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1 Bohr’s atom model

One of the “problems” that led to the birth of Quantum Mechanics was the fact that
electrons do not spiral onto the nucleus.

a) Consider the orbital momentum of the electron, L = mvr, and the classic situation
of a stable orbit, α qeqp

r2
= mv2

r
. Write the expression for L in terms of r (eliminating

v).

b) Niels Bohr stated in his paper (Phil.Mag 26, 1, 1913) that “for a system consisting
of a nucleus and an electron rotating round it, ... the angular momentum of the
electron round the nucleus is equal to h/2π”. What is then the radius of the orbit of
the electron? With Ekin = 1

2
mv2 and Epot = −αqeqp

r
, what is the value for the total

energy of the orbiting electron?

2 Yukawa’s massive force carrier

Yukawa predicted a massive force carrier. Let’s find out the predicted mass.

a) The strong force acts only at the scale of the nucleus. The nucleus has a size of
∼ 10−15m. To what time-scale does this correspond?

b) To what energy scale, i.e. mass scale, does this correspond?
(Hint: use the constants c and/or ~ to relate the units.)
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3 Spinors

We saw that the requirement of a relativistically correct, but linear equation led to the
Dirac equation, (iγµ∂µ −m)ψ = 0, with ψ being a four component spinor.

a) Hψ = (~α · ~p + βm)ψ gives E2 = p2 + m2 if the matrices anticommute, {αi, αj} =
αiαj + αjαi = 0. Usually we use the γ matrices, γ = (β, β~α).
Show that indeed γ1γ2 = γ2γ1, using the Pauli-Dirac representation,

β =

(
1 0
0 −1

)
; ~α =

(
0 ~σ
~σ 0

)
.

With ψ = u(p)e−ipx and pµ → i∂µ we get (γµpµ−m)u(p) = 0. Looking for the eigenvectors,
it is easier to go back to the original form; Hu = (~α · ~p+ βm)u = Eu, which leads to

Hu =

(
m1 ~σ · ~p
~σ · ~p −m1

)(
uA
uB

)
= E

(
uA
uB

)
with ~σ the Pauli matrices,

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)
; 1 =

(
1 0
0 1

)
.

And thus:

(~σ · ~p)uB = (E −m)uA (1)

(~σ · ~p)uA = (E +m)uB, (2)

where uA and uB are two-component objects. Let’s inspect this two-fold degeneracy, and
find the observable that distinguishes the two components.

b) Consider an electron with the momentum in the z-direction, ~p = (0, 0, p). What do
you find for ~σ · ~p ?

c) What is the eigenvalue of 1
2
~σ · p̂ for the eigenfunction

χ =

(
0
1

)
with p̂ = ~p/|~p| the vector in the direction of ~p with unit length. What does this
value correspond to, you think?

d) Suppose p̂ can point in any direction, what is then the meaning of 1
2
~σ · p̂? What are

the possible eigenvalues?
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e) Let’s consider the operator

~Σ · p̂ ≡
(
~σ · p̂ 0

0 ~σ · p̂

)
,

What are its eigenvalues for

u(1) =

(
u

(1)
A

u
(1)
B

)
, u(2) =

(
u

(2)
A

u
(2)
B

)

where:

u
(1)
A =

(
1
0

)
, u

(1)
B = ~σ·~p/(E+m)

(
1
0

)
u

(2)
A =

(
0
1

)
, u

(2)
B = ~σ·~p/(E+m)

(
0
1

)
(Hint: rotate your frame such that ~p points along the z-axis, such that you only
need to worry about p3.)

4 Rutherford scattering

We calculate the distribution of scattering angles for charged particles on a charged tar-
get, like alpha particles scattering off gold nuclei as done by Ernest Rutherford in 1913.

a) The incoming particle arrives with an impact parameter b, and initial velocity v0.
The angular momentum of the initial state is L = mbv0, whereas the angular mo-
mentum somewhere after the scatter can be given by L = mrv⊥ = mr dφ/dr
Express r in terms of b.

b) The force perpendicular to the direction of the incoming particle is given by Fy =
mdvy/dt, and Fy = F sinφ = (Z1Z2α/r

2) sinφ.
Give the expression for dvy/dt, as a function of b (using the result from a).
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c) We now multiply both sides with dt, and perform the integral from the start until
the end, so the velocity on the left-hand side ranges from vy = 0 to vy = v0 sin θ,
and the angle on the right-hand side ranges from φ = 0 to φ = θ.
Show that

sin(θ/2)

cos(θ/2)
=
Z1Z2α

mv2
0

1

b

d) For a given surface (ring) of possible incoming particles, dσ = b db dφ, the particle
is scattered in a certain solid angle dΩ = sin θdθdφ. Show that the expression for
the differential cross section is given by,

dσ

dΩ
=

b

sin θ

db

dθ
=
(Z1Z2α

mv2
0

)2 1

4 sin4 θ
2

e) Use the 4-vectors pi = (E, 0, 0,mv0) and po = (E, 0,mv0 sin θ,mv0 cos θ) for the in-
coming and outgoing particle, respectively, and express the differential cross section
in terms of the 4-momentum transfer q = po − pi, instead of θ.

5 Cross section

Let’s juggle a bit with cross sections and luminosities.

a) The total cross section for proton-proton scattering at the LHC is about σtot =
60 mb. To what surface does this cross section correspond? (1 barn = 10−28m2.)
What is the size of an object with similar surface?

b) The cross section for Higgs production at the LHC is approximately σpp→H+X =
30 pb. The “luminosity” is the number of particles produced for a given cross-
section, and is an important characteristic of the performance of an accelerator. How
many Higgs particles are then produced for a total luminosity of Ltot = 10 fb−1?

c) The “instantaneous” luminosity at the LHC is about Linst = 1034s−1cm−2. How
many Higgs particles are thus produced per hour?

d) Compare the total proton-proton cross section with the cross section for Higgs pro-
duction. In what fraction of the proton-proton collisions is a Higgs particle pro-
duced?
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