- Which type of machine would you use?
 - e^+e^- or pp, pp or $p\overline{p}$ collider or fixed target? Why?
- At which energy do you want to run this machine?
- You will measure *CP* asymmetry in $B_s \rightarrow D_s^{\mp} K^{\pm}$ with BR=10⁻⁴
 - Estimate how many collisions you need for a precision of $\gamma {=} 1^{\circ}$
- You measure $B_s \to D_s^{\mp} K^{\pm}$ and $\overline{B_s} \to D_s^{\mp} K^{\pm}$
 - How do you determine the flavour of the B_s at production?
 - Are there intrinsic limits to this precision?
 - How would you calibrate the wrong tag fraction?
- There is a potential large background from another B_s -decay.
 - Do you know which it could be?
 - With which detector technology would you remove this background?
- What is the formula to reconstruct the B_s meson decay time in an event in observable quantities?
 - Which subdetectors would you require to measure it?

- Which type of machine would you use?
- e^+e^- or pp, pp or $p\overline{p}$ collider or fixed target? Why?
- At which energy do you want to run this machine?

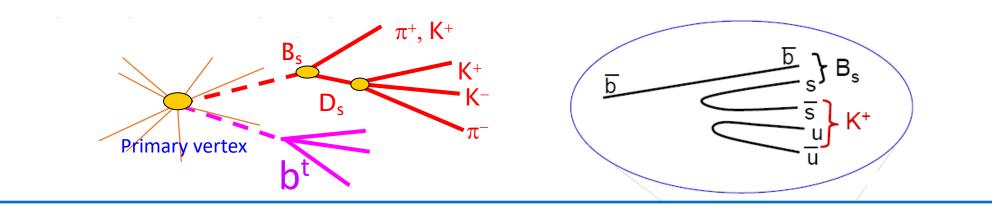
• Points to consider:

- e^+e^- at $\Upsilon(4S)$: electromagnetic production, clean, no B_S , coherent production: B^0 only time dependent CPV, requires asymmetric beams, good flavor tagging.
- e^+e^- at $\Upsilon(5S)$: B_s , lower cross section, no resolution for time dependent *CPV*.
- e^+e^- at Z-peak. Weak production, not coherent, interesting...?
- *pp* collisions: Strong production and lots of stat's, "messy" events, large backgrounds requiring excellent detectors.
- Fixed target vs collider: low cross section vs long decay distance.
 - b-quark cross section increases with high energy
- $pp \text{ vs } p\overline{p}$: "colour drag" asymmetry. Extra cross check for pp.

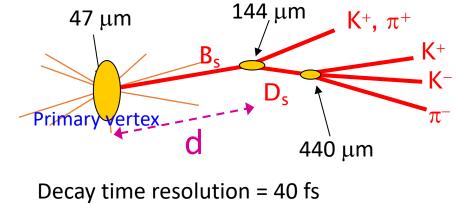
- You will measure *CP* asymmetry in $B_s \rightarrow D_s^{\pm} K^{\pm}$ with BR=10⁻⁴.
 - Estimate how many collisions you need for a precision of $\gamma = 1^{\circ}$
 - B_s mesons: Let's assume pp collisions at LHC using LHCb
- For ~1% measurement precision (0.01) on asymmetry:
 - Number of perfectly measured $B_s \rightarrow D_s^{\mp} K^{\pm}$ events:
 - Fraction of collisions that produce *b*-quarks:
 - Fraction of events where B_s meson is produced from b-quark:
 - Fraction of B_s that decay into $B_s \rightarrow D_s^{\mp} K^{\pm}$ channel
- → So in total

perfectly reconstructed events required

- Next, assumed measured by the LHCb experiment:
 - Acceptance x Reconstruction (background, resolution):
 - Trigger:
 - Tagging Power:
- In total


$pp\ {\rm collisions}\ {\rm must}\ {\rm be}\ {\rm collected}$

• Assume ~10 MHz collisions, 3 x 10⁶ s/year running time: ⁶ of running.


- You measure $B_s \to D_s^{\mp} K^{\pm}$ and $\overline{B_s} \to D_s^{\mp} K^{\pm}$
 - How do you determine the flavour of the B_s at production?

• Are there intrinsic limits to this precision?

• How would you calibrate the wrong tag fraction?

- There is a potential large background from another B_s -decay.
 - Do you know which it could be?
 - With which detector technology would you remove this background?
- What is the formula to reconstruct the *B_s* meson decay time in an event in observable quantities?
 - Which subdetectors would you require to measure it?

