chapter 5 (lecture 6)

- 10) Let's investigate the kaon system.
 - (a) Is $|K^0\rangle$ a P-eigenstate, a C-eigenstate, and/or a CP-eigenstate? Why?
 - (b) Consider the state $|K^0_+\rangle = \frac{1}{\sqrt{2}} \left[|K^0\rangle + |\bar{K}^0\rangle \right]$. If we assume that the state $|K^0_+\rangle$ is CP even (i.e. with CP eigenvalue +1), what does that imply for the sign *convention* in the C transformation of $|K^0\rangle$? And how does $|\bar{K}^0\rangle$ transform under the C operation? Is $|K^0_+\rangle$ a CP-eigenstate?
 - (c) Why does the $|K^0_+\rangle$ purely decay to 2 pions (if CP is conserved)?
 - (d) What does the CP eigenvalue of a final state with 3 pions $(|\pi^+\pi^-\pi^0\rangle)$ depend on?
 - (e) Why do you expect different lifetimes for the two CP-eigenstates in the kaon system?
 - (f) The Cronin-Fitch experiment showed that, in fact, a fraction of the long-living kaons decays to 2 pions. This is not due to CP violation in the decay, but this is due to the fact that the long-living kaon contains a fraction of the CP-even eigenstate:

$$|K_L^0\rangle = \frac{1}{\sqrt{1+|\epsilon|^2}} \left(|K_-^0\rangle + \epsilon |K_+^0\rangle \right)$$

Show that $\epsilon \neq 0$ implies "CP violation in mixing".

- (g) Is $|K_L^0\rangle$ a CP-eigenstate? Why?
- (h) The value of ϵ can be determined with the semi-leptonic decay $K_L^0 \to e^{\pm} \pi^{\mp} \nu_e$. Draw the Feynman diagram for $K^0 \to e^{+} \pi^{-} \nu_e$.
- (i) Express $|K_L^0\rangle$ in terms of $|K^0\rangle$, $|\bar{K}^0\rangle$ and ϵ .
- (j) Show that the charge asymptry for the decay $K_L^0 \to e^{\pm} \pi^{\mp} \nu_e$ is sensitive to the real part of ϵ : $A_{+-} \approx 2\Re \epsilon$ (see Section 5.5).