Homework Lecture 6 (Theory 4, Gauge symmetry)

Exercises sent to brightspace on Wednesday 18 March, 12:00
Answers to be submitted individually by Tuesday 21 April 12:00
Please name file as "HW4_Name.pdf"
To: tuning@nikhef.nl
Format: .pdf

1 Dirac equation from the Lagrangian

The Dirac equation was found by Paul Dirac by constructing the equation ofxs motion that is both relativistically correct (like the Klein-Gordon equation), and linear in $d / d t$ (like the Schrödinger equation) to avoid negative-energy solutions,

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

Hamilton's principle of stationary (or "least") action says that the "path" taken by the system between times t_{1} and t_{2}, is the one for which the change in action is minimal. (The action S is obtained from the time-integral of the Lagrangian, i.e. by integrating the diffence of kinetic and potential energy of the system over time.) This requirement is equivalent to the Euler-Lagrange equation

$$
\frac{\partial \mathcal{L}}{\partial \psi(x)}=\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi(x)\right)}
$$

Show that the Euler-Lagrange equation of the Lagrangian

$$
\mathcal{L}=i \bar{\psi} \gamma_{\mu} \partial^{\mu} \psi-m \bar{\psi} \psi
$$

leads to the Dirac equation, and its adjoint, $\left(i \gamma^{\mu} \partial_{\mu}+m\right) \bar{\psi}(x)=0$. Note that you need to consider ψ and $\bar{\psi}$ as independent fields.

2 Massless gauge bosons

a) The Lagrangian that describes the fermions in QED is

$$
\mathcal{L}_{\mathrm{QED}, \text { fermion }}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi
$$

Show that the Lagrangian is invariant under the local gauge transformation

$$
\begin{align*}
\psi & \rightarrow \psi^{\prime}=e^{i e \alpha(x)} \psi \tag{1}\\
\text { with } \quad A^{\mu} & \rightarrow A^{\prime \mu}=A^{\mu}-\partial^{\mu} \alpha(x) .
\end{align*}
$$

b) Adding the term that describes the free photons (which "by the way" lead to the Maxwell equations $\partial_{\mu} F^{\mu \nu}=j^{\nu}$), gives

$$
\mathcal{L}_{\mathrm{QED}}=\bar{\psi}\left(i \gamma^{\mu} D_{\mu}-m\right) \psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

If the photon would have a mass, the corresponding mass term would be $\mathcal{L}_{\gamma \text { mass }}=$ $\frac{1}{2} m^{2} A^{\mu} A_{\mu}$. Local gauge invariance implies that the Lagrangian remains unchanged under the transformation

$$
A^{\mu} \rightarrow A^{\prime \mu}=A^{\mu}-\partial^{\mu} \alpha(x)
$$

Show that the mass term of the photon violates local gauge invariance.

3 Self-interacting gauge bosons

Instead of the "simple" phase factor in QED, see Eq. 1, we will now consider a rotation in isospin space

$$
\begin{equation*}
\psi \quad \rightarrow \quad \psi^{\prime}=e^{\frac{i}{2} \vec{\tau} \cdot \vec{\alpha}(x)} \psi \tag{2}
\end{equation*}
$$

with ψ a two-component object in isospin space.
a) In order to keep the Lagrangian invariant under this gauge transformation, the covariant derivative $D_{\mu}=\mathbb{1} \partial_{\mu}+i g B_{\mu}$ is introduced, with B_{μ} a (2×2) matrix. It can be expressed in terms of the three gauge fields $\vec{b}_{\mu}(x)=\left(b_{\mu, 1}(x), b_{\mu, 2}(x), b_{\mu, 3}(x)\right)$. Write B_{μ} as a (2×2) matrix, using the Pauli matrices $\vec{\tau}$, starting from $B_{\mu}=\frac{1}{2} \vec{\tau} \cdot \vec{b}_{\mu}(x)$.
b) Again, we wish the Lagrangian to stay invariant under the gauge transformation. Let's investigate again what happens with the Lagrangian under the gauge transformation

$$
\begin{equation*}
\psi \rightarrow \psi^{\prime}=e^{\frac{i}{2} \vec{r} \cdot \vec{\alpha}(x)} \psi, \tag{3}
\end{equation*}
$$

We wish that again the derivative behaves like:

$$
D_{\mu} \psi \rightarrow D_{\mu}^{\prime} \psi^{\prime}=e^{\frac{i}{2} \overrightarrow{2} \cdot \vec{\alpha}(x)}\left(D_{\mu} \psi\right),
$$

(i.e. that you can "pull the exponent through" the derivative), such that $\mathcal{L}^{\prime}=\mathcal{L}$. We will find what then the transformation of the B_{μ} field should be.
Write out $D_{\mu}^{\prime} \psi^{\prime}\left(\right.$ using $D_{\mu}=\mathbb{1} \partial_{\mu}+i g B_{\mu}$ and $\left.\psi^{\prime}=e^{\frac{i}{2} \vec{\tau} \cdot \vec{\alpha}(x)} \psi \equiv G \psi\right)$ in terms of B_{μ}^{\prime} and G.
c) If you compare your answer to the desired result

$$
D_{\mu}^{\prime} \psi^{\prime}=G\left(D_{\mu} \psi\right),
$$

show that you then find the following gauge field transformation for B_{μ} :

$$
B_{\mu}^{\prime}=G\left(B_{\mu}\right) G^{-1}+\frac{i}{g}\left(\partial_{\mu} G\right) G^{-1}
$$

d) (EXTRA) If the gauge transformation is "very small", we can use the approximation (Taylor expansion) $e^{i x} \approx 1+i x$,

$$
e^{\frac{i}{2} \vec{\tau} \cdot \vec{\alpha}(x)}=G \approx \mathbb{1}+\frac{i}{2} \vec{\tau} \cdot \vec{\alpha}(x),
$$

to demonstrate that the three \vec{b}_{μ} fields transform as

$$
\vec{b}_{\mu}^{\prime}=\vec{b}_{\mu}-\vec{\alpha} \times \vec{b}_{\mu}-\frac{1}{g} \partial_{\mu} \vec{\alpha}
$$

In other words, the transformation of each of the three \vec{b}_{μ} fields, involve the other \vec{b}_{μ} fields.
What is the consequence of this for the phenomenology (behaviour) of the gauge fields?

