experiment at the LHC, CERN Data recorded: 2012-May-13 20:08:14.621490 GMT Run/Event: 194108 / 564224000

#events: ~ 500 per experiment Purity: ~ 2%-60%

 $H \rightarrow \gamma \gamma$ candidate

Animation of the discovery

test

 $h \rightarrow \gamma \gamma$

h→ZZ→4I

h→WW→lvlv

statistics
What is significance ?

Significance: probability to measure N events (or more) under the background-only hypothesis **Observed significance in our example:**

$$\int_{25}^{\infty} \text{Poisson}(N \mid 15) \, dN = 0.0112 \quad \leftarrow \text{ p-value}$$
$$= 2.28 \text{ sigma} \quad \leftarrow \text{ significance}$$

discovery if p-value $< 2.87 \times 10^{-7}$

 \rightarrow 39 events

Discovery-aimed: p-value and significance

incompatibiliy with SM-only hypothesis

SM	10
Higgs	5
Data	12

1) What is the expected significance ?

2) What is the **observed** significance ?

Discovery channels

110

120

130

140

150

160

m_m [GeV]

Invariant mass

m₄₁ [GeV]

A textbook discovery in slow-motion

Nice moments as a scientist

July 4th 2012: party time !!

Nobelprize Physics 2013

"There is a Higgs field in the vacuum"

François Englert

Peter Higgs

If the Mars lander finds life ...

... there are a 1000 new questions

Problems

The problems with the Higgs mechanism

The Higgs solves many problems:

- Massive gauge bosons
- Massive fermions
- WW scattering, CKM matrix, EW unification, .

The Higgs also creates problems:

- Hierarchy problem
- Vacuum energy contribution
- Why so simple ?

Problem 1: the hierarchy problem

Radiative corrections from the Higgs boson explode

Radiative corrections:

- EW precision measurements
- predicting top mass

Problem 1: the hierarchy problem

Radiative corrections from the Higgs boson explode

This is not stable and corrections grow: Λ = 10¹⁶ GeV ?

Problem 1: the hierarchy problem (solution?)

 $m_h = m_0 + \Delta m_h$

Supersymmetry can cancel the quadratic divergences

$$\Delta m_{H}^{2} \sim \frac{\lambda_{s}}{16\pi^{2}} (\Lambda^{2} + 2m_{f}^{2} \ln \frac{\Lambda}{m_{s}} + ...)$$
 scalars

... but we do not know if SUSY exists.

Problem 2

"If the Higgs field exists then the universe should be the size of a football"

Factor 10⁵⁴ wrong: one of the 'small' problems in cosmology

Questions regarding the Higgs boson

Is the Higgs boson exactly that of the SM – couplings ? Is the Higgs boson exactly that of the SM – spin, parity, ...? Is it elementary or composite ? Are there more Higgs bosons (singlets, SUSY, ...)? What explains the mass hierarchy? Is it possible that Higgs field is linked to inflation ?

Each of the new models will change the Higgs boson's properties

mass

Why measure the mass to high precision ?

Branching ratio's depend on the mass of the Higgs boson

		Δm	Δ Γ/Γ ₁₂₅
m _h = 123.7 GeV	Γ(h→ZZ) = 2.34%	-1%	-11%
m _h = 124.0 GeV	Γ(h→ZZ) = 2.41%		
m _h = 124.5 GeV	Γ(h→ZZ) = 2.52%	0.4%	-4.5%
m _h = 125.0 GeV	Γ(h→ZZ) = 2.64%	0.0%	0.0%
m _h = 125.5 GeV	Γ(h→ZZ) = 2.76%	0.4%	+4.5%
m _h = 126.0 GeV	Γ(h→ZZ) = 2.89%		
m _h = 126.3 GeV	Γ(h→ZZ) = 2.97%	+1%	+12%

Mass of the newly disovered particle

$$\label{eq:mh} \begin{split} m_h &= 125 \;.98 \pm 0.42 \;(\text{stat}) \pm 0.28 (\text{syst}) \,\text{GeV} \\ m_h &= 125 \;.98 \pm 0.50 \;\text{GeV} \end{split} \\ m_h &= 125 \;.98 \pm 0.52 \;\text{GeV} \\ \end{split}$$

