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Related topics
Fourier transform, lenses, Fraunhofer diffraction, index of
refraction, Huygens’ principle.

Principle and task
The electric field distribution of light in a specific plane (object
plane) is Fourier transformed into the 2f configuration.

Equipment
Optical base plate w. rubber ft. 08700.00 1
Laser, He-Ne 0.2/1.0 mW, 220 VAC* 08180.93 1
Adjusting support 35335 mm 08711.00 2
Surface mirror 30330 mm 08711.01 2
Magnetic foot f. opt. base plt. 08710.00 7
Holder f. diaphr./beam splitter 08719.00 1
Lens, mounted, f +150 mm 08022.01 1
Lens, mounted, f +100 mm 08021.01 1
Lensholder f. optical base plate 08723.00 2
Screen, white, 1503150 mm 09826.00 1
Diffraction grating, 50 lines/mm 08543.00 1
Screen, with diffracting elements 08577.02 1
Qbjective 253 N.A. 0.45 62470.00 1
Sliding device, horizontal 08713.00 1
xy shifting device 08714.00 2
Adapter ring device 08714.01 1
Pin hole 30 um 08743.00 1
Rule, plastic, 200 mm 09937.01 1

*Alternative
He/Ne Laser, 5 mW with holder 08701.00 1
Power supply f. laser head 5 mW 08702.93 1

Objective
Investigation of the Fourier transform by a convex lens for dif-
ferent diffraction objects in a 2f set-up.

Set-up and procedure
— In the following, the pairs of numbers in brackets refer to

the coordinates on the optical base plate in accordance
with Fig. 1b. These coordinates are intended to help with
coarse adjustment. 

— Perform the experimental set-up according to fig. 1a or 1b.
The recommended set-up height (beam path height) is
130 mm.

— The E25x beam expansion system (magnetic foot at [1,6])
and the lens L0 [1,3] are not to be used for the first beam
adjustment. 

— When adjusting the beam path with the adjustable mirrors
M1 [1,8] and M2 [1,1], the beam is set along the 1. x and
1. y coordinates of the base plate.

— Now place the E25x [1,6] beam expansion system without
its objective and pinhole, but equipped instead only with
the adjustment diaphragm, in the beam path. Orient it such
that the beam passes through the circular stops without
obstruction. Now replace these diaphragms with the
objective and the pinhole diaphragm. Move the pinhole
diaphragm toward the focus of the objective. In the pro-
cess, first ensure that a maximum of diffuse light strikes

Fig. 1a: Experimental set-up for fundamental principle of Fourier optics.
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the pinhole diaphragm and later the expanded beam.
Successively adjust the lateral positions of the objective
and the pinhole diaphragm while approaching the focus in
order to ultimately provide an expanded beam without dif-
fraction phenomena. The L0 [1,3] (f = +100 mm) is now
positioned at a distance exactly equal to the focal length
behind the pinhole diaphragm such that parallel light now
emerges from the lens. No divergence of the light spot
should occur with increasing separation. (testing for par-
allelism via the light spot’s diameter with a ruler at various
distances behind the lens L0 in a range of approximately
1 m).

— Now set-up the additional optical components. 

Set-up and procedure: (in accordance with Fig.1a and 1b)

Place a plate holder P1 [2,1] in the object plane. Position the
lens L1 [5,1] at the focus (f = 150 mm) and the screen Sc [8,1]
at the same distance behind the lens. 

— (a) As a first partial experiment observe the plane wave
itself (the light spot), i.e. no diffracting structures are
placed in the object plane. According to the theory, a
point should appear in the Fourier plane Sc behind the
lens. This is also the focus; this fact can be checked by
changing the screen’s distance from the lens.)

— (b) Now clamp the diaphragm with diffraction objects into
the plate holder P1 in the object plane. While doing so,
adjust its height and lateral position in such a manner
that the light spot strikes the slit which has a slit width
of 0.2 mm. The Fourier transform of the slit can be seen
on the screen as the typical diffraction pattern of a slit
(compare with the theory).

