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1 Dirac equation from the Lagrangian

The Dirac equation was found by Paul Dirac by constructing the equation ofxs motion
that is both relativistically correct (like the Klein-Gordon equation), and linear in d/dt
(like the Schrodinger equation) to avoid negative-energy solutions,

(49, — m)i(x) = 0.

Hamilton’s principle of stationary (or “least”) action says that the “path” taken by the
system between times t; and t,, is the one for which the change in action is minimal.
(The action S is obtained from the time-integral of the Lagrangian, i.e. by integrating
the diffence of kinetic and potential energy of the system over time.) This requirement is
equivalent to the Euler-Lagrange equation

oL oL

u(e) ~ o)

Show that the Euler-Lagrange equation of the Lagrangian
L= il/_)wa“lb - m@EQﬂ

leads to the Dirac equation, and its adjoint, (i7", +m)i(z) = 0. Note that you need to
consider ¥ and v as independent fields.

2 Massless gauge bosons

a) The Lagrangian that describes the fermions in QED is

EQED,fermion - ¢(27MDM - m)@/)
Show that the Lagrangian is invariant under the local gauge transformation

= Y =Dy, (1)
with A — A" = A" — 9 a(x).



b)

3

Adding the term that describes the free photons (which “by the way” lead to the
Maxwell equations 0,F" = j), gives

. 1 Y
‘CQED = ¢(Z7MDM — m)w — ZFIWFM

If the photon would have a mass, the corresponding mass term would be £ a5 =
%m2A“AM. Local gauge invariance implies that the Lagrangian remains unchanged
under the transformation

AP — A = AP — OFa(x)

Show that the mass term of the photon violates local gauge invariance.

Self-interacting gauge bosons

Instead of the “simple” phase factor in QED, see Eq. 1, we will now consider a rotation
in isospin space

b — = e @y (2)

with ¢ a two-component object in isospin space.

a)

In order to keep the Lagrangian invariant under this gauge transformation, the
covariant derivative D, = 10, + igB,, is introduced, with B,, a (2 x 2) matrix. It

can be expressed in terms of the three gauge fields l;“ (x) = <bp,71(x), bu2(2), b“73(1?>>.
Write B, as a (2x2) matrix, using the Pauli matrices 7, starting from B, = %Fl;u(m)
Again, we wish the Lagrangian to stay invariant under the gauge transformation.

Let’s investigate again what happens with the Lagrangian under the gauge trans-
formation

Y - = ey 3)
We wish that again the derivative behaves like:
Dyib — Dy’ = ex™¥(D,p),

(i.e. that you can “pull the exponent through” the derivative), such that £ = L.
We will find what then the transformation of the B, field should be.

Write out D) ¢’ (using D, = 10, + igB, and ¢’ = e27 @)y = Gvp) in terms of B,
and G.



c¢) If you compare your answer to the desired result
D;w’ =G(Du),

show that you then find the following gauge field transformation for B,:

B, =G(B,)G " + é(a#G)G—l

d) (EXTRA) If the gauge transformation is “very small”, we can use the approximation
(Taylor expansion) e ~ 1 + iz,
4150 a1+ L7 ),

to demonstrate that the three l;# fields transform as

In other words, the transformation of each of the three l;# fields, involve the other

b, fields.
What is the consequence of this for the phenomenology (behaviour) of the gauge
fields?