Mass combination in ATLAS

 $m_h = 124 .36 \pm 0.41$

 $\Delta m_h = 1.47 \pm 0.72 \text{ GeV}$ 1.98 sigma

Small number of events: Clean signature: Excellent mass resolution: Backgrounds: 26.5 expected (37 observed), 4 categories S/B ~2 in mass region 120-130 GeV 1.6 (2.2) GeV in the 4μ (4e) channel ZZ*, Z+jets, tt

Extra signal/background separation:

BDT output based on kinematic information

Z-mass constraint:

- One Z boson is preferably off-shell
- Fix mass to M_Z (91.18 GeV) for the on-shell Z when computing m_{4l}

Per event error distribution

- Neglected for now in ATLAS

blackboard

- Wait for Antonio Castelli's thesis

ATLAS experiment
m _h = 124 .51 ± 0.52 GeV
$\mu = 1.66_{+0.38}^{+0.45}$

More events than expected and excellent mass measurement

Difficulties in the 2-photon channel

Many topologies:

Excellent mass resolution: Backgrounds: 450 events in 10 categories S/B from 0.02 – 0.60 1.2-2.4 GeV (1.7 GeV on average) $\gamma\gamma$, γ j, jj

2-photon channel

10 different categories:

Category	<i>n</i> _{sig}	FWHM [GeV]	$\sigma_{\rm eff}$ [GeV]	$b \text{ in } \pm \sigma_{\text{eff90}}$	s/b [%]	s/\sqrt{b}
$\sqrt{s}=8 \text{ TeV}$						
Inclusive	402.	3.69	1.67	10670	3.39	3.50
Unconv. central low p_{Tt}	59.3	3.13	1.35	801	6.66	1.88
Unconv. central high p _{Tt}	7.1	2.81	1.21	26.0	24.6	1.26
Unconv. rest low p_{Tt}	96.2	3.49	1.53	2624	3.30	1.69
Unconv. rest high p_{Tt}	10.4	3.11	1.36	93.9	9.95	0.96
Unconv. transition	26.0	4.24	1.86	910	2.57	0.78
Conv. central low p_{Tt}	37.2	3.47	1.52	589	5.69	1.38
Conv. central high p_{Tt}	4.5	3.07	1.35	20.9	19.4	0.88
Conv. rest low p_{Tt}	107.2	4.23	1.88	3834	2.52	1.56
Conv. rest high p_{Tt}	11.9	3.71	1.64	144.2	7.44	0.89
Conv. transition	42.1	5.31	2.41	1977	1.92	0.85

20% improvement statistical uncertainty by treating categories independently

Systematics in 2-photon channel

Masses in each of these categories

Category	n _{sig}	
Inclusive	402.	
Unconv. central low p_{Tt}	59.3	
Unconv. central high p_{Tt}	7.1	
Unconv. rest low p_{Tt}	96.2	
Unconv. rest high p_{Tt}	10.4	
Unconv. transition	26.0	
Conv. central low p_{Tt}	37.2	
Conv. central high p_{Tt}	4.5	
Conv. rest low p_{Tt}	107.2	
Conv. rest high p_{Tt}	11.9	
Conv. transition	42.1	

ATLAS experiment

 $m_h = 125.98 \pm 0.50 \text{ GeV}$

$$\mu = 1.29 \pm 0.30$$

More events than expected and good mass measurement

Combined mass measurement

 $m_h = 124 .36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{(syst)} \text{ GeV}$ $m_h = 124 .36 \pm 0.41$

Combined mass measurement

Vacuum stability

Theoretical implications of particular Higgs mass

 $\frac{d\lambda}{dt} = \beta_{\lambda}$, with $t = \ln(Q^2)$ Relates strength $\lambda(\Lambda)$ with that at $\lambda(v)$

regime where $\lambda >> g,g',y_t \rightarrow$ upper bound on m_h

If Λ grows, also $\lambda(\Lambda)$ grows. For every $\lambda(v)$ there is a Λ , Landau pole, for which $\lambda(\Lambda) = \infty$ $\Lambda = v e^{2\pi^2/3\lambda(v)}$