— (c) The diffraction grating (50 lines/mm) now serves as a
diffracting structure; clamp it in the plate holder P1.
Conclusions about the slit separation can be made
from the separation of the diffraction maxima in the
Fourier plane Sc behind the lens L1 (see theory).

Theory and evaluation 
The Fourier transform plays a major role in the natural scienc-
es. In the majority of cases, one deals with Fourier transforms
in a time range, which supplies us with the spectral composi-
tion of a time signal. This concept can be extended in two
aspects:

1. In our case a spatial signal and not a temporal signal is
transformed.

2. A two-dimensional transform is performed.
From this, the following is obtained:

E
~

(nx, ny) · F
~

[E (x,y )] (nx, ny) = (1)

E (x,y )e dxdy

where nx and ny are spatial frequencies.

Scalar diffraction theory
In Fig. 2 we observe a plane wave which is diffracted in one
plane. For this wave in the xy plane directly behind the plane
z = 0 with the following transmission distribution t (x,y ):

E (x,y ) = t(x,y ) Ee(x,y )

where Ee(x,y ) : electric field distribution of the incident wave.
The further expansion can be described by the assumption
that a spherical wave emanates from each point (x,y,0 ) behind
the diffracting structure (Huygens’ principle). This leads to
Kirchhoff’s diffraction integral:

E (x’,y’,z) = E (x,y ) cos (n,r) dxdy (2)

with l = spherical wave length
n = normal vector of the (x, y) plane
k = wave number = 

Equation (2) corresponds to a accumulation of spherical
waves, where the factor 1/( il) is a phase and amplitude factor
and cos (n,r) a directional factor which results from the
Maxwell field equations.
The Fresnel approximation (observations in a remote radiation
field) considers only rays which occupy a small angle to the
optical axis (z axis), i.e. |x |,|y |<<z and |x’|,|y’|<<z. In this case,
the directional factor can be neglected and the 1/r depen-
dence becomes: 1/r = 1/z. In the exponential function, this
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Fig.1b: Experimental set-up for the fundamental principles of
Fourier optic (2 f set-up). 
*only required for the 5 mW laser!

Fig.2: A plane wave Ee(x,y) is diffracted in the plane with t (x,y)
for z=0.
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cannot be performed as easily since even small changes in r
result in large phase changes. To achieve this, the roots in 

r = = z

are expanded into a series and one obtains:

r = z + + 

This results in the Fresnel approximation of the diffraction inte-
gral

E (x’,y’,z ) = · (3)

E (x,y ) · e i dxdy

For long distances from the diffracting plane with concurrent
finite expansion of the diffracting structure, one obtains the
Fraunhofer approximation:

E (x’,y’,z ) = C (x’,y’,z ) · (4)

E (x,y ) · e-2pi ( )dxdy

with C (x’,y’,z ) = · ei

with the spatial frequencies as new coordinates:

nx = ; ny = (5)

Consequently, the field distribution in the plane of observation
(x’,y’,z ) is shown by the following:

E ’ (x’,y’,z ) = C (lznx, lzny, z ) F
~

[E (x,y )] (nx,ny)

= E
~

(nx,ny ) (6)

The electric field distribution in the plane (x’,y’) for z = const is
thus established by a Fourier transform of the field strength
distribution in the diffracting plane after multiplication with a
quadratic phase factor exp (( ip/l z) (x2+y2)).
The spatial frequencies are proportional to the corresponding
diffraction angles (see Fig. 3), where: 

nx = = <

ny = = <

Through the making of a photographic recording or through
observation of the diffraction image with one eye, the intensity
formation disappears due to the phase information of the light
in the plane (x’,y’,z ). As a consequence, only the intensity dis-
tribution (this corresponds to the power spectrum) can be
observed. As a result the phase factor C (Equation 6) drops
out of the operation. Therefore, the following results: 

I (nx, ny) = u F
~

[E (x,y)] (nx, ny) u
2 (7)

Fourier transform by a lens
A biconvex lens exactly performs a two-dimensional Fourier
transform from the front to the rear focal plane if the diffract-
ing structure (entry field strength distribution) lies in the front
focal plane (see Fig. 4). In this process, the coordinates v and
u correspond to the angles b and a with the following correla-
tions:

nx = = = (8)

ny = = =

This means that the lens projects the image of the remote
radiation field in the rear focal plane:

