

Handbook: Air cushion table

<image><image>

Handbook • Air Cushion Table No. 01182.02 • 69 described Experiments

1 Introduction

1.1 Use of the air cushion table for instructional purposes

1.1.1 General information on methods

1.1.2 Model experiments on heat theory

1.1.3 Model experiments on electrical conductivity

1.1.4 Quantitative experiments on the air cushion table

1.2

General instructions on experiments

1.2.1 Procurement instructions

1.2.2 Operating instructions

1.2.3 Observation instructions

1.2.4 Supply of energy to the particles

1.2.5 Photographic recording of the movement processes

1.2.6 Preparation of cinematograph charts

1.2.7 Film strips for particle statistics

Air Cushion Table

Compact equipment for model experiments concerning the following subjects:

- Thermal movement of molecules in gases
- Structures of liquids and solids
- Behaviour of electrons in conductors and semi-conductors
- Atomic models and scattering experiments

The equipment consists of an air cushion table and adapted accessories.

- Demonstrative experiments through projection with an overhead projector.
- Coloured magnetic pucks float on an air cushion and repel each other.
- Magnetic barriers limit the surface.
- The air stream can be interrupted suddenly in order to allow the observation of an instantaneous state of the pucks.
- Lattices which can be fitted on allow investigation of the behaviour of electrons in solids.

This HANDBOOK can be purchased separately. It contains the experiments listed below. Please ask for a complete equipment list. Ref No 23702

Handbook: Air cushion table

2 Model experiments on heat theory/gases

2.1 Gases

2.1.1 Wall collisions

2.1.2 Collision processes with several particles

2.1.3 Mean velocity - mean value for all molecules at any moment

2.1.4

Mean velocity - mean value for any one molecule over a period

2.1.5 Occupation of space by gases

2.1.6 Mixing of gases

2.1.7 Temperature-dependence of the diffusion rate

2.1.8 Compression of a gas

2.1.9 Expansion of a gas

2.1.10 Equipartition of the mean kinetic energy of gas molecules

2.1.11 Rise in gas temperature due to addition of kinetic energy

2.1.12 Density distribution of a gas in the gravitational field

2.1.13 Diffusion of a gas through an opening

2.1.14 Brownian movement

2.1.15 Velocity distribution in a gas mixture

2.2 Solids

2.2.1 Production of solids

2.2.2Temperature of solids2.2.3

Melting of a solid **2.2.4**

Elasticity of solids

2.2.5 Recrystallization

2.2.6Diffusion of heat in solids. I2.2.7

Diffusion of heat in solids. II **2.3**

Liquids

2.3.1 Evaporation of a liquid

2.3.2 Temperature-dependence of the vapour pressure

3 Model experiments on electricity

3.1 The free electron 3.2

Electrical conductors

3.2.1 Electrical resistance

3.2.2 Thermal effect of electric current

3.2.3 Connection between voltage and current strength

3.2.4 Thermal velocity of conduction electrons

3.2.5 Drift velocity of conduction electrons

3.2.6 Thermionic emission

3.3 Semiconductors

3.3.1 Bound electron free electron

3.3.2 Number of mobile charge carriers

3.3.3 The electron hole

3.3.4 Conductivity of semiconductors

3.3.5 Electron holes in the electric field

3.3.6 Electron movement in the semiconductor

3.4 Insulators

3.4.1 Nonconductors 3.4.2

Bombardment of insulators with ionizing radiation

3.4.3 Electrical polarization of an insulator

4 Model experiments on nuclear physics

4.1 Atom models

4.1.1 Thomson's model of the atom

4.1.2 Rutherford's model of the atom (planetary model)

4.2 Rutherford's scattering experiments

5 Model experiments on solid physics

5.1 Electron exposed to a periodic potential

5.1.1 Electron in the field (potential) of a nucleus

5.1.2 Electron in the field (potential) of two nuclei

5.1.3 Electron in a linear crystal

5.1.4 Electrons in the surface crystal (work function)

5.2 Vacancy in the crystal, trap, colour centres