Consequenses:

If you want λ to be finite (or <1) up to some scale Λ , then this puts a maximum value for $\lambda(v)$, or m_h

$$m_h = \sqrt{-2\lambda(v)v^2}$$

Vacuum stability

regime where $\lambda << g,g',y_t \rightarrow$ lower bound on m_h

$$32\pi^{2}\frac{d\lambda}{dt} = 242z^{2} - 24y_{t}^{4} + \frac{3}{8}g^{\prime 4} + \frac{3}{4}g^{\prime 2}g^{2} + \frac{9}{8}g^{4} - \lambda(3g^{\prime 2} + 9g^{2} - 24y_{t}^{2}) + \dots$$

If Λ grows, $\lambda(\Lambda)$ gets smaller blackboard ... and eventually becomes negative

Consequences:

If you want λ to remain positive up to some scale Λ , then this puts a minimum value for $\lambda(v)$.

This means a lower limit on m_h as $m_h = \sqrt{-2\lambda(v)v^2}$

$$m_h > \sqrt{\frac{3v^2}{2\pi^2}} y_t^4 \ln\left(\frac{\Lambda^2}{v^2}\right)$$

Theoretical limits on the Higgs boson mass

Stability of the vacuum

Branchia ICHEP

Stability of the vacuum: meta-stability

New physics at the Planck scale: 2 higher dimensional operators

$$V(\phi) = \frac{\lambda}{4}\phi^4 + \frac{\lambda_6}{6}\frac{\phi^6}{M_P^2} + \frac{\lambda_8}{8}\frac{\phi^8}{M_P^4}$$

Tunneling time:
EW to true vacuum
$$\Gamma = \frac{1}{\tau} = T_U^3 \frac{S[\phi_b]^2}{4\pi^2} \left| \frac{\det' \left[-\partial^2 + V''(\phi_b) \right]}{\det \left[-\partial^2 + V''(v) \right]} \right|^{-1/2} e^{-S[\phi_b]}$$
Lifetime of the universe

spin

Higgs quantum numbers: spin and parity

Differences in each of these parameters lead to different event topologies

- Production angle for different production meachanisms
- Decay angles and event topologies for decay channels

Different scenario's for new particle X

		\sim	7 2 vector bosons
scenario	production mode	(X→VV decay	
0_m^+	$gg \to X$	$g_1^{(0)} \neq 0$	SM Higgs scalar boson
0_h^+	$gg \to X$	$g_2^{(0)} \neq 0$	scalar higher-dim. op.
0^{-}	$gg \to X$	$g_4^{(0)} \neq 0$	pseudo-scalar
1^{+}	$q\bar{q} \rightarrow X$	$b_2 \neq 0$	exotic pseudo-vector
1^{-}	$q\bar{q} \rightarrow X$	$b_1 \neq 0$	exotic vector
2_m^+	$g_1^{(2)} \neq 0$	$g_1^{(2)} = g_5^{(2)} \neq 0$	RS graviton min. coupl.
2_h^+	$g_4^{(2)} \neq 0$	$g_4^{(2)} \neq 0$	tensor higher-dim. op.
2_h^-	$g_8^{(2)} \neq 0$	$g_8^{(2)} \neq 0$	"pseudo-tensor"

Structure of the matrix element

Write out most generic form of the matrix element. Can also contain CP-information

