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Abstract  We describe a simple computer program
which simulates molecular collisions in two dimensions
and leads to Maxwell distribution. The results show that
even with 5—10 colliding molecules the velocity distribu-
tion is quite close to Maxwell’s,

When teaching molecular physics, one often illus-
trates the behaviour of molecules in gas by showing
~-{on an overhead projector) collisions of little discs
floating on an air pitlow. Observing rapid changes
of velocities of the discs, students get a feeling of
the molecular chaos. But in this way it is difficult to’
see the appearance of statistical regularities, such as
the Maxwell (1860a, b, 18664, b, c, 1867) distribu-
tion, which are at the basis of statistical physics.

The purpose of this note is to point out that the
emergence of Maxwell distribution out of the
molecular chaos ¢can be demonstrated by a simple
computer experiment, which can be performed on a
home computer. )

We start by considering the simplest case of two
molecules with equal masses moving within a given
region. In order to connect the discussion with
demonstrations of the molecular chaos on an over-
head projector, we shall consider only the case of
molecules moving in a plane. Let us suppose that at
time ¢, the molecules we follow have velocities p'®

id 15", Since our ‘gas’ is very rare, the molecules
#ill be reflected many times by the walls before
they collide. As the walls are never perfectly regu-
far, the directions (but not magnitudes} of velocities
ill change irregularly at every reflection. Instead
i trying to describe the motion of molecules within
the vessel, it Is much easier and more realistic to
assume that the directions of the molecules’ vel-
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Zasammentassung  Ein einfaches Computerprogramm
wird beschrieben, das molekufare Stifle in zwei Dimen-
sionen simuliert und zur Maxwell-Verteilung fiihrt. Die
Ergebnisse demonstrieren, daB bereits mit StéBen von
5-10 Molekiilen nazhezu Maxwell-Geschwindigkeits-
verteilung ereicht wird, .

ocities are completely random at the moment-they
collide. We thus choose two angles o, € (0,27} and
a; {0, 27) at random and take the velocities v, D
before the collision of molecules as

v, =0\ sin a,

U2, = o3| sin a,.

Dy = |”‘1m| Cos oy,

1

02, = |95 cos as, M

When describing the collision we first pass to the

centre of mass system (cms). Tis velocity ¥V with

respect to the vessel (lab, system) is V=, +py),

and velocities of molecules in this system are
wl=vl-v=%(vl—°2).k (2)
w2 =—w,. e

The conservation of energy. and momentum says
that in the cwms the direction of w; may change
during the collision, but its magnitude remains con-
stant. The situation is shown in figure 1, taken
almost literally from Maxwell’s papers (1866a, b, c,
1867), The result of the collision is thus given by a
single angle vy in terms of which

w},‘:wucoé‘Ver., sin y ‘
Wiy =—w, siny+w, cosy 3}

W= —w} ‘
where w) and w; are velocities in the cMs after the
collision.
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Figure 1 The vector ©A represents the velockty o, the
vector OB the vecocity ©,. The centre of AB is denoted
as G and OG represents the oms velocity V. The vel-
ocities w, and w, in the oms are given by vectors GA
and GB. During the collision these velocities are

rolated by the angle v to new values GA” snd GB'. Note
that the magnitudes of velocities in the Iab. system

{OA” and OB’} after the collision might be quite

different even if the magnitindes of the original

velocities were equal.

According 1o classical mechanics, the angle ¥
depends on parameters characterising the collision
{impact parameter and ©ms energy E) and on the
form. of interaction energy  W{r} between
molecules. In quantum mechanics, the angle v is 2
random variable with the distribution depending in
peneral on E and Wir}. In osder 1o have a simple
muodel, we shall suppose that the scuttering is iso-
tropic {rigid motecules with contact interaction or
s-wave. scattering in guantum mechanies). There-
fore we shall consider the angle ¥ as a uniformly
distributed random wvariable within the interval
{0, 2ar).