E
~

(u,v ) = A (u,v ,fB) · (9)

E (x,y ) · e
– 2pi ( x+ · y)

dxdy

The phase factor A becomes independent of u and v, if the
entry field distribution is positioned exactly in the front focal
plane. Thus, the complex amplitude spectrum results:

E
~

(u,v ) , F
~

[E (x,y)] (u,v )

Again the power spectrum is recorded or observed:

I (u,v) = uE
~

(u,v) u2 , u F
~

[E (x,y ) ]u2 (10)

It, too, is independent of the phase factor A and thus becomes
independent of the position of the diffraction structure in the
front focal plane.
Additionally, equation 8 shows that the larger the focal length
of the lens is, the more extensive the diffraction image in the
(u,v ) plane is.
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Fig. 3: Relationships between spatial frequencies and the dif-
fraction angle.

Fig. 4: Experimental set-up with supplement for direct meas-
urement of the initial velocity of the ball.
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Examples of Fourier spectra
(a) Plane wave:
A plane wave which propagates itself in the direction of the
optical axis (z axis) (Fig. 5) is distinguished in the object plane
– (x,y ) plane – by a constant amplitude. Thus, the following
results for the Fourier transform:

E (x,y ) = E0 (11)

and F
~

[E (x,y )] = E0e dxdy

= E0 · d (nx) d (ny)

This is a point on the focal plane at (nx,ny) = (0,0), which shifts
at slanted incidence by an angle a to the optical axis on the
rear focal plane (see Fig. 5) with nx = sina/l.

(b) Infinitely long slit with finite width
If the diffracting structure is an infinite slit which is transillumi-
nated by a plane wave, this slit is mathematically described by
a rectangular function rect perpendicular to the slit direction
and having the same width a:

E (x,y ) = rect ( ) = E0 {1
0 else

for |x | < a/2

In the rear focal plane the following spectrum then results:

F
~

[E(x,y )] = E0 e dxdy (12)

= E0 · d (ny) (ny)  

= E0 · ad (ny) sinc (anx)

with the definition of the slit function sinc:

sinc (x ) = 

For infinitely long extension of the slit, one obtains on exten-
sion in the slit direction in the spectrum. This changes for a
finite length of the slit.
The zero points of the Sinc function are located at
…– 2/a, –1/a,1/a,2/a, ...(see Fig.6).

(c) Grid:
A grid is a composite diffracting structure. It consists of a peri-
odic sequence (to be represented by a so-called comb func-
tion comb ) of individual identical slit functions sinc.

The grid consists of M slits having a width a and a slit sepa-
ration d (>a ) in the x direction. As a result, the field strength
distribution can be in the front focal plane can be represented
as follows:

E (x,y ) = E0 rect ( – ) = E0 [ d (x–m·d)] * rect 

where the Fourier transform of a convolution product (E1*E2) is
given by:

F
~

[(E1 *E2) (x,y )] (nx,ny) = F
~

[E1 (x,y )] (nx,ny) ·F
~

[E2 (x,y )] (nx,ny)

Using the calculation rules for Fourier transforms, the follow-
ing spectrum results in the rear focal plane of the lens:

F
~

(E) = E0 ·d (ny ) · e (13)

= E0 d (ny ) a · sinc (anx) · e

Due to the intensity formation the phase factor is cancelled:

I (nx,ny) = |E0|2 d(ny )a2sinc2 (anx) (14)

In Fig. 7, a grid with its corresponding spectrum (and the cor-
responding intensity distributions) is presented.

One sees on the spectrum that the envelope curve is formed
by the spectrum of the individual slit which has a width a. The
finer structure is produced by the periodicity, which is deter-
mined by the grid constant Md.
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Fig.5: Spectra of a plane wave.
(a) for the direction of light propagation parallel to the

optical axis.
(b) for slanted incidence of the plane wave with refer-

ence to the optical axis.

Fig. 6: Infinitely long slit with the width a and its Fourier spec-
trum.

Fig. 7: Grating consisting of M slits and its Fourier spectrum.
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