$$\begin{aligned} & \text{Spin 0} \left(\text{qq production} \right) \\ & A(X \to V_1 V_2) = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(a_1 g_{\mu\nu} m_X^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \right) \tilde{f}^{*(2),\mu\nu} \right) \\ & \text{Spin 1} \left(\text{qq production} \right) \\ & A(X \to V_1 V_2) = b_1 \left[(\epsilon_1^* q) (\epsilon_2^* \epsilon_X) + (\epsilon_2^* q) (\epsilon_1^* \epsilon_X) \right] + b_2 \epsilon_{\alpha\mu\nu\beta} \epsilon_X^{\alpha} \epsilon_1^{*,\mu} \epsilon_2^{*,\nu} \tilde{q}^{\beta} \\ & \text{Spin 2} \left(\text{gg and qq production} \right) \\ & A(X \to V_1 V_2) = \Lambda^{-1} \left[2g_1^{(2)} t_{\mu\nu} f^{*(1)\mu\alpha} f^{*(2)\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*(1)\mu\alpha} f^{*(2)\nu\beta} + g_3^{(2)} \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} \left(f^{*(1)\mu\nu} f_{\mu\alpha}^{*(2)} + f^{*(2)\mu\nu} f_{\mu\alpha}^{*(1)} \right) \\ & + g_4^{(2)} \frac{\tilde{q}^\beta \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} f_{\alpha\beta}^{*(2)} + m_v^2 \left(2g_6^{(2)} t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6^{(2)} \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} (\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu}) + g_7^{(2)} \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*\epsilon} \epsilon_2^* \right) \\ & + g_4^{(2)} \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} \tilde{f}_{\alpha\beta}^{*(2)} + m_v^2 \left(g_9^{(2)} \frac{t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^{\sigma} + \frac{g_4^{(2)} g_1^{\mu} q^\sigma}{\Lambda^4} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma (\epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*)) \right) \right] \end{aligned}$$

4 lepton final state

 ϕ_1 : angle defined between the decay plane of the leading lepton pair and a plane defined by the vector of the Z_1 in the four lepton rest frame and the direction of the parton following the positive z-axis

θ* production angle of the Z₁ defined in the 4 lepton rest frame

Analysis strategy:

CMS

Build an 8-dimensional likelihood and fit for the anomalous couplings

Analysis strategy:

Train BDT on two hypotheses. Use likelihood ratio to test compatibilities

J^{P} in $ZZ \rightarrow 4I$ testing a 0⁻ hypothesis

distribution for Q for 100.000 0⁻ experiments distribution for Q for *100.000* 0⁺ *experiments*

-Data

Signal hypothesis

(m =125 GeV)

5

 $= 0^{-1}$

H₁ = 0

10

15

Q

Small probability to originate from the 0⁻ hypothesis: \rightarrow we exclude 0- hypothesis at 97.8% Confidence level

J^P: combination ZZ, WW and $\gamma\gamma$ channel

Sensitivity CMS experiment for alternative J^P hypotheses:

J=1,2: all models are excluded at more that 99.9% CL (WW+ZZ)

J^P: combination ZZ, WW and $\gamma\gamma$ channel

Exclusion levels for different scenario's:

- J^P= 2⁺: excluded at > 99.9% CL independent of f_{qq} (WW+ZZ+ $\gamma\gamma$)
- $J^{P}=0^{-}$: excluded at > 97.8% CL (ZZ)
- $J^{P}=1^{-}$: excluded at > 99.73% CL (WW+ZZ)
- $J^{P}=1^{+}$: excluded at > 99.97% CL (WW+ZZ)

spin-1 excluded at \geq 99.9% CL (WW+ZZ) and $\gamma\gamma$ observation (5.70 σ)

spin-2 excluded at ≥99.9% CL (WW+ZZ)

The quantum numbers of the Higgs boson seems to as predicted by the Standard Model: a spin-0 particle with positive parity

WIDTH

The width of the Higgs boson: Γ_{H}

Higgs boson:

Gauge bosons:

 Γ_z = 2.495 GeV

Γ_w = 2.085 GeV

Importance of the width:

- BR into non-SM particles
- Invisible decays
- Couplings different to SM

Estimate of Γ_{H} : direct

Mass distribution brings sensitivity to width of the Higgs boson

$$\sigma_{tot} = \sqrt{\sigma_{resol.}^2 + \Gamma_H^2}$$

resolution ~ 400 x Γ_{H}

Estimate of Γ_{H} : subtle

Interference between the $h \rightarrow \gamma \gamma$ and the $\gamma \gamma$ continuum (gg $\rightarrow \gamma \gamma$ box diagram) induces a mass shift in the di-photon mass.

