

Related topics

Induction, magnetic flux, coil, magnetic field strength, magnetic field of coils, remanence, coercive field strength

Principle and task

A magnetic field is generated in a ring-shaped iron core by a continuous adjustable direct current applied to two coils. The field strength H and the flux density B are measured and the hysteresis recorded.

Equipment

Coil, 600 turns	06514.01	2
Iron core, U-shaped, solid	06491.00	1
Iron core, solid	06490.00	1
Iron core, U-shaped, laminated	06501.00	1
Iron core, short, laminated	06500.00	1
Commutator switch	06034.03	1
Power supply, univ., anal. disp.	13501.93	1
Rheostat, 10 Ohm, 5.7 A	06110.02	1
Teslameter, digital	13610.93	1
Hall probe, tangent., prot. cap	13610.02	1
Barrel base -PASS-	02006.55	1
Right angle clamp -PASS-	02040.55	1
Support rod, I 150 mm	02020.15	1
COBRA-interface 2	12100.93	1
PC COBRA data cable RS232, 2 m	12100.01	1
Software COBRA, electric values,	14293.61	1
Basic Softw. f. PHYWE Windows prog.	14099.61	1
Connecting cord, 750 mm, red	07362.01	5
Connecting cord, 750 mm, blue	07362.04	5

Problems

Record the hysteresis curve for a massive iron core and for a laminated one.

Set-up and procedure

The experimental set-up is shown in Fig. 1. Connect the computer, the COBRA interface and the Teslameter to a common electric mains power supply. Connect the variable transformator to an electric socket which is as far as possible from the above-mentioned one and, if possible, which uses another phase. In addition, position the coil set-up far from the computer and from the COBRA device to avoid errors during the transfer of data due to interference by the strong magnetic fields. Connect the voltage U which is measured across the resistor to the analogue input 3 of COBRA and the recorder output port of the Teslameter to the analogue input port 4. Attach the Hall probe unter the yoke in such a manner that the sensor is located directly adjacent to the borehole for the positioning pin. The magnetic field of the coils should be reversed with the commutator switch only at a voltage of 0 V as otherwise voltage spikes are generated which can affect data transfer.

Execution

- Load and start the "Disp_COM1" or "Disp_Com2" program
- Select the $\langle xy\rangle$ mode

- Range settings: "U3/V" \rightarrow (100) "U4/V" \rightarrow (1)

1

24307

)

- (Delta t/s): 0.50
 This is the sampling rate for a 486-PC. A Pentium PC can operate at a higher rate e.q. 0.2...0.3 sec.
- Press the second button from the left hand side on top of the diagramme.

Y axis settings:	Maximum:	1.000
	Minimum:	-1.000
	Units/division:	0.100

 Press the forth button from the left hand side on top of the diagramme.

Kaxis settings:	Maximum:	15.000
	Minimum:	-15.000
	Units/division:	2.000

- Set the rheostat to 10 Ω .
- Set the measuring range on the Teslameter to 2000 mT.
- Set the Teslameter to Direct Field and adjust the zero point in air using the rotary type switch above the probe jack.
- If residual magnetism is present in the iron core, demagnetise the core as follows:

Set the commutator switch in such a manner that an opposing field is generated. Briefly increase the voltage far enough for the flux density to assume a zero value; repeat a number of times.

- Set current limiter on the power supply to 5 A.
- After pressing the (Start) button, start the measurement procedure by clicking the (Reset) key.
- Increase the voltage slowly and uniformly from zero upwards and decrease it to zero again.
- Using the commutator switch reverse the polarity of the voltage.
- Again increase and then decrease the voltage slowly and uniformly.
- Once again reverse the polarity of the voltage with the commutator switch and increase the voltage.

- Stop the measurement procedure and press the $\langle \text{Stop} \rangle$ button.
- Reset the voltage to 0 V.

Theory and evaluation

Since the COBRA interface can only measure voltages, the current measurement is performed with the aid of a 10 Ω rheostat.

$$I = U/10\,\Omega\tag{1}$$

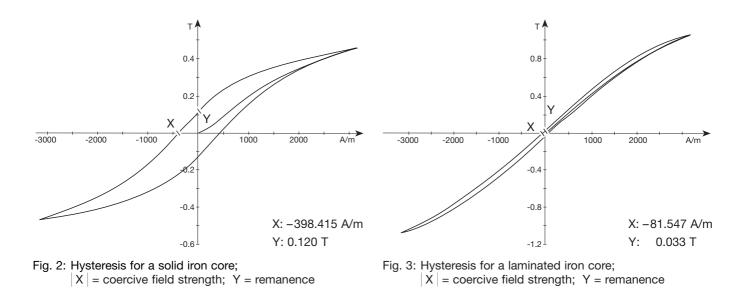
Furthermore, the field strength is calculated with the formula

 $H = I \cdot n/L$

where H = field strength

- n = number of turns in the coil (600 turns)
- L = average field line lengh in the core.

(solid core: L = 232 mmlaminated core: L = 244 mm)


The following correlation between the field strength and the measured voltage results:

$$H = (n/(L \cdot 10\Omega)) \cdot U$$

The factor n/ ($L \cdot 10\Omega$) changes due to the different dimensions of the two iron cores as follows:

Solid iron core:
$$(n/(L \cdot 10\Omega) = 258.62 \text{ in } 1/(m \cdot \Omega))$$

Laminated iron core: $(n/(L \cdot 10\Omega) = 245.90 \text{ in } 1/(m \cdot \Omega))$

A comparison of Figs. 2 and 3 shows that the remanence and coercive field strength are substantially greater in a solid iron core than in a laminated one.

24307

2