After passing back to the laboratory system we
find the velocities vy, v} of molecules after the
collision

vi=wi+ V¥,  oy=wi+V¥ @)

From equations (2), (3) and (4) we easily obtain
(0] =Hoi+od
£[HoT-vdcos y + oo sina siny] (5

where a =g, ~o, is a random wariable with -
form distribution within the interval { =24, 2w},
Note that v+ 3=} + u}°, which shows explicitly
the conservation of energy in the collision process.

After the scattering, the muolecules are again
reflected many times from the walls of the vessel,
the directions of their velocities change in 2 random
way and they coflide again.

With two molecules, of course, we cannot obtain
the Maxwetl distribution fone molecule may have
at most the total energy of the two molecules with
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which we started) and for thal purpose we have 1o
consider a ‘gas” conlsining more molecules. Since
we do not wish to complicate the snalysis by fol-
lowing trajectories of molecules, we selegt the two
of them that are going to collide at random,

Cur simple mode! thus consists of four steps that
are repeated again and again:

Siep I;: Choose two molecules which will collide.

Siep 20 Generate randomly the angle o between
therr velocities {the consequence of reflections from
irregular walis).

Step 3: Generate randomly the angle of scatter-
ing v in the Cas.

Step 4: Calculate the new velodities in the Jab.
system.

In the appendix we list the program which rep-
resents the realisation of our model on the Sinclair
ZX Spectrum computer. We did not take ad-
vantage of the modifications of sasic offered by
this computer and tried to write the program in
standard sasic. The only exceptions are the IF
statements and the CLS {clear screen) statement.
Instead of velocities, we work with their ratios 1o
wmitial velocities, which are all made equal. From
the didactical point of view a graphical cvtpw &
desirable, but we have not included the corres-
ponding part of our program, because it is
machine-dependent.

The: caleulated velocity distributions for a ‘gas’
consisting of 5, 10 or 50 moleciles are compared
with the true Maxwell distribution in fipure 2. Note
that in this planar case the distribation function i
proportional to v expl{— oy}, where {v%} denotes
the mean quadratic veloeityt,

It is not surprising that the velocity distribution
in a *gas’ consisting of 50 molegules is so close 1o
Maxwell's one, but it & somewhat surprising for 2
‘gay” ponsisting of anly five molecules,

I one forgets for a moment what one learned at
university about velocity distributions, and the stu-
dents at the appropriate age fortunately do not
bave this knowledge, one can perhaps feel the
emergence of the velocity distribution as something
greal. and will be able to appreciate Maxwel's
intuition, which led him to the discovery of these
regularities at a time when even talking about the
existence of atoms and molecules was often consi-
dered as a fantasy: Maxwell, as #t is well known,
mrrived at his distribution in two different ways,
The former derivation {(Maxwell 18602, b} was
based on the assumption that in the state of
mulecular chaos the probability f{v)de, for a
molecule to have its x component of velocity within
the intervat (v,. v, +dp,} is completely independent

tThe factor § present in the exponent in Muxwell dis-
#ibution in three dimensions & shsewt in the plinar
case, This is seen from the facr that the o, dissribution
s proportional 1o

expl-vf2e?) amd {oD={ol= )
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Figure 2 The distribution of molecular velocities in a ‘gas’ consisting of five (dotted lines), 10 (broken lines) and 50
molecules (chain lines) compared with the planar Maxwell distribution (full lines). In each case the histogram
corresponds to about 5000 ‘snapshots’” of the molecular velocities.

of y and z components of its velocity. After minor
modifications, the model presented in this note can
be used to check this assumption by looking at the
correlations between v, and v, of the same
molecule.

The latter derivation (Maxwell 18664, b, ¢, 1867)
based on the idea of detailed balance is probably
more difficult to study using the present model.

