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Related topics
Potential and kinetic energy, rotational energy, moment of iner-
tia, inelastic collision, principle of conservation of momentum
and angular momentum, measurement of projectile velocities .

Principle and task
A classic method of determining the velocity of a projectile is
to shoot the projectile into a resting mass which is large com-
pared to the projectile’s mass and hung as a pendulum. In the
process, the projectile remains in the pendulum mass and
oscillates with it. This is an inelastic collision in which the
momentum remains unchanged. If the pendulum’s mechanical
data are known, one can infer the velocity of the pendulum’s
mass (including the projectile’s mass) at the lowest point of
the pendulum’s oscillation from the amplitude of the
pendulum’s oscillation. The momentum of the two masses in
this phase of the oscillation must thus be equal to the impulse
of the projectile before it struck the pendulum. If one knows
the masses of the pendulum and the projectile, one can cal-
culate the projectile’s velocity.
In order to be able to use this measuring principle without
danger, the following set-up is used here: A steel ball is shot
at the mass of a pendulum with the aid of a spring catapult.
The pendulum mass has a hollow space in which the steel ball
is held.
If, additionally, two light barriers and a time measuring device
are available, an independent, direct measurement of the
initial velocity of the ball can be made.

Equipment
Ballistic pendulum 11229.00 1
Steel ball, d 19 mm 02502.01 2
Timer 4-4 13605.99 1
Speed measuring attachement 11229.30 1
Connecting cord, 750 mm, red 07362.01 1
Connecting cord, 750 mm, yellow 07362.02 2
Connecting cord, 750 mm, blue 07362.04 1

Problems
1. Measurement of the oscillation amplitudes of the ballistic

pendulum after capturing the steel ball for the three pos-
sible tension energies of the throwing device.

2. Calculation of the initial velocities of the ball from the meas-
ured oscillation amplitudes and the mechanical data of the
pendulum is performed using the approximation formula (3).

3. Plotting of the velocity of the steel ball v as a function of the
maximum deflection w (0…90°) of the pendulum according
to formula (3), taking into consideration the special
mechanical data of the experiment.

4. Determination of the correction factor fcor for the utilised
pendulum for the conversion of the velocities determined
by using the approximation formula into the values
obtained from the exact theory. Correction of the velocity
values from Problem 2.

Fig. 1: Experimental set-up: Ballistic Pendulum.
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5. If the supplementary devices for the direct measurement of
the initial velocity are available, measure the initial velocities
corresponding to the three tension steps of the throwing
device by performing 10 measurements each with subse-
quent mean value calculation. Plot the measured points in
the diagram from Problem 3. Give reasons for contingent
systematic deviations from the theoretical curve.

Set-up and Procedure
Assemble the device according to Fig. 1. It must be standing
on a stable table during the measurements. Information on the
operation of the ballistic pendulum is to be obtained from the
appropriate operating instructions.

Before stretching the spring of the throwing device, affix the
steel ball to the holding magnet of the bolt. Then pull the bolt
back until the desired lock-in position has been reached. Now,
without touching the pendulum’s pulling pin, ensure that the
pendulum is at rest and that the trailing pointer indicates near-
ly zero. After these preparations have been completed, trigger
the shot by pulling the release lever. The amplitude of the
pendulum’s oscillation can be read from the trailing pointer. 

Note: Due to the friction involved in the functioning of the trail-
ing pointer, the measured amplitude may be can be slightly
low. It is therefore advisable to shoot at the resting pendulum
using the same spring tension for a second and a third time
without resetting the trailing pointer. When the trailing pointer
is not moved any further, one can assume that the angle indi-
cated has not been falsified by friction.