Ultimate sensitivity: $L=3000 \text{ fb}^{-1} \rightarrow \Gamma_{H}=200 \text{ MeV}$ (50 x Standard Model Γ_{H})

Measurement of the off-shell signal strength

&

constraints on the Higgs boson width

Estimate of Γ_{H} : off-shell couplings

Higgs propagator

$$\frac{d\sigma_{gg \to h \to ZZ}}{dm_{ZZ}^2} \sim \frac{g_{ggh}^2 g_{hZZ}^2}{\left(m_{ZZ}^2 - m_h^2\right)^2 + m_h^2 \Gamma_h^2}$$

$$\mathbf{m}_{ZZ} \sim \mathbf{m}_{h}$$
 $\sigma_{g \rightarrow h \rightarrow ZZ}^{on-shell} \sim \frac{g_{ggh}^2 g_{hZZ}^2}{m_h \Gamma_h}$

 σ

m_{ZZ}>>m_h

$$\sum_{g \to h \to ZZ}^{\text{off-shell}} \sim \frac{g_{ggh}^2 g_{hZZ}^2}{\left(2m_Z\right)^2}$$

$$\frac{\sigma_{g \to h \to ZZ}^{off-shell}}{\sigma_{g \to h \to ZZ}^{on-shell}} \sim \Gamma_h$$

Estimate of Γ_{H} : off-shell couplings

Couplings

Higgs production and decay

Is the Higgs boson behaving as it should:

- do we see all production modes ?
- de we see all decay possibilities ?
- are they all in agreement with predictions ?

Note: rate differences wrt SM expressed as μ (ratio)

$$\mu = \frac{\sigma^{observed}}{\sigma^{SM}}$$

Higgs production and decay

Disentangle production modes

Rate measurement summary CMS experiment

decay modes

production modes

Proof of vector boson fusion

Production rate per production mode

Is there proof for VBF production

ATLAS CMS $\mu = 1.4^{+0.5+0.4}_{-0.4-0.3}$ $\mu = 1.25^{+0.63}_{-0.45}$

Effective Lagrangian

Use scale factors κ to parametrise deviations from SM (κ =1):

$$\mathcal{L} = \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W^+_\mu W^{-\mu} H + \kappa_g \frac{\alpha_s}{12\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_\gamma \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \gamma \frac{\alpha}{\pi v} A_{\mu\nu} Z^{\mu\nu} H - \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f\overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f\overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f\overline{f}\right) H$$

Rates and relations are modified if non-SM particles enter in the loops

Parametrize production/decay processes:

Difficult does not mean we do not try: $h \rightarrow \mu \mu$

 $\Gamma(h \rightarrow \mu \mu) = 0.02\%$

Enormous Drell-Yan background

How do you summarize such a negative result ?

Set a limit on $\mu_{S}=\Gamma(h\rightarrow\mu\mu)/\Gamma^{SM}(h\rightarrow\mu\mu)$

When / how do you exclude a signal

When / how do you exclude a signal

2.2%

mean SM instead of Ndata

Observed excluded cross-section, σ_h/σ_h^{SM} , = 1.64

20.0

12

2.0

10

Difficult does not mean we do not try: $h \rightarrow \mu \mu$

μ_S < 7

Parametrize production/decay processes:

Vector boson couplings: W versus Z

custodial symmetry

Already tested in high precision measurements at LEP and Tevatron

$$\lambda_{WZ} = \frac{\kappa_W}{\kappa_Z}$$

→ Treat W and Z as similar (V) $\kappa_W = \kappa_Z \equiv \kappa_V$

κ_V versus $\kappa_F \rightarrow$ vector bosons versus fermions

- Consistent with Standard Model
- Opposite sign κ_f still possible

Testing loops

New physics will enter in the loops

$\kappa_{\!\gamma} \; and \; \kappa_{\!g} \;$ top (and W) loops

Interpretation in invisible width

 $BR_{inv} < 41\% \rightarrow \Gamma_{inv} < 7.9 \text{ MeV}$
κ_{up} versus $\kappa_{down} \rightarrow$ down versus up type fermions

down versus up type fermions

Interpretation in MSSM

$$\lambda_{ud} = \frac{\kappa_{up}}{\kappa_{down}} = \frac{\kappa_t}{(\kappa_b, \kappa_\tau)}$$

Different New Physics models, like MSSM predict deviations from SM expectation

interpretation

Supersymmetry: MSSM

MSSM

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix} \quad H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}$$

h,H

H⁺,H⁻

Α

2 scalars: 1 pseudo-scalar: 2 charged:

argea.

