Homework Lecture 5 (Theory 3: Hadrons)

Exercises sent to brightspace on Wednesday 18 March, 12:00
Answers to be submitted individually by Tuesday 21 April 12:00
Please name file as "HW3_Name.pdf"
To: tuning@nikhef.nl
Format: .pdf

1 Completing the decuplet

Murray Gell-Mann proposed the quark-model to explain the large number of observed particles. From his scheme, he concluded that there must be a particle with quark content (s, s, s), the Ω^{-}particle. Let's have a look at the decay chain.
a) Gell-Mann predicted the mass of the Ω^{-}, by inspecting the masses in the baryon decuplet (containing the spin- $\frac{3}{2}$ baryons). What is the best guess for the mass of the Ω^{-}, using $m_{\Delta}=1232 \mathrm{MeV}, m_{\Sigma^{*}}=1385 \mathrm{MeV}$ and $m_{\Xi^{*}}=1532 \mathrm{MeV}$? How close is the prediction to the observed value? (Browse to the webpage of the Particle Data Group, http://pdglive.lbl.gov.)
b) Next, look for the π^{0} particle on the webpage of the Particle Data Group. How does it decay? What is its lifetime? If the π^{0} has an energy of 1.4 GeV , how far will it fly? So, what is the signature of a π^{0} in a bubble-chamber picture?
c) Look at the bubble-chamber picture which led to the discovery of the Ω^{-}at Brookhaven. How does the Ω^{-}decay? Also, specify the quark content of all particles involved.
d) Subsequently, how does the baryon with $S=2$ decay? Also, specify the quark content of all particles involved.
e) Subsequently, how does the baryon with $S=1$ decay? Also, specify the quark content of all particles involved.

$2 \quad \pi^{ \pm} p$ Scattering

We will inspect the cross-section for $\pi^{-} p$ and $\pi^{+} p$ scattering, as a function of the center-of-mass energy of the $\pi^{ \pm} p$-system. If we consider $\pi^{-} p$ scattering, the elastic process $\pi^{-} p \rightarrow \pi^{-} p$ is one of the possibilities. However, if (in the Yukawa picture) a charged pion is exchanged instead of a neutral pion, the quasi-elastic process $\pi^{-} p \rightarrow \pi^{0} n$ can occur. Let's compare the following processes:
(A) $\pi^{+} p \rightarrow \pi^{+} p$
(B) $\pi^{-} p \rightarrow \pi^{-} p$
(C) $\pi^{-} p \rightarrow \pi^{0} n$
a) Decompose $\left(\pi^{+} p\right)$, ($\left.\pi^{-} p\right)$ and $\left(\pi^{0} n\right)$ in $I=3 / 2$ and $I=1 / 2$ components, using the Clebsch-Gordan coefficients.
b) Let's compare the transition amplitudes (or "matrix element" \mathcal{M}) of the three processes (A), (B) and (C), in terms of the $I=3 / 2$ and $I=1 / 2$ components:

$$
\begin{align*}
& (A) \mathcal{M}\left(\pi^{+} p \rightarrow \pi^{+} p\right)=<\pi^{+} p \mid \pi^{+} p>=\mathcal{M}_{3 / 2} \tag{1}\\
& (B) \mathcal{M}\left(\pi^{-} p \rightarrow \pi^{-} p\right)=<\pi^{-} p \left\lvert\, \pi^{-} p>=\frac{1}{3} \mathcal{M}_{3 / 2}+\frac{2}{3} \mathcal{M}_{1 / 2}\right. \tag{2}
\end{align*}
$$

Write the equivalent decomposition for process (C).
(Hint: remember that $I=3 / 2$ and $I=1 / 2$ are orthogonal.)
c) Let's compare the cross section at $\sqrt{s}=1232 \mathrm{MeV}$, i.e. at the Δ resonance. The Δ particles (or "resonances") are isospin-3/2, $I=3 / 2$, to explain the degeneracy of the four particles with (almost) equal mass. What is the relative contribution of the quasi-elastic contribution $\pi^{-} p \rightarrow \Delta^{0} \rightarrow \pi^{0} n$ compared to the elastic process $\pi^{-} p \rightarrow \Delta^{0} \rightarrow \pi^{-} p$, in terms of $\mathcal{M}_{3 / 2}$ and $\mathcal{M}_{1 / 2}$?
(Note that the cross section is proportional to the square of the transition amplitude.)
d) So, how does the total $\pi^{+} p$ cross section at the Δ resonance compare to the total $\pi^{-} p$ cross section ?
e) In the spectrum for $\pi^{-} p$ scattering there are peaks around 1520 MeV and 1680 MeV that are absent in $\pi^{+} p$ scattering. What can you say about the isospin of these resonances?

3 Decay rates

We will use the Clebsch-Gordan tables to predict some decay rates, see http://pdg.lbl.gov/2012/reviews/rpp2012-rev-clebsch-gordan-coefs.pdf.
The fractional decay rate to a specific final state is called "branching fraction" or "branching ratio". For a given particle, the sum of all branching fractions add up to 100%.
a) Let's consider the ρ particle. This is a meson with the same quark content as the pion, and also manifests itself as an isospin triplet. (The difference with the pion is that the ρ is heavier, about 770 MeV instead of 140 MeV , and that it has spin-1, and not spin-0 as the pion.) Decompose the $\rho^{+}(\mid 1,+1>)$ in $I=1$ isospin components (ie. look at the table (1×1)).
b) The ρ decays as $\rho \rightarrow \pi \pi$. What is the branching ratio for $\rho^{+} \rightarrow \pi^{+} \pi^{0}$?
c) Decompose the $\rho^{0}(\mid 1,0>)$ in $I=1$ iso-spin components (ie. look at the table $(1 \times 1))$. What is the branching ratio for $\rho^{0} \rightarrow \pi^{0} \pi^{0}$?