Theory and evaluation
For the evaluation, we proceed from the approximation that
the pendulum’s mass M and the Mass m of the captured ball
move as one mass point at the location of their common cen-
tre of gravity. If we then set the potential energy of the pendu-

lum in its resting position to zero, the following is valid for the
potential energy at the highest point of the oscillation:

Epot = (m + M) · g · Dh ;

where g is the acceleration of gravity and Dh the height by
which the centre of gravity was raised. In Fig. 2 one sees that
with r as the distance between the pivot point and the centre
of gravity, one can also write this formula as: 

Epot = (m + M) · g · (1 – cos w) (1)

This potential energy must be equal to the kinetic energy Ekin
immediately after the collision:

Ekin = · (m + M) · v2
p (2)

where vp is the velocity of the pendulum’s mass (including the
ball) immediately after the collision. If one substitutes the
momentum p = (m + M)·vp, in this equation, one obtains the
following:

Ekin = 

or p = 

Before the collision, the pendulum was at rest. Due to the prin-
ciple of conservation of momentum, the momentum p = m ·v
must be equal in magnitude to the momentum of the ball
before the collision. One obtains the following for the velocity
v of the ball before the start, i.e. for the parameter to be deter-
mined:

v = · (3).

Fig. 3 shows the function v(w). Between 0 and 90°, the curve
deviates only slightly from a straight line, i.e. the deflection of
the pendulum is, as a good approximation, proportional to the
velocity of the ball.

For the evaluation, determine the mass m of the ball. The posi-
tion of the centre of gravity with captured steel ball is marked
on the pendulum’s body. the mass M of the pendulum’s body
can only be determined together with its mounting. The exact
value is slightly less and can be obtained from the operating
instructions

Information for an exact evaluation of the experiment

The theoretical treatment of the processes occurring on the
ballistic pendulum, given above, is based on a certain ideal-
isation. Formula (3) is consequently only approximately valid,
but is very useful for practical purposes. At this time, we only
wish to briefly show how one can achieve an exact evaluation. 
To begin with, Equation (2) for the kinetic energy is to be
replaced by the equation for the rotational energy of a physi-
cal pendulum: 

Ekin = · I · v2 (2a)

where I is the moment of inertia of the pendulum with cap-
tured ball and w the angular velocity. If one substitutes the
angular momentum L = I·v, the following is obtained.

Ekin = · or L = .Ï2I · Ekin
L2

2I

1
2

Ï2 · g · r · (1 – cos w)m + M
m

Ï2 · (m1M) · Ekin

p2

2 · (m + M)

1
2

Fig. 2: Diagram on the theory of the ballistic pendulum.
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This angular momentum must be equal to the angular momen-
tum Lb of the ball before the collision with reference to the
pivot point of the pendulum. If rb is the distance of the ball
from the pivot point at the instant of capture, then 

Lb = m · r2
b · vb = m · rb · v.

By setting the two angular momentums equal to each other,
one obtains

v = · 

The determination of the moment of inertia I of a physical pen-
dulum is achieved by measuring its oscillation period T. For
our pendulum the following results:

I = 

and thus · · · (3a)

If we now term the velocity calculated with the approximation
formula (3) vapp and the exact value calculated with the exact
formula (3a) vex,, The two differ  in accordance with vex =
fcor·vapp by the correction factor:

fcor = · .

This formula becomes more illustrative if one substitutes the
following expression for T, in which rm is the length of a math-
ematical pendulum having the oscillation period T:

T = 2p · .

The following is now obtained:

fcor = (4)

For an imaginary experiment with a projectile in the form of a
mass point, which collides inelastically with a mathematical pen-
dulum at rest, the three lengths used in Formula (4) are equal, i.e.
fcor = 1. By measuring r and rb for the physical pendulum used
as well as by calculating rm from the measured oscillation peri-
od, one can easily determine the correction factor for the veloc-
ities obtained with Equation (3) from Equation (4).

Ïr · rm
rb

!rm
g

Ïr · g
T

2p · rb

Ï2 · (1 – cos w)
g · T
2p

r
rb

m + M
m

(m + M) · g · r · T2

4p2

Ï2 · I · (m 1 M) · g · r · (1 – cos w)
1

m · rb

Fig. 3: Theoretical calibration curve for a velocity measure-
ment with a ballistic pendulum. This is only an exem-
plary curve as the manufacturer reserves the right to
make technical alterations with regard to the properties
of the device. 

Fig. 4: Experimental set-up with supplement for direct measurement of the
initial velocity of the ball.
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