blackboard

reduced # parameters

 $\tan\beta m_A$

$$m_{H^{\pm}}^{2} = m_{A}^{2} + m_{W}^{2}$$
$$m_{H,h}^{2} = \frac{1}{2} \left[m_{A}^{2} + m_{Z}^{2} \pm \sqrt{(m_{A}^{2} + m_{Z}^{2})^{2} - 4(m_{Z}m_{A}\cos(2\beta))^{2}} \right]$$

Example of a 2-Higgs-doublet-model Couplings different than those in SM Extra Higgs bosons

2-Higgs doublet models (general)

Differences in couplings in 2HDM's

Coupling scale factor	Type I	Type II	Type III	Type IV
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$
ĸu	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$
Кd	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$
ĸı	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$

TYPE I:

- 1 doublet for vector bosons (fermiophobic)
- 1 doublet for fermions

TYPE II: MSSM-like:

- 1 doublet for up-type
- 1 doublet for down-type

2-Higgs doublet models (general)

MSSM and NMSSM

MSSM

$$H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix} \quad H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix}$$

2 scalars: 1 pseudo-scalar: 2 charged: h,H A H⁺,H⁻

Difficult to reach m_h=125 GeV

Less radiative constraints Mixing S and H_u results in SM-like couplings

NMSSM

 $H_{u} = \begin{pmatrix} H_{u}^{+} \\ H_{u}^{0} \end{pmatrix} \quad H_{d} = \begin{pmatrix} H_{d}^{0} \\ H_{d}^{-} \end{pmatrix} \quad \mathbf{S}$

2 scalars:

2 charged:

1 pseudo-scalar:

EW singlet

 h_1, h_2, h_3

 a_{1}, a_{2}

 H^+, H^-

Additional electroweak singlet

Extra singlet will mix with h \rightarrow 2 CP-even Higgs bosons h (strength κ) and H (strength κ^{2}). Note: $\kappa^{2}+\kappa^{2}=1$

Signal strength:

Br_{invisibl3} < 37% at 95% CL

Rare decays

Weird stuff

compositness

Self-coupling

Higgs self-coupling

Higgs self-couplings

$$\lambda_{3H} = \frac{3m_H^2}{v}, \quad \lambda_{4H} = \frac{3m_H^2}{v^2}.$$

Blackboard: how is this possible (with Γ_h =4 MeV)

Very difficult to reach sensitivity (bb $\gamma\gamma$?). Also large negative interference.

(near) future

Higgs physics

Future LHC operation

Energy: 14 TeV Luminosity 3000 fb⁻¹

LHC timeline Start of LHC 2009 Run 1, 7+8 TeV, ~25 fb⁻¹ int. lumi 2013/14 Prepare LHC for LS1 design E & lumi Collect ~30 fb⁻¹ per year at 13/14 TeV 2018 Phase-1 upgrade LS2 ultimate lumi Twice nominal lumi at 14 TeV, ~100 fb⁻¹ per year ~2022 Phase-2 upgrade LS3 to HL-LHC ~300 fb⁻¹ per year, run up to > 3 ab⁻¹ collected ~2030

Coupling limits projection (CMS)

statistics (systematics)

statistics (systematics) + 50% theory error

Bit further future

e⁺e⁻ (ILC) $\sqrt{s} = 250, 500, 1000 \text{ GeV}$ L = few x 10³⁴ e⁺e⁻ (CLIC) $\sqrt{s} = 500, 1500, 3000 \text{ GeV}$ L = few x 10³⁴

pp (CERN)	√s=100 TeV
e⁺e⁻ (CERN)	\sqrt{s} =250 GeV

ultimate machine ? muon collider

Conclusions:

Vacuum is filled with the Higgs field Feels, smells, tastes like SM Higgs Big questions still open

Waarom valt een appel naar beneden ?

massa's trekken elkaar aan

$$F = G_N \frac{m_1 m_2}{r^2}$$

ruimte-tijd is gekromd

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G_N}{c^4} T_{\mu\nu}$$

Entropie (informatie)