Using computers in teaching statistical physics is
becoming quite popular and for an interested
reader we give a few references to earlier works. A
quantumn shuffling game simulating the Einstein
model of a solid by transferring at random the
quanta of energy on a planar lattice is described by
Black et al (1971}. A set of programs concerning
the use of computers in statistical physics is given in
an excellent book by Merrill (1976). Further prog-

rams simulating some statistical physics phenomena
are described by Murch (1979) and Sauer (1981}

It seems to us that the difference between our
program and the eariier works on simulating the
Maxwell distribution lies in the fast thermalisation
of the initial state caused by the randomisation of
directions of molecular velocities by collisions with
irregular walls of the vessel. This enables the user
to find Maxwell distribution in a relatively short
time with a ‘gas’ containing only a very small
number of molecules.
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tf REM Computer simulation of molecular velocity 40 RETURN
~ distribution 418 REW oo mom oo
15 DIM M2%) 506 ‘Subroutine pcﬂomung N collisions
2 DM Q2 51¢ FORI=1TON
25 DIM Y(S#) 520 &Eﬁlkandmndmcﬂmocomdmgmm
38 P2=2xPl 538 LET H=N3x Al
13 Integer RN gen paramclen 549 L_ET LI=INTINS x{H ~ INT(H) + 1)
4h T N3=1p3 554 L2 =INTINS x{H + A1 - INT(H + A1)+ 1)
45 !..ET' At =S0R(D 568 N3=NI+2
5 REM Collisions counter: ST REM The angle between velacities prior to
55 LET Mi=¢ collision
60 REM Scannings counter: - - 589 A=P2x RND
65 LET M2=§ 594 Scattering angle in the CMS
7@ REM Number of data counter: &9 LET G=P2xRND
75 LETNT&=g 61 REM Calculating new velocities
3%  REM Starting velocities: 620 1T vi= VLY
- B FORI=I1TOS 638 LETVZ VLD
-9 LBEYTVB=1 648 LET S=85x{VIxVI+ VIV
95 NEXTJ 658 LET R=§.5x{VIxXV] - V2xVIOx{OSG)
1% GO SUB 3p¢ +V1x V22 SIN(A)x SINIG}
195 INPUT “Number of molecules:" NS 668 LET VILD=SQRS+ R}
1§ INPUT “Number of collisions prior the first 678 LET V(L) =S0R(S-R)
scanning:™:N 686 I;g]'
P15 T INPUT “Number of collisions between two 690 Ml=Mi+N
. © stcessive scannings:’’ ;M4 794 RETURN
12 INPUT “Required number of scannings:™;M3 TP BEM - oo o o om o mn s s -
125 GO SUB 5p¢ 8pa The scanning subroutine
139 GO SUB spg R FORJI=1TONS .
£35 LET N=M4 824 T 1= INT(G X V(D)) + 1
148 FOR F=2TO M3 83¢ IF1>20 THEN GO TO 850
145 GO SUB 589 B4 LET M(Dy=M(D+1
158 GO SUB sgp 859 NEXTJ
155 NEXTF 868 LRT NT=N7+N5
168 GO SUB 9¢ 27 LETMZ=M2+1
165 . INPUT “Stop ={, Improve statistics = I":R 830 RETURN
I;ﬁ :;i_;_(l;; ¥ THEN GO TO 12¢ BIF RN — - — e o e e e o
¥is S5TO op Dlsplayrng results
I8 REM--rmmmmme End of main program————m—ow= 919 g‘ :
3¢ RENE Planar Maxwell distribution integrated aver 915 PRINT “Bin";TAB(6);"Simulation™;
bins TABOM *Troe Maxwell™
3¢ LETR=1 - 918 PRINT
X LETS=16 924 FORI=1TO 138
BB 1LETB=p ns 8 = TE~4x INTOES x M(NNT)}
348 FOR 1=170 2¢ 93 PRINT KTABBLSTABR)OXN
I53 LETB=B+S o948 NEXT 1
ke :J:‘r H=EXP{-BxB) 943 PRINT
X Q) = IE~4 X INTUIE +4 x{R - H}) 946 PRINT “Bin width =";1/6
38p R=8 958 RETURN
399 NEXT'i OO RIEM o oo i e s s it e s e e




