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1 Dirac equation from the Lagrangian

The Dirac equation was found by Paul Dirac by constructing the equation ofxs motion
that is both relativistically correct (like the Klein-Gordon equation), and linear in d/dt
(like the Schrödinger equation) to avoid negative-energy solutions,

(iγµ∂µ −m)ψ(x) = 0.

Hamilton’s principle of stationary (or “least”) action says that the “path” taken by the
system between times t1 and t2, is the one for which the change in action is minimal.
(The action S is obtained from the time-integral of the Lagrangian, i.e. by integrating
the diffence of kinetic and potential energy of the system over time.) This requirement is
equivalent to the Euler-Lagrange equation

∂L
∂ψ(x)

= ∂µ
∂L

∂(∂µψ(x))
.

Show that the Euler-Lagrange equation of the Lagrangian

L = iψ̄γµ∂
µψ −mψ̄ψ

leads to the Dirac equation, and its adjoint, (iγµ∂µ +m)ψ̄(x) = 0. Note that you need to
consider ψ and ψ̄ as independent fields.

2 Massless gauge bosons

a) The Lagrangian that describes the fermions in QED is

LQED,fermion = ψ̄(iγµDµ −m)ψ.

Show that the Lagrangian is invariant under the local gauge transformation

ψ → ψ′ = eieα(x)ψ, (1)

with Aµ → A′µ = Aµ − ∂µα(x).
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b) Adding the term that describes the free photons (which “by the way” lead to the
Maxwell equations ∂µF

µν = jν), gives

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν

If the photon would have a mass, the corresponding mass term would be Lγmass =
1
2
m2AµAµ. Local gauge invariance implies that the Lagrangian remains unchanged

under the transformation

Aµ → A′µ = Aµ − ∂µα(x)

Show that the mass term of the photon violates local gauge invariance.

3 Self-interacting gauge bosons

Instead of the “simple” phase factor in QED, see Eq. 1, we will now consider a rotation
in isospin space

ψ → ψ′ = e
i
2
~τ ·~α(x)ψ, (2)

with ψ a two-component object in isospin space.

a) In order to keep the Lagrangian invariant under this gauge transformation, the
covariant derivative Dµ = 1∂µ + igBµ is introduced, with Bµ a (2 × 2) matrix. It

can be expressed in terms of the three gauge fields ~bµ(x) =
(
bµ,1(x), bµ,2(x), bµ,3(x)

)
.

WriteBµ as a (2×2) matrix, using the Pauli matrices ~τ , starting fromBµ = 1
2
~τ ·~bµ(x).

b) Again, we wish the Lagrangian to stay invariant under the gauge transformation.
Let’s investigate again what happens with the Lagrangian under the gauge trans-
formation

ψ → ψ′ = e
i
2
~τ ·~α(x)ψ, . (3)

We wish that again the derivative behaves like:

Dµψ → D′µψ
′ = e

i
2
~τ ·~α(x)(Dµψ),

(i.e. that you can “pull the exponent through” the derivative), such that L′ = L.
We will find what then the transformation of the Bµ field should be.

Write out D′µψ
′ (using Dµ = 1∂µ + igBµ and ψ′ = e

i
2
~τ ·~α(x)ψ ≡ Gψ) in terms of B′µ

and G.
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c) If you compare your answer to the desired result

D′µψ
′ = G(Dµψ),

show that you then find the following gauge field transformation for Bµ:

B′µ = G(Bµ)G−1 +
i

g
(∂µG)G−1

d) (EXTRA) If the gauge transformation is “very small”, we can use the approximation
(Taylor expansion) eix ≈ 1 + ix,

e
i
2
~τ ·~α(x) = G ≈ 1 +

i

2
~τ · ~α(x),

to demonstrate that the three ~bµ fields transform as

~b′µ = ~bµ − ~α×~bµ −
1

g
∂µ~α.

In other words, the transformation of each of the three ~bµ fields, involve the other
~bµ fields.
What is the consequence of this for the phenomenology (behaviour) of the gauge
fields?
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